Connecting Points in the Presence of Obstacles in the Plane

Michael Hoffmann'

Abstract

Given a point set P and a set B of polygonal obstacles in
the plane, we consider planar geometric graphs connect-
ing the points of P and crossing few obstacles from B.
We describe two finite constructions and an algorithm.
The constructions show that it is not possible to draw
a spanning tree or Hamiltonian circuit without crossing
an obstacle a certain number of times. The algorithm
shows that the vertices of axis-parallel rectangles — in
contrast to general rectangles — can be connected by a
Hamiltonian circuit without crossing obstacles.

1 Introduction

Let B be a set of disjoint closed convex objects in
the plane and let P be a point set disjoint from the
relative interior of every object. A geometric planar
graph Gp is a graph drawn in the plane on the ver-
tex set P such that (1) the edges are straight line
segments between the points in the plane and (2)
the relative interiors of distinct edges are disjoint.

The crossing number cr(Gp,b) of a geometric
graph Gp with respect to an object b € B is the
number of edges that cross b. For an object b € B
with non-empty interior, an edge e crosses b if it
intersects int(b). For a line or line segment b, edge
e crosses b if e intersects the relative interior of b
but e is not collinear with b. The crossing number
cr(Gp, B) of the set B of objects with respect to G p
is simply the sum ), cr(Gp,b).

We are interested in geometric planar spanning
trees (for short, spanning tree) and geometric pla-
nar Hamiltonian circuits (for short Hamiltonian cir-
cuit) with low or zero crossing number w.r.t. certain
types of families of polygonal objects. Our setting
generalizes two classes of problems described below.

The first class includes problems where the point
set is independent of the obstacles. Matousek [3]
proved that if B contains one line only, then there
is a spanning tree Tp with cr(Tp, B) < /[P|, and
this bound is optimal. Asano et al. [1] studied
the crossing number of spanning trees where every
point of P is disjoint from the objects in B. They
showed that there exists a spanning tree Tp such
that cr(Tp,B) = O(|P| + |B|). Moreover, if S is
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a set of disjoint line segments, then there exists a
spanning tree Tp such that cr(Tp,s) < 4 for every
s € S, and therefore cr(Tp, S) < 4|S|.

The best know lower bound for this last result re-
lies on a construction where S consists of n disjoint
sides of a convex 2n-gon and P consists of n points
along those sides outside the 2n-gon: In this exam-
ple, , the crossing number is cr(Tp, S) > 2|S| -2 =
2n — 2 for any spanning tree Tp and there is at least
one segment s € S for which cr(Tp,s) > 2. No lin-
ear upper bound is known for cr(Hp,S) where Hp
is a Hamiltonian circuit.

In Section 2, we give a construction for a set .S of
disjoint line segments and a point set P where for
any spanning tree Tp there is at least one segment
s € S such that cr(Tp,s) > 3.

The second class of problems are discussed in Sec-
tion 3 and Section 4. Here the point set P is prede-
termined by B: The convex objects in B are polygo-
nal and the point set P is the set of all their vertices
V(B). If P = V(B) then a spanning tree Ty (p)
with cr(Ty gy, B) = 0 always exists, therefore we
turn our attention to Hamiltonian circuits.

Answering a question of Mirzaian [4], we have
shown recently [2] that for any set S of n disjoint
line segments (not all on a line) and the set V(.5)
of 2n segment endpoints there exists a Hamilto-
nian circuit Hy (p) with cr(Hy (s, S) = 0. This im-
plies that the segment endpoint visibility graph of
S is Hamiltonian. Earlier, Urabe and Watanabe [6]
gave a construction where S does not always have
a Hamiltonian circuit Hy (s) circumscribing all seg-
ments. Rappaport [5] showed that it is NP-complete
to decide if S admits a Hamiltonian circuit Hy (g
containing every segment s € S as an edge of Hy(g).

A natural generalization of the problem asks the
following: For a set B of n disjoint k-gons in the
plane and the set V(B) of kn vertices of the k-
gons, does there always exists a Hamiltonian circuit
Hy gy with cr(Hy ), B) = 07 We give negative
answer to this question for all k£ > 4. Our construc-
tion for k = 4 can be realized by rectangles. We give
a positive answer for £ = 4 if all quadrilaterals in B
are axis-parallel rectangles. The question remains
open for k = 3.
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(a) Global view.

(b) Points in one bundle.

Figure 1: Construction for Theorem 1, consisting of 16 points and 30 segments.

2 Segments and points

Theorem 1 There is a set S of 30 line segments
and a set P of 16 points in the plane, such that for
any geometric spanning tree Tp there is a segment
from S which is crossed by Tp at least three times.

Proof. Consider the construction in Figure 1, and
let T' be an arbitrary (not necessarily planar) geo-
metric spanning tree for P . Note that P contains a
point M at the center, and five points in each each
of the outer parts of the three rotational symmetric
segment bundles. Point M has to be connected to
at least one other point, but the bundled segments
have been chosen to be sufficiently long, such that
any segment connecting M to another point crosses
one of the three bundles completely. Let us restrict
our focus to this particular bundle, whose outer part
is shown in Figure 1(b).

Look at point C: obviously there has to be a path
in T from C to the points lying in the other bundles.
The first option is, that C is directly connected to
M or to another bundle, w.l.o.g. by an edge to the
right. This edge crosses the two vertical segments
next to D. But since all vertical segments in this
bundle are already crossed once by assumption, and
since any edge incident to D (there must be one
such edge in T') crosses at least one of r and s, there
are three crossings on one of these two edges.

Next possibility is that edge CD or BC, w.l.0.g.
CD, is in T, and there is an edge from D to M
or to another bundle to the right (to the left would

intersect r the third time). But then there is no
way to connect FE in T: edge DE generates a third
crossing of s, and any other edge would cross either
r or t for a third time.

Another option is to connect C via edge CE or
CA, wlo.g. CE, and to connect E to M or to
another bundle to the right. But similarly to the
previous case, there remains no way to connect D
without crossing one of r, ¢, and p three times.

Finally, there remain two possibilities, again
w.l.0.g. we restrict our attention to the part to the
right of C: either CE and ED are edges of T', and
D is connected to the outside world; or CD and DE
are edges of 7', and E is connected to the outside
world. In the first case one of r and s is crossed three
times, in the latter case ¢ is crossed three times. O

3 Rectangles and all vertices
Lemma 2 There is a set R of 13 disjoint rectangles
such that for any Hamiltonian circuit Hy (g, the
crossing number cr(Hy gy, R) is at least one.

Proof. Our construction is depicted on Figure 2.
Six rectangles are labeled by numbers at their ver-
tices, seven rectangles are labeled by capital letters.
Suppose that there is a Hamiltonian circuit H?,(R)
with cr(Hy, ), R) = 0. Our first observation is that
H‘(}( R) contains the vertices of the convex hull of R

in the same (cyclic) order as they appear along the
convex hull. The convex hull of R contains the ver-



Figure 2: Construction with 13 rectangles.

tices 2, 3, 4, 6, 7, 10, 11, 12, 14, 15, 18, 19, 20,
22, 23 in this order and also two-two vertices of the
rectangles C, F/, and G.

Next we observe that the segments (1,5), (9,13),
and (17,21) crosses the rectangles [9,10,11,12],
[17,18,19,20] and [1,2,3,4] respectively. There-
fore, in order to access the vertices of A, the circuit
H‘O,(R) contains one of the subsequences (4,1,9,10),
(12,9,17,18), and (20, 17,1, 2) — in counterclockwise
direction with possibly other vertices between them.

Assume w.l.o.g. that H?/(R) contains the subse-
quence (4,1,9,10). We argue that HY, ) cannot
visit the vertices of F. Indeed: the vertex 1 is
visited by the subsequence (4,6,C,7,10) along the
convex hull, while vertex 20 is in the subsequence
(20,22,G,23,2). Neither subsequence can visit any
vertex of F'. |

For every k > 5, we can generate similar construc-
tions with already 10 disjoint k-gons. We consider
the construction depicted on Figure 2 and add new
vertices close to one of the vertices of each rectan-
gle. We can remove the polygons C, E, and G, if
we add the fifth and further vertices of the polygons
[5,6,7,8], [13,14,15,16], and [21,22,23,24] on the
convex hull between (6,7), (14,15), and (22, 23) re-
spectively. These vertices can assure that a Hamil-
tonian circuit Hy gy with zero crossing number tra-
verses these three intervals in this order. Therefore:

Theorem 3 For any k, there is a set B of n dis-
joint k-gons such that for any Hamiltonian circuit
Hy By, the crossing number cr(Hy gy, B) is at least
one.

4 Axis-parallel rectangles

In the rest of the paper, we consider disjoint axis-
parallel rectangles in the plane and outline the proof
of the following theorem.

Theorem 4 For any set R of disjoint axis-parallel
rectangles, there is a Hamiltonian circuit Hy (g)
with cr(Hy gy, R) = 0.

Given a set R of axis-parallel rectangles, we build
a Hamiltonian circuit recursively. We say that a
vertex v of H; is convez (reflez) if the simple polygon
enclosed by H; has a convex (reflex) angle at v.

We initialize our algorithm by H; = ri, the cir-
cuit around the rectangle whose top side has max-
imal y-coordinate. For every i > 1, the graph H;
is a Hamiltonian circuit on a subset of V(R) with
cr(H;,R) = 0. In each step, H;;; contains strictly
more vertices than H;, therefore we generate a graph
Hy (4) with no crossing in a finite number of steps.

Figure 3: An example with twelve rectangles and a
possible processing order.

During the algorithm, we determine recursively
a linear (processing) order on the rectangles. The
first rectangle in our order is r;. Furthermore, let
Ry ={r; :1<j<i}, forj=12,...,|R| and
let R; = R \ R;. We maintain the following three
properties on the circuits H;.

(1) the vertices of H; are exactly the 4i vertices of
the rectangles in R;,

(2) H; circumscribes the rectangles in R;,

(3) Every rectangle in R; is exterior to H;,

(4) cx(H;, R) = 0.

Suppose we are given a circuit H;, i € IN, we
determine the next rectangle r;41 and H;pq. Our
goal is to find a augmenting pair ([abced], ef) where
[abed] € R; and ef € E(H;) such that afeb is a
simple quadrilateral which does not intersect the
interior of any rectangle of R nor the interior of



H;. If such a pair ([abed],ef) exists, then we let
ri+1 = [abcd]. Replacing the edge ef of H; by the
polygonal chain (e,a,d,c,b, f), we obtain a circuit
H;, satisfying properties (1)—(4) stated above.

For finding an augmenting pair, we consider only
the polygon circumscribed by H; and the rectangles
in R;. We maintain two geometric properties of H;.
They clearly hold for H;:

(5) For any side vyv2 of H;, the axis-parallel rectan-
gle spanned by vyv, is disjoint from every rectangle
in R;. (See Figure 4.)

(6) For every rectangle r € R;, there is a side ab of
r and a side ef of H; such that the interior of the
quadrilateral a feb is disjoint from H;.

In order to maintain Property (5), we require a
bit more from an augmenting pair.

Definition 5 A pair ([abed], ef), where [abed] € R;
and ef is a side of H; is an augmenting pair if the
segments af and af are disjoint, and the quadri-
lateral afeb and the axis-parallel rectangles spanned
by af and eb are disjoint from the interior of every
rectangle in R; and from the interior of H;.

Figure 4: Rectangles spanned by sides of H; are
disjoint from the rectangles of R;.

If Property (6) is not maintained, then possibly
there is no augmenting pair, as indicated in Fig-
ure 5. Similarly, if the first rectangle in our algo-
rithm is [abced] in Figure 5 then there is, again, no
augmenting pair. That is, the choice of r; is used
by our algorithm.
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Figure 5: There is no augmenting pair if Property
(6) is violated.

Let [aibicidi] be the rectangle in R; whose top
side, a1b;, has highest y-coordinate. Ideally, we
would like to find an augmenting pair with [abed);.
This is possible if the top side of [a1b1¢1d;] is below
H;. Denoting by e; f1 the lowest side of [a1bic1ds],
necessarily [abed]r, e1 f1) is an augmenting pair (see
Figure 6).
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Figure 6: [a1b1c1d;] forms an augmenting pair with
the lowest side of H;.

If the top side of [a1b1c1d;] is above the lowest
side of H;, then the horizontal slab of [a1bicid;]
intersects H;. Let e;f; be the side of H; clos-
est to [a1bicidy] within its horizontal slab. If
([a1bicrdr],e1 f1) is an augmenting pair, the recur-
sion step is complete (see Figure 7).

Figure 7: [a1b1c1d;] forms an augmenting pair with
the closest side of H; in its horizontal slab.

Otherwise we consider recursively a series of pairs
([ajbjcid;], ejfi), 3 = 1,2,... until we find eventu-
ally an augmenting pair. There are two possible rea-
sons why a pair ([a;bjc;d;], e; f;) is not augmenting:
(A) the quadrilateral a;fjejb; or the axis-parallel
rectangles spanned by aje; or b; f; intersects a rect-
angle in R; \ {[a;jbjc;d;]}; (B) the one of the seg-
ments aje; and b;f; crosses H;. We consider the
two cases separately.

In case (A), we preserve eji1 fj11 = e; f;, but we
choose a new rectangle. Let [aj11bj41¢j11dj41] €



R; be the rectangle closest to e; f; among all rectan-
gles of R; intersected by the quadrilateral a; f;e;b;
or the axis-parallel rectangles spanned by aje; or
b; f; such that the side a;y1bj41 faces to e;f; (see
an example in Figure 8).

Figure 8: a1b; fie; intersects a rectangle from R;.

In case (B), we choose another side ej11 fj+1 but
keep the rectangle [aj11bj11¢j41d41] = [a;jbje;d;].
Let ejy1fj+1 be the side of H; closest to [a;bjc;d;]
among all sides of H; intersected by the quadrilat-
eral a; fje;b; or the axis-parallel rectangles spanned
by aje; or b; f; (see an example in Figure 9).
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Figure 9: a1b; f1e; intersects the interior of Hj.

After a finite number steps, we can find an aug-
menting pair and all six invariants are maintained
for the augmented circuit H;y ;.

5 Open questions

If S is a set of disjoint segments and P is a set
of points: Is there always a spanning tree Tp such
that cr(Tp,s) < 3 for every s € S? Is there always
a spanning tree Tp such that cr(Tp, S) < 2|5|?

If T is a set of disjoint triangles: Is there always a
Hamiltonian circuit Hy(r) with cr(Hy (), T) = 07
If @ is a set of disjoint quadrilaterals: Is there always
a Hamiltonian circuit Hy gy with cr(Hy (), q) <1
for every ¢ € Q7 Given a set B of disjoint poly-
gons, is there a polynomial algorithm to decide
if there exists a Hamiltonian circuit Hy () with
CI‘(H‘/(B),B) =07
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