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Abstract. We show that every segment endpoint visibility graph on n disjoint line
segments in the plane admits an alternating path of length ©(logn), answering a
question of Bose. This bound is optimal apart from a constant factor. We also give
bounds on the constants hidden by the asymptotic notation.
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1 Introduction

Consider a set S of n disjoint obstacles, represented by line segments, in the Euclidean
plane. A mobile agent wishes to visit a maximal number of vertices (i.e., segment end-
points) under various constraints. More specifically, the agent may move along straight
line segments between any two vertices, but it must not cross any of the obstacles from
S (although it may walk along them from one endpoint to the other).

Similarly to the Euclidean traveling salesman problem (ETSP), for which it is known
that the optimal solution consists of a simple circuit, we restrict the agent to walk along
simple paths. But in contrast to ETSP, it is not quite obvious that there always exists
a Hamiltonian circuit for the case of segment obstacles; this property was shown only
recently [2].

On the other hand, there are sets of line segments for which there is no circumscrib-
ing Hamiltonian polygon (Figure 1(a)), that is, a polygon whose vertices are the segment
endpoints and whose closure contains all the segments [5].

In this paper, we consider alternating paths, that is polygonal paths where every
other segment is one of the obstacle segments (Figure 1(b)). (Note that at most every
other segment of such a path can be from S, since the obstacles are disjoint.)

(@) Circumscribing polygon. (b) Alternating path.

Fig. 1. Example: Obstacle segments.

* A preliminary version of this work was presented at the 18th European Workshop on Compu-
tational Geometry (Warsaw, 2002).
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putation”, financed by the German Science Foundation (DFG) and ETH Zurich.
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It is known that there are sets of segments which do not admit an alternating Hamil-
tonian polygon. Even more, it is NP-complete to decide whether a given set of line seg-
ments has this property, if line segments are allowed to intersect at their endpoints [3].
But for some special cases, it can be computed efficiently whether an alternating Hamil-
tonian circuit exists [4]. So, what is the maximal number of vertices that can be visited
by a simple alternating path [1, 6]? We prove the following lower bound.

Theorem 1. For any set S of n disjoint closed line segments in the plane, there is a simple
alternating path visiting 2 [log,(n + 2)] — 2 vertices.

Apart from a constant factor, this is best possible:

Theorem 2. For any ny € N, there exists an n > ng and a set S of n disjoint closed line
segments in the plane, such that S does not admit a simple alternating path visiting more
than % log, n — 17 < 7.57 log, n vertices.

It is easy to turn our proof into an O(nlogn) algorithm to compute an alternating
path of length 2log,(n + 2) — 2. Note, however, that this path is not necessarily the
longest alternating path for the given set of line segments. The optimization problem
might have much larger complexity.

2 Preliminaries on Segment Endpoint Visibility Graphs

Consider a set S of n disjoint closed line segments in the plane and denote by V' the set of
the 2n segment endpoints. The segment endpoint visibility graph Vis(S) = (V, Es U Ev )
is defined on the vertex set V' as follows. Two vertices u, v € V are connected by a

— segment edge, if and only if the corresponding line segment wv is in S,
and v and v are connected by a

— visibility edge, if and only if the corresponding line segment wv does not cross any

segment from S.

We say that two line segments cross if they have at least one common point in the
relative interior of both segments. Let Es denote the set of segment edges, and Ey;, the
set of visibility edges. Figure 2(a) shows an example where the visibility edges are shown
as dotted lines.

(&) (b)

Fig. 2. Segment endpoint visibility graph and a Hamiltonian circuit.

Note that the graph Vis(S) is defined in geometric terms; hence, there is an associ-
ated embedding into the Euclidean plane. In our terminology, a path in Vis(S) is simple,
if it corresponds to a simple polygonal path in the Euclidean plane. Observe that by our
definition below an alternating path is always simple.
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Definition 1. A simple path p = (v1 va, ..., vg) In Vis(S) is called alternating path if it con-
sists of segment edges and visibility edges in alternating order, or formally, if w;_1 ve; €
Eg foreveryi=1,...,|k/2] or vy;ve,41 € Eg foreveryi=1,...,[(k—1)/2].

It was shown recently that every segment endpoint visibility graph is Hamiltonian [2].
Moreover, if not all segments are collinear, then Vis(S) contains a simple Hamiltonian
circuit /. The circuit # is not necessarily alternating, it may contain several visibility
edges in a row (see Figure 2(b) for an example). # can possibly consist of visibility edges
only.

A segment s € S which is not in # is necessarily a diagonal of #, which we call a
segment diagonal. In Figure 2(b), for example, segment ¢ is an internal segment diag-
onal, while segment e is an external segment diagonal of H. For a graph G, denote by
V(G) the vertex set of G, and by E(G) the edge set of G. For two subgraphs G and H of
Vis(S), define the graph GUH by V(GUH) :=V(G)UV(H) and E(GUH) := E(G)UE(H).
Denote by D the Hamiltonian circuit H together with all its segment diagonals.

Proposition 1. Every vertex of D has degree 2 or 3. If deg(v) = 2 for a vertex v, then no
segment diagonal is incident to H at v, therefore v is incident to a visibility edge and a
segment edge. If deg(v) = 3 then v is incident to a segment diagonal and to two visibility
edges along H. |

Observe that D is planar. Hence, a simple path in the abstract graph D always
corresponds to a simple path in its planar embedding.

3 The Lower Bound

We show in the next lemma, that one can build an alternating path from any segment
edge to any vertex in D. The proof of Theorem 1 then follows by elementary arguments.

_\

Lemma 1. For any directed segment edge e = (eg,e1) € E(D) and any vertex f € V, D
contains a directed alternating path from ¢ to f.

We define a distance function d on the vertex set as follows. For any v € V, v # ey, let
d(v) be the length of the shortest (not necessarily alternating) path connecting v and f
along 7 that does not pass through ¢. (Such a path always exists, since H is a circuit.)
If eg = f, let d(eg) := 0, else d(eg) := co. Next, we orient all visibility edges in D such that
they are directed towards the vertex with smaller value d(-). Two examples are depicted
in Figure 3. Note that we do not consider D as directed graph, the orientation induced
by d(-) is merely an aid to construct paths.

Fig. 3. Orientation and distances.
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Proposition 2. With respect to the orientation according to d(-), every vertex of degree 3
in D is incident to at least one outgoing and at most one incoming visibility edge, except
for f which might be incident to two incoming visibility edges. O

With help of this orientation, we can try to build an alternating path in D starting
from & and directed towards f as follows.

Algorithm 1 ((vp,v1) € E(D), X CV)

P+ (Uo, ’Ul).
while P is simple and has not reached any vertex from X do
(u,v) « last edge of P.
if degp(v) =2 then append the other (# ) neighbor of v in D to P.
elsif (u,v) € Ev;, then append the unique segment edge incident to v in D to P.
else append a visibility edge outgoing from v to P.
od
return P.

To check that Algorithm 1 is well defined, refer to Propositions 1 and 2. When called
with ((eo,e1), {f}), the algorithm either terminates by reaching f, or when the path P
reaches a vertex for the second time. One of these conditions is surely met after finitely
many steps, since the graph D is finite. If the path does not reach f, we are left with
a path connected to a cycle, which looks like a balloon with a cord attached to it.
Let us derive a more formal — and slightly more general — description for this type of
configuration.

Definition 2. A subgraph G of Vis(S) is called walkable from a vertex v € V(G), if for
any vertex u € V(G), u # v, there is an alternating path within G from v to « whose edge
incident to u is a segment edge.

Note that, in particular, a graph consisting of a single vertex or two vertices con-
nected by a segment edge always form a walkable subgraph.

Definition 3. The union B = GUP of two subgraphs of Vis(S) with V(G)nV (P) = {v} and
E(G)NE(P) = is called balloon, if G is walkable from v, and P = (v = v, v1, ..., v, = u),
k € N, is an alternating path in Vis(S), such that (v,v) € Es. We call src(B) := u the
source, hrt(B) := v the heart, bdy(B) := G the body, and cor(B) := P the cord of B. See
Figure 4 for an example.

Fig. 4. A balloon B; the body (shaded) is walkable from v.

Proposition 3. The path P computed by Algorithm 1((w,v;1), X) either reaches a vertex
from X, or forms a circuit, or forms a balloon.
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Proof. If the algorithm does not reach a vertex from X, it terminates with a path
P: (U07 U1, ..., Us, US+17 sy U :Us)v

for some s € Ny. If s =0, P forms a circuit. Otherwise, we claim that both (v;_1,v;) and
(vs,vs41) are visibility edges.

Indeed, a segment edge is included into the path directly after one of its incident
vertices has been reached. Hence, (v;_1,v;) cannot be a segment edge, otherwise the
algorithm would have selected v;_; instead of v, as successor of vs. If (vs,vs41) € Eg,
the preceding edge (vs_1,vs) is a visibility edge with d(vs) < d(vs—1) by construction. For
the same reason, the edge (vi._1,v) is directed towards v, = vs. Then Proposition 2 tells
us that v, = f, and the algorithm would have stopped there.

Proposition 1 implies that every second edge in P is a segment edge; in particular,
if (vs,vs41) € Evyys, then (vs—1,vs) € Es. Thus, every vertex on the path (vst1, ..., vk—1)
can be reached from v, on an alternating path that ends with a segment edge: either via
vs41 OF via vi_; along P. Altogether, we have shown that the constructed path P forms
a balloon with source vy and heart v;. O

Proposition 4. For any vertex v in the body of a balloon B, there is an alternating path
from hrt(B) to v in B which starts with a visibility edge and ends with a segment edge.

Proof. Since the segment edges are pairwise disjoint, there can only be one segment
edge incident to any vertex. The segment edge incident to hrt(B) is part of cor(B) by
definition; hence, there are only visibility edges incident to hrt(B) in bdy(B). The claim
follows from the fact that bdy(B) is walkable. |

Definition 4. A sequence B = (By, Bs, ..., By), £ € Ny, is called balloon-path in D, if it
satisfies the following conditions.

1. Forany i, 1<i </, B;is aballoon in Vis(S).
2. Foranyi,1<i<fandanyj,i<j</,

V(B) N V(B = {ésrC(Bj)} S enise,

E(B;)) N E(B;)=0.
Denote |B| := ¢, V(B) := U'_, V(B), src(B) = src(B,), and bdy(B) := |J._, bdy(B;).

We observe a few immediate consequences of this definition. Consider a balloon-path
B= (Bl, BQ, ey Bg) in D.

Proposition 5. For any i, 2 <i </, the edge incident to src(B;) in B; is a visibility edge.

Proof. Since src(B;) € V(bdy(B;_1)) by definition, there is an alternating path from
src(B;_1) to src(B;) in B;_; that ends with a segment edge. There is exactly one seg-
ment edge incident to every vertex in Vis(S), and E(B;_;) N E(B;) = 0. Thus, any edge
incident to src(B;) in B; must be a visibility edge. |

Note that Proposition 5 implies that |V (cor(B;))| > 3 for any 2 < i < ¢.
Proposition 6.

(i) For every vertex u € V(B), B contains an alternating path from src(B,) to w.
(i) For every vertex u € bdy(B), B contains an alternating path from src(B;) to u that
ends with a segment edge.
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Proof. The statement is obvious for v € V(cor(B;)). Otherwise, there is by definition
an alternating path in B; from src(B;) to hrt(B;) that ends with a segment edge. By
Proposition 4, any vertex in bdy(B;) can be reached from hrt(B;) within B; on an al-
ternating path starting with a visibility edge and ending with a segment edge. Since
both paths can be concatenated to a single alternating path, we are done for the case
that v € V(bdy(B;)). Otherwise, we can use the same argument for src(B;), that lies
in bdy(B;) by definition, to construct an alternating path from u to src(B2) which ends
with a segment edge. The claim follows by induction together with Proposition 5, since
for ¢ > 1, (Bs, ..., B;) forms again a balloon-path. |

Proposition 7. For any vertex v € V(B), v # src(B;), the segment edge (u, v) incident to v
is in E(B).

Proof. If v € V(bdy(B)), the claim follows from Proposition 6 (ii). So, let v € V(cor(B;)): if
v =src(B;) and i > 1, we have v € V(bdy(B;_1)); if v = hrt(B;), itis v € V(bdy(B;)). In the
remaining case, deg.,. s, (v) = 2. Since cor(B;) is an alternating path, one of the edges
incident to v in cor(B;) must be a segment edge. |

We have now collected all tools to describe an algorithm to construct a balloon-path
from & headed towards f, that will provide the proof of Lemma 1.

Algorithm 2 ((eg,e1) € E(D), f€ V)

B+ ().
(mau) (_(60761)'
while f ¢ V(B) do
P:=(vy =m,va =p, ..., vg) < Algorithm 1((m, u), {f}UV(B)).
(Bl, cey Bg) + B.
if v, € V(B;) forsome 1 <i </{then B «+ (Bl, ooy Bioq, PUUﬁZiBj).

else B« (By, ..., By, P).

m < minw.r.t.d(-) bdy(B|5‘).

u < a vertex with (m, u) € E(D) and d(u) < d(m). (cf. Proposition 2)
od
return 5.

Note that min,, .+ 4..) bdy(B|z|) is not necessarily unique, because two nodes might
have the same d(-) value; but in this case any of them will do.

Proposition 8. At the beginning of any iteration of the loop in Algorithm 2, B forms a
balloon-path with source ey.

Proof. The statement is trivial for the first iteration, since B = (). In the second iteration,
Algorithm 1 is called with parameters ((eg,e1), {f}). According to Proposition 3, if the
path P does not reach f, it forms either a circuit or a balloon. The function d(-) is
defined such that no visibility edge is directed towards ey, unless ¢y = f. The segment
edge incident to eg, (eg,e1), is already in P from beginning; hence, it is not possible to
revisit ep along a segment edge, either. Therefore, the path P returned by Algorithm 1
in the second iteration cannot be a circuit: it must form a balloon.

Assume B = (By, ..., By) is a balloon-path at the beginning of some iteration. Algo-
rithm 1 returns a path P = (v; = m, vo = p, ..., v;) Which, according to Proposition 3,
either reaches a vertex from {f} U V(B), or forms a balloon. Notice that if P forms a
circuit, it necessarily reaches a vertex from V(B), since m = v € V(bdy(B)).

Let us first consider the case that P reaches a vertex v € V(B). We claim (vy_1,vx) €
Ey;s: If v # eg, recall that by Proposition 7 the segment edge (v, w) incident to v lies in
B as well. Thus, Algorithm 1 stops, if P reaches w. Similarly, the segment edge (e, €;)
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incident to ¢y is part of B, and the algorithm stops, if P reaches e;. Now there are two
subcases to consider.

(1) vy € V(bdy(B;)) (Figure 5(a)) There is by definition an alternating path from src(B;)
to v;, that ends with a segment edge. Hence, any vertex vs, ..., vy—1 can be reached
from src(B;) on an alternating path ending with a segment edge: either via v, and P
or via the balloon-path (B;, ..., B;) to m and then P (cf. Proposition 6 (ii)). (Note that
vg = m, if P forms a circuit. But the argument still goes through; one can even argue
that this case does never occur during the course of Algorithm 2.) Furthermore, the
same argument can be applied to the vertices in Uf:@ 41 V(cor(B;)). Thus, PU Uf:@ B;
is a balloon with source src(B;) and heart hrt(B;).

vp € V(cor(B;)) (Figure 5(b)) Let cor(B;) = (u; = src(B;), ..., Us = g, ..., ). Since
all paths in B are constructed using Algorithm 1, all visibility edges in the cords of
the balloons in B are oriented from the source to the heart of the balloon. Hence, we
can argue as in Proposition 3 that (u;_1,us) € Eg. By the same reasoning as above,

PuU Uf.:i B; is a balloon with source src(B;) and heart hrt(B;).

2

~—

It remains to consider the else-branch, that is, the case that the path P that is
constructed recursively by Algorithm 1 hits itself before reaching any vertex from V' (5)
(Figure 5(c)). Then, by Proposition 3, P either reaches f or it forms a balloon with
src(P) = m. If P reaches f, the algorithm terminates; otherwise, (B, ..., By, P) forms
again a balloon-path, since m € bdy(By). m|

(@) P hits the body of a balloon.

(c) P hits itself.

Fig. 5. lllustrations for Algorithm 2.

Proof (of Lemma 1). We simply apply Algorithm 2 to (ep,e;) and f. If we can show that
the algorithm always terminates, the claim follows from Propositions 8 and 6 (i). Strictly
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speaking, after termination B = (B, ..., By) will in general not form a balloon-path
anymore; but (B, ..., B,—1) is a balloon-path and By is an alternating path whose one
endpoint lies in bdy(B,_1) and is incident to a visibility edge in B,. Hence, the argument
from Proposition 6 goes through.

To show termination, note first that no edge is ever discarded from B, that is, |E(B)|
is monotonely increasing over the execution of the algorithm. Moreover, this increase is
strict, since in every iteration at least the edge (m, i) is added to E(B). m|

It might be worthwhile to note that we did not use anywhere the fact that D is planar.
The proof of Theorem 1 is completed by the following elementary argument.

Proof (of Theorem 1). Take an arbitrary segment (eg,e;) € Es. We construct recursively
a family (T3);cw, of trees. Let Ty be the tree with V(Ty) := {eg, e1} and E(Tp) := {(eo,€1)},
and let I(Ty) := {e1}. Build T;;; from T; by

ES, 1 odd

V(T; :
(Tis1) Eyi,, i even

l(Ti+1) .
E(Tinn) = E(T) U {(z,w e B(D)n {

(Tz) U {U S V\TZ
(Ti1) \ V(T3), and

(I,v) e E(D)N { }for some | € [(T3) } ,

=V
=V
Es,iOdd

Eyia, i even} ‘ l e l(Tz) and v € l(Tz+1)} .

Note that T; forms a tree of alternating paths starting with (eg,e;), that consist of
(i + 1) vertices. According to Lemma 1, there is some k£ € IN such that V(T}) = V.
Furthermore, we have [(T;1) < I(T;) for i odd, and I(T;;+1) < 21(T;) for i even (cf. Propo-
sition 1). Thus, for even i we have |V (T;)| < 25" — 2 (for odd i, it is |[V(T3)] <3- 2% —2),
which yields k£ > 2 log(n + 2) — 4. Since T}, contains an alternating path consisting of at
least k + 2 vertices, the claim follows. O

4 Upper bound

Complementing the results from the previous section, we show here an asymptotically
matching lower bound, that is, we construct sets S;, k € IN, of disjoint line segments
that do not have long alternating paths.

Proof (of Theorem 2). We construct the sets of segments Sy, k € IN, recursively as follows.
All line segments are chords of a circle c¢. S; consists of three segments arranged in a
triangular fashion, i.e., such that Viss, = K. The endpoints of the chords partition ¢
into arcs. S; is obtained from S;_; by inserting a sequence of three segments (i.e., a
copy of &) on every arc of ¢ that is bounded by only one segment from S;_;. Figure 6
shows S; and S».

54
Y S5 S12
s 56 i cliques
53 . /
@ Si. (b) So. (c)

Fig. 6. The construction of Sy.
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The two endpoints of any segment in this construction are adjacent to the same
set of segment endpoints in the visibility graph Vis(S;). Hence, we can interpret S;, as
complete ternary tree of depth k£ — 1 where each vertex is formed by a clique of three
segments (Figure 6(c)). Let A\, be the length of a longest alternating path in S;, where the
length of a path is defined as the number of vertices along the path. Since the longest
simple path in a tree of depth & — 1 has length 2k — 1 and since visiting a 3-clique of
segments means visiting 6 vertices, we conclude that A\, = 12k — 6.

Sy, contains exactly ny := 3k+1 _ 3 vertices. Hence,

A = 12 (logang — 1+ 1o i -6 = 12 log, np — 18 + 12 lo i
k= 83 Nk 833k _1 ~ log, 3 82 Nk 83 3% _ 1
and the claimed result follows, since the last term is less than one for £ > 3. O

Note that an (2(logn) bound was already known by a construction due to Urrutia [6],
but with a weaker constant coefficient.

5 Open questions

For our upper bound construction from Section 4 it is straightforward to find a Hamil-
tonian polygon. Visiting vertices along the circle ¢ gives a circumscribing polygon (i.e.,
where all segment edges are sides or internal diagonals). We note here that it is consid-
erably easier to establish Theorem 1 for sets of segments which admit a circumscribing
polygon.

We note also that the maximal alternating paths are contained in the graph D for
this example. Our algorithm from Section 3 always gives a path of maximum length, if
the right starting edge is chosen.

We conclude with two open questions. Are there matching lower and upper bounds
for the length of a longest alternating path that any set of n disjoint line segments has?
We showed that it must be between 2log,(n + 2) — 2 and 7.57 log, n — 17.

Our approach, using only the abstract graph D, can possibly lead to the solution.
Therefore we formulate the following question: Let H and M be a Hamiltonian circuit
and a complete matching on the same set V' of 2n vertices. What is the longest simple
path in the abstract graph (V,H U M) in which every second edge belongs to M? For
this problem, the best lower and upper bounds we know are the same as for alternating
paths in the segments endpoint visibility graph.

References

1. DEMAINE, E. D., AND O’'ROURKE, J. Open problems from CCCG’'99. In Electronic Proc. 11th
Canadian Conf. on Comput. Geom. (Vancouver, 1999).

2. HOFFMANN, M., AND TOTH, Cs. D. Segment endpoint visibility graphs are Hamiltonian. Com-
put. Geom. Theory Appl. (2002). to appear. http://www.inf.ethz.ch/ toth/hamilton.ps.
gz.

3. RAPPAPORT, D. Computing simple circuits from a set of line segments is NP-complete. SIAM
J. Comput. 18, 6 (1989), 1128-1139.

4. RAPPAPORT, D., IMAI, H., AND TOUSSAINT, G. T. Computing simple circuits from a set of line
segments. Discrete Comput. Geom. 5, 3 (1990), 289-304.

5. URABE, M., AND WATANABE, M. On a counterexample to a conjecture of Mirzaian. Comput.
Geom. Theory Appl. 2, 1 (1992), 51-53.

6. URRUTIA, J. Algunos problemas abiertos (in Spanish). In Actas de los IX Encuentros de Ge-
ometria Computacional (Girona, 2001).



