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Abstract

In this thesis, we study the notion éfsets from discrete geometry and its
applications to other mathematical problems.

We prove that the number &fsets of the seN¢ of nonnegative lattice points
is betweerk? ! log k andk?~!(log k)?~! in order of magnitude.

Next, we consider the continuous counterpartg-oectors of simplicial poly-
topes that are known d@sfunctions We prove that an important fact abagut
vectors of polytopes, the so-call€&neralized Lower Bound Theorgoarries
over toh-functions.

We also describe an application lofvectors and:-functions: We give an al-
ternative proof of th&irst Selection Lemmavhich asserts that for every finite
setS in d-dimensional space, there exists a point which is contained in a pos-
itive fraction of all full-dimensional simplices spanned By Specifically, we
show that evergenterpoiniof S has this property. Our proof immediately ex-
tends to the corresponding statement for continuous probabilttyldisons.

Finally, we consider, for a continuous probability measuta the plane, the
probability J(x) that four random points independently and identically dis-
tributed according tq: form a convex quadrilaeral. This question, which is
known asSylvester’s Four-Point Problemvas completely solved by Blaschke
for the case of uniform distributions on convex bodies. For genestilal-
tions, however, it is still unknown which distributions minza (x) or what
the value ofinf,, CI(u) is.

We improve the lower bound tmf,, O(x) > 3/8 + 107° ~ 0.37501. This
comes quite close to the best upper bound known to date, whieh),iS1(1) <
0.38074. The Four-Point Problem can be equivalently reformulated in terms
of finite point sets. In this discrete context, it is also known agtiodlem of
determining theectilinear crossing numbeof complete graphs. We observe
that this discrete reformulation of the Four-Point Problem is closelated

to the distribution ofk-sets, and as a main tool, we show that for every finite
point set in the plane, the number(sf k)-sets is at least(“1").



Zusammenfassung

Der Schwerpunkt dieser Arbeit liegt auf dem Begriff deMengeaus der
diskreten Geometrie sowie dessen Implikationendndere mathematische
Fragestellungen.

Zunachst besdiiftigen wir uns mit der asymptotischen@®@enordung der An-
zahl a,(N¢) von k-Mengen vonN¢. Wir beweisen, daR diese zwischen
k%~ log k undk?1(log k)41 liegt.

Sodann wenden wir uns den sogenanmtdfunktionen zu, die stetige Gegen-
stiicke zuh-Vektoren simplizialer Polytope darstellen. Wir zeigen, daf3 ein
wichtiger Satzilber h-Vektoren von Polytopen, das sogenan@keneralized
Lower Bound Theorepsich aufh-Funktioneniibertiagt.

Ferner beschreiben wir eine Anwendung veRektoren, bzwh-Funktionen:

Wir prasentieren einen neuen Beweis derFitst Selection Lemmaekan-

nten Tatsache, dal3 es zu einer gegebenen endlichen Punktef@angeé-
dimensionalen Euklidischen Raum immer einen Punkt gibt, der in einem pos-
itiven Prozentsatz aller vosi aufgespannten volldimensionalen Simplices liegt.
Genauer gesagt zeigen wir, dal3 je@anterpunkivon S diese Eigenschaft

hat. Unsere Beweismethode erlaubt uns auch unmittelbar, den analogen Satz
uber stetige Wahrscheinlichkeitsverteilungen herzuleiten.

Schliel3lich betrachten wiilf stetige Wahrscheinlichkeitsmaf3en der Ebene
die Wahrscheinlichkeifl(x), daf3 vier unabéingigeu-verteilte Zufallspunkte
ein konvexes Viereck bilden. Dieses &8glvesters Vierpunktproblebekan-
nte Problem wurde zwar von Blaschke tlen Fall einer Gleichverteilung auf
einer besclankten konvexen Menge volistdig gebst, jedoch istiir allge-
meinere Verteilungen die Frage noch unbeantwortet, welche Verteillngen
minimieren bzw. wasnf,, C(p) ist.

Wir kommen der Bsung dieses Problems einen Schrither, indem wir die
untere Schranke aufif, O(x) > 3/8 + 107° ~ 0.37501 verbessern, was

der besten bisher bekannten oberen Schrankénfgri(x) < 0.38074 recht

nahe kommt. Das Vierpunktprobleradst sichaquivalent als Fragestellung
uber endliche Punktemengen in der Ebene reformulieren und ist in diesem
diskreten Kontext auch als das Problem bekanntyrekélineare Kreuzungs-
zahlvollstandiger Graphen zu bestimmen. Wir zeigen, dal’ diese diskrete Re-
formulierung des Vierpunktproblems in engem Zusammenhang zur Vegeilun
der k-Mengen steht, und beweisen als wichtigstes Hilfsmittel, dafjefde
endliche Punktmenge in der Ebene die Anzahl(@ek)-Mengen mindestens
3(*T1) betiagt.
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Chapter 1

Introduction

In this thesis, we study the notions bfsetsand k-facetsfrom discrete geo-
metry and their applications to other mathematical problems.

Consider a se$ of points ind-dimensional Euclidean space. A subget S
is called ak-setof S, for integerk, if |T'| = k andT can be strictly separated
from its complement by a hyperplane.

The question known as theset problentoncerns the number éfsets of a

finite ground set. The maximum numbej(n) of k-sets of any.-element set

S C R? has numerous applications in the analysis of geometric algorithms
and the complexity of other geometric objects, sucht&sorder Voronoi dia-
grams. The question is to determine the asymptotic behaviour dfitie&on

aé(n) for fixed dimensiond andk,n — oo. This appears to be extremely
difficult and is regarded as one of the most challenging problems inediéscr
geometry. Despite considerable efforts by numerous researchers ovelttthe las
thirty-odd years, and despite recent significant progress in dimertsioresnd

three, the gap between the known upper and lower bounds remains quite large,
even in the plane.

A closely related notion is that of &facet Suppose thas C R? is a set
of points in general position (i.e., every subset of cardinality at rdestl is
affinely independent), and consider an orientéd- 1)-dimensional simplex
o spanned by points frony. Such a simplex is called &-facetof S, for
integerk, if there are precisely points of S in the positive open halfspace
determined by. It is known that the number of-sets is maximized for
point sets in general position, and that up to constant factdis) is also
the maximum number dé-facets of any set of points in general position in



dimensiond.

We will discuss these notions and the known bounds in somewhat dedail
(yet still quite tersely) in Chapter 2.

Interestingly,k-sets andc-facets also appear in other contexts which, at first
sight, seem rather unrelated. For instance, Onn and Sturmfels [60] catsider
thek-sets of the infinite séN¢ and showed that these are in one-to-one corres-
pondence with the @bner bases of a certain kind of ideal in the polynomial

ring K[zy,...,xq], K any infinite field.

Another example is McMullen’s [52Upper Bound Theorem (UBT9r con-
vex polytopes. This theorem gives exact upper bounds for the face nsiofber
a convex polytope, and as shown by Welzl [86], there is an equivalent reform
lation of the UBT in terms ok-facets. This reformulation formed the basis for
an analogue of the UBT for continuous probability distributionkjol was
developed in [84].

In this thesis, we will further investigate such connections and algty stome
new ones. In particular, we will be concerned with the following questi

1. What is the asymptotic order of magnitude of the numhgiNg) of
k-sets ofNg (for fixedd andk — oo). Onn and Sturmfels gave a first

upper bound oD(ng—ﬁ). We will prove in Chapter 3 that the correct
order of magnitude is betweér{—! log k and(k log k)¢~ 1.

2. Certain linear combinations of the face numbers of a simplicial poly-
tope P form the entries of thé-vectorof P, which is a fundamental
invariant of the polytope. In [84], continuous counterpartg-ofectors,
so-calledh-functions were introduced. Thg-function associated with
a continuous probability measuseand a base pointin R¢ is a certain
continuous functiong,, , : [0, 1] — Rx>( which is determined by the
following property: For each integér> 0, the probabilityfx (x4, o) that
o is contained in the convex hull @f+ 1 + k£ independent.-distributed
random points can be expressed (up to constant factors depending on
k andd only) as thek*® momentfo1 y*h,.0(y)dy. It was shown that
h-functions enjoy various properties that are in direct analogy to im-
portant theorems aboutvectors. Most notably, continuous analogues
of the Dehn-Sommerville Equatior@d of the UBT were proved. The
continuous version of the former asserts thdtinctions are symmet-
ric aboutl/2, i.e., h(y) = h(1 — y) for all y. The latter gives exact
pointwise upper bounds for the values of théunction. These, in turn
imply exact upper bounds on the probabilitigg ., 0). In particular,



these probabilities are essentially maximized by distributions that are
symmetric aboub.

After reviewing the definitions and basic facts, we will see in Chapter 4
that another prominent theorem abdutvectors also carries over: we
will prove a continuous version of th@eneralized Lower Bound The-
orem to the extent that-functions are monotonically increasing on
the interval|0, 1/2] (and hence decreasing ¢h/2, 1], by the Dehn-
Sommerville Equation).

Furthermore, we will use the technique/elvectors and:-functions to

give an alternative proof of thEirst Selection Lemmand to establish

a continuous analogue of it. The latter guarantees that for any probab-
ility distribution in R¢, we can find a poinb € R? (namely, a center-
point of 1) such that the probabilityy (1, o) is at least some constant
s(d, k) > 0 which depends only ok andd. Thus, it can in some sense

be considered a converse of the Continuous Upper Bound Theorem.

. The simplest interesting instance for the probabilitig&u, o) is the
cased = 2 andk = 0: Given a continuous probability distributiqgn
and a poinb in the plane, what is the probability thatis contained in
the triangle spanned by three random poitsP, Ps i.i.d. ~ p?

Now suppose that instead of a point fixed in advance, we consider a
fourth independent random point, i.e., the probability

1 : :
PI‘[P4 € COHV{Pl,Pg,Pg}] = Z PI‘[COHV{Pl,PQ,Pg,P4} IS atrlanglé,

or equivalently, the complementary probability
O(p) := Pr[conv{ P, P>, P3, P,} is a convex quadrilateral

This is the well-knowrfour-Point Problenof J.J. Sylvester [77]. While
this problem was completely solved by Blaschke [18] for uniform distri
butions on convex bodies, for the general case it is still unknowchvhi
distributions minimizeJ(y), or what the true valuél, := inf, O(u)
Is. It is known [66] that the problem can be equivalently stated as a
question about discrete point sets: if we denotéjy) the minimum
number of convex 4-element subsets of any set pbints in general
position in the plane, then

O(n)

Ly = lim —=.

)



In this context, the problem is also known as that of determining the
rectilinear crossing numbeosf complete graphs.

In Chapter 5, we will work towards closing the gap of our knowledge
about1,. We will first prove the lower boundl, > 0.3288 by a
method inspired by thé-function approach. After that, we improve
this toJ, > 3/8 + ¢, with ¢ ~ 10° by a more direct connection

to k-sets: We express the number of convex quadrilaterals in a point set
S C R? as a positive linear combination of the numbeg§S) of k-sets

of S. The immediate strategy of substituting lower bounds fordtfie

fails, since for eaclk, there are point sets with very fekwsets. How-
ever, these examples are very attuned to the spécdichand, and we

can save our approach by doing “integration by parts”, i.e., by passing
to the numberst,, := Zle ar. For ann-point set, the number] of
convex quadrilaterals can also be expressed as a positive linear combin-
ation of the numbersl;, 1 < k£ < n/2. We then combine the lower
bound4;, > 3(*"), which we prove in Chapter 6 and which is tight
for k£ < n/3, with a result of Welz| that implies better estimates for
close ton /2, and obtain the bound fan, as advertised.



Chapter 2

Basics

The purpose of this chapter is to review the central notions of cu@stiga-
tions, k-sets andj-facets. Along the way, we will introduce the terminology
and notation used throughout this thesis. Furthermore, we compuenber
of well-known facts which we will need in what follows. For a more thagh
and extensive survey of the landscapé-afets, including many of the proofs,
see Chapter 11 of Mat8ek’s textbook [51].

2.1 k-Sets

Let S C R%. Asubsetl’ C S is called ak-setof S, for integerk, if |T| = k
and there is a hyperplanethat strictly separatés andS \ 7', i.e.,T lies in
one of the open halfspaces bounded4mndS \ T in the other.

The number ofk-sets ofS will be denoted bya(S), or just byay if S is
understood from the context. We will only be concerned with sets fochv
these numbers are finite, and always implicitly assume so.

If S'is afinite setand := |S| thenT C Sis ak-setiff S\ T is an(n — k)-set.
Thus, the numberg (S) are symmetric about/2, i.e.,

ak(S) == an_k(S).

Usually, the notion of-sets is defined only for finite ground sets, but it makes
sense and is of interest also in other contexts. For instance, Chapterig will



concerned with thé-sets of the infinite seNg, which also go under the sug-
gestive name oforner cutsand turn out to have applications in computational
commutative algebra [60].

Example 2.1. If S is a set ofn points in convex position in the plane, then
ai(S) =nforl <k <n—1 (any consecutivé points along the boundary
of the convex hull form &-set, and vice versa, see Figure 2.1).

Figure 2.1: A set 0of9 points in convex position and a typicéiset.

Example 2.2. Figure 2.2 shows a “tripod shaped” set of nine points in the
plane and its 4-sets: Each 4-set consists either of the two outermaoss poi
from each of two “spokes” (3 possibilities), or of all three pointsnfrone
spoke and one point from anoth8r § = 15 possibilities). Thusg,(S) = 18.
This will be a useful example to keep in mind. Suitable generalizatibits o
will appear later.

It is not difficult to derive tight bounds for the total number of fii@ons of
a finite point setS, i.e., for the sumd_, ax(S), using the following form of
duality.

Point-Hyperplane Duality and Arrangements. Forapoinia = (ay,...,aq) €
RY, thedual hyperplaner* is defined by

d
a* i {xER :xd:a1x1+...+ad—1xd—1_ad}'

Conversely, if a hyperplane C R is notvertical, i.e., is not parallel to the
r4-axis, then it can be uniquely written s= {x € R? : x4 = ayjxy + ...+
ag-1%T4—1 — aq}, and we set

H* = (a1,...,0q).



Figure 2.2: Another set 0o points and itst-sets (up to symmetry).



It is easy to see that for all and all nonverticaH, we have
1. (a*)* = aand(H*)* = H.
2. a € HIff H* € a”.

3. a lies aboveH iff the pointH* lies above the hyperplang .

Now, consider a finite se§ C R?. Dualizing S, we get a set of hyperplanes
S*={p*:peS}.

If His a hyperplane disjoint frorfi then we may assume that it is not vertical,
otherwise, we can pertund without changing the partition it induces ¢h
ThenH* is a point which is disjoint from all hyperplanes $t, i.e.,H* lies in
the complemerR? \ |J, 4 P*.

The connected components of this complement are callddithdimensional
facesof the arrangementS™* of hyperplanes. More generally, a finite Jét
of hyperplanes ilRR? defines a partition oR? into relatively open convex
subsets, callethces of various dimensions= 0,1, ..., d (see Chapter 6 of
[51]). This patrtition is called tharrangemeninduced byH and denoted by
A(H) or sometimes simply by/.

The full-dimensional faces of the arrangeméiit are relevant in our con-
text for the following reason: two nonvertical hyperplamgsandH- disjoint
from S induce the same partition o$ if and only if their dualsH; and H*
either lie in the same full-dimensional face $f or lie in antipodal unboun-
ded full-dimensional faces. Here, two full-dimensional fagdgsand F, of
an arrangement of hyperplanes are caatpodalif for every hyperplaned
defining the arrangemenk; lies aboveH iff F; lies belowH and vice versa.

It is not difficult to see by induction on the dimensidrthat the number of

full-dimensional faces in an arrangementrofyperplanes iR? is at most
S, (") = O(n?), and that the number of pairs of antipodal unbounded
full-dimensional faces is at moSt.\—, ("~1). Moreover, both maxima are
attained iff the arrangementssmplein the following sense.

Definition 2.3 (Various Non-Degeneracy Notions). 1. Anarrangement of
hyperplanes iRR? is calledsimpleif for 1 < i < d + 1, anyi of the
hyperplanes intersect in an affine flat of dimension i (in particular,
there is no point common to amy+ 1 of them).

2. Further, a point se§ C RY is said to be ingeneral positionif every
subset ofS of cardinality at most! + 1 is affinely independent (the “at



most” is only a precaution to avoid a vacuous condition in the case that
S| < a).

3. For future reference, we also define the analogous notion for praiabil
distributions inR¢ (which, for us, will always mean probability meas-
ures on ther-algebra of Lebesgue measurable subseRYf We say
that a probability distributiop on R¢ is continuousf every hyperplane
hasp-measure zero.

Note thatS* is simple iff S is in general position. Moreover, is continuous
if and only if anyd 4+ 1 mutually independent-random points are almost
surely (i.e., with probability 1) in general position, and this thefdk for any
countable set of mutually independentistributed random points.

But back tok-sets. How can we interpret these in terms of arrangement of
hyperplanes? For an arrangement of nonvertical hyperplanes and apoint
R, let us define théevelof p to be the number of hyperplanes strictly below
p. Suppose now thaf is ak-set ofS' and thatH is a separating hyperplane for
T, which we can always take to be nonverticalTlfies aboveH, thenH* is a
point of levelk, and ifT" lies belowH, thenH* is a point of levelh — k. Thus,

the k-sets ofS correspond to the full-dimensional faces of lekar n — £ in

S* (with antipodal faces defining the sarhesets).

Apart from offering a different viewpoint ok-sets, this also leads to the study

of levels in arrangements of other geometric objects than hyperplanes, for
instance of algebraic surfaces. We refer to the survey [2], to the b&jk [6

or to Chapters 6 and 7 of [51] as starting points for the study of meneigl
arrangements, and restrict our attentiottsets in what follows.

Bounds for the Number of k-Sets. As we have seen, itis easy to give exact
bounds for the numbey _, a;(.S) of all partitions of a finite set by hyper-
planes. If we consider the numbersindividually, however, then finite point
sets in convex position in the plane are among the very few classesrf poi
sets for which these numbers are easy to analyze. In general, this appears to
be very difficult, and understanding the asymptotic behavior of taeimum
number

al(n) := max ax(S) (2.1)

SCR4
|S|=n

of k-sets of anyh-point set ind-space is considered one of the most challen-
ging problems in discrete geometry. To be more precise, the questimynkn
as thek-set problemis to find good upper and lower bounds (if possible tight
up to constant factors) fard (n) if d is fixed andk, n — oo.



One motivation for studying-sets is that they have found various applications
in the analysis of geometric algorithms, see [25, 27, 36], We will entar
further applications of a different, mostly non-algorithmic natumethe fol-
lowing chapters, most notably in Chapter 5.

However, the main interest may simply lie in the intellectual challerggfit

to understand this particular aspect of the combinatorial structure it fin
point sets. Moreover, despite considerable efforts by numerous researcher
over the last thirty-odd years, the gap between the known upper and lower
bounds is still quite large, even in the plane.

The k-set problem was first posed (in the slightly different guisdaiving
edges which we will define in the following section) by Simmons (unpub-
lished). Straus (also unpublished) found a lower bound of

ai/Q(n) = Q(nlogn), neven (2.2)
and Lowasz [50] proved an upper bound of
ai/2(n) = 0(n%?), neven
An extension of this to general
a(n) = O(nVk) (2.3)

appeared together with Straus’ lower bound in@&d_ovasz, Simmons, and
Straus [37].

We refer to the notes at the end of Section 11.1 in [51] for a summary and
bibliography of the subsequent progress on the problem, and pist thie
currently best bounds, which are as follows:

In the plane,

ai(n) = O(nk'/?), (2.4)
as was shown by Dey [32]. In three dimensions,

ail(n) = O(nk*?), (2.5)

which was proved by Sharir, Smorodinsky, and Tardos [70]. In general di
mensiond, Alon, Barany, Riredi, and Kleitman [4] (following and extending
a method developed byagany, Riredi, and Loasz [12] ford = 3) obtained

ajl(n) = O(nl4/?1 47217 ca), (2.6)

wherec,; > 0 is a small number which depends only éand tends to zero
very fast asd grows. The crucial ingredient of the proof is the so-called
colored Tverberg Theorerwhich was proved byivaljevic and Vre&ica [82].



On the other hand,ath [78] proved the lower bound

al(n) = nki=2eSViog k) (2.7)

Note thatev!°e* is asymptotically larger than any fixed powerlof k, but
smaller thank* for any constant > 0.

All of these bounds were shown for the case of ewemdk = n /2, to which

the general case reduces, as we will see below. Moreover, all proofs proceed
in terms of objects that are slightly different frokasets, but closely related

and technically more convenient to handle.

2.2 j-Facets

One of the first observations when studying thset problem is that not only
the sum} _, a;, but also each single;, is maximized by point sets that are in
general position.

Observation 2.4. For every finite sef in RY, there is another se§’ ¢ R?

of the same cardinality and in general position, such hatS) < ax(S’) for

all k. In fact, any set’ arising from suitable small perturbations of the points
in .S will do.

To see why this is, consider all possible partition$'dfy hyperplanes disjoint

from S. For each of these partitions, choose a hyperplane witnessing iisin th
way, we obtain a finite collectio®/ of hyperplanes, and each point 8fis
contained in some full-dimensional face of the resulting arrangememserh
faces are open sets, and by moving the points within them, we can ensure
general position without affecting any of the partitions. Thus, thelmer of
k-sets can only grow (and i$ was not in general position, then it will, for
somek).

Now suppose tha$ is a finite set in general position in the plane. [eis a
k-setofS,1 < k <n —1, and let/ be a separating line fdr.

It is not hard to see that there is a unique pair of points 7"andqg € S\ T
with the following property (see Figure 2.3 \ p lies to completely in the
open halfplanei™ (p, q) to the left of the oriented line from throughg, and
(S\ T) \ q is contained in the open halfplame (p, q) to the right of that
line. Thus, the oriented eddp, g| contains exactlyc — 1 points of S on its
left side.



Figure 2.3: k-Sets andk — 1)-Edges.

Conversely, lefp, g] be a(k — 1)-edgeof S, i.e., an oriented edge spanned
by pointsp,q € S that contains exactlyk — 1) points fromS on its left
side. If L denotes the set of thege— 1 points, thenL. U {p} is ak-set of
S: a small counterclockwise rotation of the line throuygland g about the
midpoint of the edgép, q| produces a liné that strictly separates U {p}
from S\ (L U {p}).

The two operations just described yield a bijection betweenktbets ofS
and the(k — 1)-edges of a point st in general position in the plane.

More generally, let us make the following

Definition 2.5 (j-Facets). Let S be a set of: points in general position iR,

and leto be an orientedd — 1)-dimensional simplex spanned by points$Hf
where the orientation just means that one of the open halfspaces bounded by
the affine hull ofo is appointed th@ositive sideof o, denoted by (o).

If o contains precisely points from.S on its positive side then is called a
j-facetof S.

We denote the number gtfacets ofS by e;(.S) or simply bye;. As in the
case of the numbers;, thee;’s are symmetric, this time abo@g—d (which
we see by reversing the orientation, i.e., exchanging the roles gfaiéve
and the negative side of a simplex):

ej(S) = en—d—;(5)-

We will also use the somewhat sloppy notatign,(S) for the number of
halving facetof S. These are thég—d-facets ofS (and correspondingly only



existifn — d is even).

We note that in the dual setting of hyperplane arrangements;-theets of
S correspond to theerticesof level (as defined aboveg)orn — d — j in the
arrangemens™.

The above correspondence betwdesets and k — 1)-edges immediately
tells us that in the planey, = e;_1. In higher dimensions, the relationship
between theu,’'s and thee;’s is more subtle: In three dimension, these num-
bers still determine each other via the linear relations- %(ek_2+ek_1)+2,
for1 <k <n-—1andn > 4 (see [6, 8]) but starting from dimension four,
this is in general no longer true (see [8]).

It remains true, however, that these quantities are equivalent as far as their
order of magnitude is concerned: Itis not hard to see (confer [51], $taunte)
that for a set of: points in in general position in dimensia

k
ai < Z ej + O(n*1)

j=k—d—1

and
j+d—1

e; < g a.
k=j

Thus, for asymptotic bounds like the ones in (2.2)—(2.7), #édnot matter
whether we speak abokitsets orj-facets.

2.3 Polytopes

In this section, we review very quickly a bit of standard terminologgonvex
polytopes and polyhedra. All of this (and the proofs of the variogssri®ns
we just make) can be found in much more detail in Ziegler’s textbook [91

A subset ofR? is called aconvex polyhedroif it can be written as the inter-
section of finitely many closed halfspaces. A sulfSeif a convex polyhedron
P is called afaceof P if either 7 = P, or F = (), or there is a hyperplane
H such thatF = P N H andP is completely contained in one of the closed
halfspaces bounded by The facesF # (), P are calledproper facef P.
Clearly, all faces are convex polyhedra themselves.

Thedimensiondim F of a face is defined as the dimension of the affine hull
of F. By conventiondim () = —1. The faces of dimensioris 1, dim P — 2,



anddim P — 1 have special names: They are calledtices edgesridges
andfacetsof P, respectively. We denote the numberiafimensional faces of
a polyhedror® by f;(P),i = —1,0,1,...,dim P.

We will mostly be concerned with convex polyhedra that are bounded.eThes
are calledconvex polytopedt is a fundamental fact of life that convex poly-
topes can be equivalently characterized as convex hulls of finite point sets: a
bounded seP ¢ R? can be written as the intersection of finitely many closed
halfspaces if and only iP is the convex hull of some finite s&t ¢ R?. In

fact, there is a unique inclusion-minimal such set, namely the set ateert

of P.

If we order the faces of a polytope by inclusion, then the resultirepp®
called theface latticeof P, often denoted by.(P). Two polytopesP, Q are
calledcombinatorially equivalenif their face lattices are isomorphic, i.e., if
if there is an inclusion-preserving bijectidi’P) — L(Q).

If, on the other hand, there is an inclusigeversingbijection L(P) — L(Q),
then? andQ are calledpolars(or dualg of each other, and we writ@ = P*
(and’P = Q*). Every polytope has a polar, which can be constructed geo-
metrically using the point-hyperplane duality mentioned earlier: 8spphat

P C R?is d-dimensional and contains the originin its interior (we can
assume this by passing to the affine hull/fif necessary, and by an appro-
priate translation). Let” be the set of vertices dP, and consider the dual
hyperplanesi, := v*, v € V. If we orient all these hyperplanes consistently
so that the origin is on their negative side, then the interse@iohthe closed
negative halfspaceas,, v € V can be shown to be a convex polytope that is
polar toP.

Two special classes of polytopes deserve mentioning: A polyijsecalled
simplicialif all its proper faces are simplices of the appropriate dimension. A
polytope is callegimpleif its polar is simplicial.

We conclude this section with a few words about a particular kind oftppe
that is closely related to the leitmotif of this thesis.

The k-Set Polytope. ForS c R?, define
Pr(S) = conv{ZX : X C S |X| = k:} :

where} X is a shorthand fop __ . . If S'is finite, thenP, (.S) is a convex
polytope, which is known as thie-set polytopebecause of Fact 2.6 below,
and it is for this finite case tha®;(S) was first defined by Edelsbrunner,



Valtr, and Welzl [35]. ButP;(5) is also of interest in the infinite case. For
instance, in Chapter 3, we will encountg(IN¢), which turns out to be a
convex polyhedron, called trerner cut polyhedronlit was studied by Onn
and Sturmfels [60] in relation with computational commutative algebra.

It is not difficult to prove the following characterization of the vees and
facets of P (S):

Fact2.6. 1. A pointv € R% is a vertex ofP,(9) iff v = >_ T for some
k-setT of S.

2. AfacetF of P, (S) corresponds to a hyperplang spanned by points
from S, suchthatH™ N S| = j < kand|H~ N S| > k. More precisely,

F=> (H N8)+Psj(HNSI),

every facet ofP(.5) is of this form, and conversely, eaehas above
gives rise to a facet.

Thus, if S is a finite set in general position, then each facePpfs) cor-
responds to g-facet of S with £ — d < j < k. The faces of intermediate
dimension can be characterized in terms of so-cdlief)-partitions see [8]
for the definition of this notion and a detailed analysis.

In dimensiond < 3, P (.5) is simplicial, and together with Euler’s formula,
this implies that the numbers étsets respectively-facets can be expressed

as linear combinations of each other. As mentioned at the end of the previous
section, this breaks down in higher dimensions.

The k-set polytope was first used [35] to derive the improved (compared to
(2.6)) upper bound
e1/2(5) = O(n?~*/%) (2.8)

if S is a so-calleddenseset of n points inR?, d > 3. Here, a point set

is calleddenseif the ratio of the largest over the smallest distance between
any two points from i) (n'/¢) (the constant in (2.8) depends on the implicit
constant in the definition of density). Let us digress for a momenttbne

the proof of (2.8), which proceeds along the following lines:

1. Assume thafS is a dense set aof points inR%, n — d even, and set
j = (n—d)/2andk := j + 1. By (2), everyj-faceto of S gives
rise to a facetF(o) of Px(S), and sincek — j = 1, F(o) is just a
translated copy ofz|. Therefore, the totald — 1)-dimensional area of
all j-facets is bounded from above by te— 1)-dimensional surface
area ofPy(S).



2. The homothetic copy:Px(S) is contained in the convex hull of.
Therefore, the projection o%Pk(S) onto any coordinate hyperplane
Is contained in the convex hull of the corresponding projectioy of
and hence, by density, h&g — 1)-dimensional area at moét(n%).
The total(d — 1)-dimensional surface area of a convex body is at most
two times the sum of théd — 1)-dimensional areas of its projections
onto the coordinate hyperplanes. Therefore, (fhe- 1) dimensional
surface area oP(S) is “not too large”, namelO (k¢ 1n'~1/4), By
the first step, the same holds for the total area of-#dicets.

3. On the other hand, any collection of “maniyl — 1)-dimensional sim-
plices spanned by points from a dense set necessarily has “large” total
(d — 1)-dimensional area. (The precise statement and the proof of this
lemma are somewhat technical, see [35] for the details.) Therefore, if
there were too many-facets ofS (more thanCn?2/¢ for some suit-
able constanC’), then their total area would have to be too large, i.e.
would exceed the bound derived in the second step.

Remark 2.7. Edelsbrunner et al. [35] also showed, by a more direct approach,
that for a dense sét of n points in the plane,

e1/2(5) = O(vne12(vn)).

In particular, any general bound ,»(n) = O(n'*¢) implies a bound of
O(n'*¢/?) for dense point sets. If the number of halving edges was max-
imized by dense point sets, by bootstrapping, this would lead to(n) =

O(n polylogn), contradicting Dth’s lower bound (2.7).



Chapter 3

Corner Cuts

In this chapter, we study thesets of the infinite s@Ng. These objects, which
also go under the suggestive namesafer cuts were investigated by Onn
and Sturmfels [60] in connection with computational commutative algebra:
They showed that the corner cuts of a given sizer k-cuts for short, in
dimensiond are in one-to-one correspondence with théléer bases of a
certain kind of ideal in the polynomial rin& [z, ..., z4], K any infinite
field.

Apart from this algebraic connection, which we briefly review in Sectidn 3
corner cuts seem to be a very natural special instance of-8et problem.

Onn and Sturmfels prove an upper bound)Qkng_ﬁ) for the number;, (IN9)
of corner cuts of cardinality in dimensiord (as usual, the dimension is con-
sidered fixed). We will see in Section 3.2 that this can be quite easilyowegr
upon by restricting our attention to a suitable finite subs@f$and applying
some generat-set bounds. However, applying methods that were devised for
point sets in general position does not do justice to corner cuts, bedaihse o
massive affine dependencies within the Bt We cannot afford to pass to
general position (by invoking some perturbation arguments, sayw&gsk
to increase the number éfsets dramatically: We will prove in Section 3.4
that

ar(Ng) = O((klog k)*~1) (3.1)

for any fixed dimensiond. Yet, as we will see below, the number =
n(k, d) of nonnegative integer points belonging to sokreut roughly equals
k(log k)?~1, and from Chapter 2 we know that there are examplespdint

sets inR¢ that havenk?—2¢2(VF) many k-sets. Thus, sincev°s* grows
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faster than any given power &fg k, generak-set estimates are of no avail if
we want to establish an upper bound of the farfin! polylog(k).

For the planar case, (3.1) specializes to the upper bound part of
a,(Ng) = O(klog k),

which was proved by Corteel et al. [28]. In Section 3.3, we use this planar
result to derive a general lower bound

ar(N3) = Q(k 1 log k), (3.2)

which shows that the upper bound (3.1) is quite tight. (It has beemonc-
ated to me that the bounds (3.1) and (3.2) have been found indepenilently
Gal Rémond.)

Finally, in Section 3.5, we discuss some algorithmic issues congecoimer
cuts, and mention a related open problem.

3.1 A Glimpse of the Algebraic Background

Let K be afield and< [z, . .., 4] the ring of polynomials inl indeterminates
over K. Recall that a sef of polynomials is called ardeal if I contains the
zero polynomiab and if for all f, g € I and for anyh € K|z, ..., z4], We
havef +g € I andh - f € I.

For any sett" C Klzq,...,z4] Of polynomials, there is a unique inclusion-
minimal ideal containingF’, which is called thadeal generated by and
denoted by(F'). It is a fundamental fact about polynomial rings (in a finite
number of indeterminates) over fields (or, more generally, over so-called com
mutative Noetherian rings with unity) that every iddain K[z, ..., z,4] IS
finitely generatedi.e., there exist a finite number of polynomidis ..., fs

such thatl = (fy,..., fs). This assertion is known as th#lbert Basis The-
orem(for a proof of this, and as references for the material discussed in this
Section, see the books by Cox, Little, and O'Shea [29, 30] or by Salsmf
[75, 76]).

Ideals are closely related to basic geometric objects, namely all those defined
by polynomial equations, such as affine subspaces (linear equations), conics
(ellipses, hyperbolas, parabolas) in the plane or quadrics in highendions
(quadratic equations), and so forth. In general, alset K? is called an
algebraic varietyif it is the set of zeros of a collection of polynomials, i.e., if

if for someF C K|zy,...,z4|, we haveV = V(F), where

V(F):={ac K?: f(a)=0forall f € F}.



Observe that for any’, we haveV' (F) = V((F')), so by the Hilbert Basis
Theorem, every variety is, in fact, defined by a finite number of polyn@nial

Classic examples of ideals aranishing ideals For an arbitrary subset C
K%, the vanishing ideal ofl is the set of polynomials that evaluate to zero for
all pointsa = (a1, ...,aq) € A,

I(A) :={f € K[x1,...,Kq4] : f(a)=0foralla € A}.

It is straightforward to check that this is indeed an ideal.

There are various basic algorithmic questions concerning ideals. $tante,
given an ideall = (fy,..., fs) and a polynomialf, we can ask whether
f € I. This is called thedeal Membership Problem

In one indeterminate, this is easy. For univariate polynomfais € K|z1]
with ¢ # 0, the standard algorithm for division with remainder produces
unique polynomialg, r € K[z;]| such that

f=qg+r and deg(r) < deg(g).

Having division with remainder at our disposal, it is not difficdtdee that
every ideall = (f1,..., fs) in K[z1] is in fact generated by one single poly-
nomial, namely by the greatest common divisor (GCD) of f}'® Recall that
the GCD is defined as the unique (up to multiplication by a nonzero cdhpstan
polynomial in K [x4] that divides everyf; and is itself divisible by every other
polynomial dividing allf;. The essential observation for finding the GCD is
that for two polynomialsf, g, eitherg = 0, in which caseGCD(f,g) = f,

or GCD(f,g9) = GCD(f,r), wherer is the remainder upon dividing by

g. Sincedeg(r) < deg(g), this gives an efficient algorithm to compute
the GCD of two polynomials, th&uclidean Algorithm which extends im-
mediately to any finite number of polynomials sinG&ED(f1,..., fs) =
GCD(GCD(f1,..., fs—1), fs). Thus, for one indeterminate, the Ideal Mem-
bership Problemf € (fi,..., fs)?" reduces to the question whethglies in
the ideal generated by := GCD(f1, ..., fs), which is the case iff divides

f, 1.e., iff the remainder upon dividing by ¢ is zero.

The extension to more indeterminates requires a measure of prograagdsat
the role of the degree for one indeterminate.

Definition 3.1 (Monomial orderings). A monomial orderin@n K [x1, . . ., x4]
is a linear ordering< on the set of monomialg®™ := z{* ---29?, a € N§
that

1. is compatible with multiplication, i.ez® < z® = z%zY < 2Bz
forall o, B,y € N¢, and



2. is awell-ordering i.e., there is no infinite descending chaiff* >
TN - 3 - ..

Equivalently, we can view a monomial ordering as a well-orderin@Ngrthat
Is compatible with addition.

For one indeterminate, the orderiing= z° < z! < 22 < ... by degree is
the only monomial order. For several indeterminates, there are infinizhy
(see below). One standard example is the lexicographic etdemhich for
two monomials first compares their degrees in the first varialplan case
of a tie compares the degrees in the second variable, and so forth. (Formall
x® <jex ¥ iff for j := min{i : a; # b;}, we haven; < b;.)
For a polynomialf = ) cqx®, the(multi)degreeof f w.r.t. to a monomial
ordering=< is

deg_ (f) := max{a € N¢ : ¢, # 0},

where the maximum is taken w.r£. Further,

in<(f) = caeg_(pae=<"

Is called thanitial or leading termof f.
With this terminology, the extension of polynomial divisiondeveral vari-

ables can be phrased as follows. Fix a monomial orden K[x1,...,x4].

Given polynomialsfy, ..., fs and f in K[x1,...,x4], there are polynomials

q1, - - -, Qs (the “quotients”) and- (the “remainder”) such that
fZQIf1+'--+Qst+T (33)

and the remainderis either zero, or is & -linear combination of monomials

none of which is divisible by any of the initial termis - (f;). Division by
several polynomials at once is necessary because for more than one indeterm-
inate, ideals in the polynomial ring are in general not generated by a single
polynomial.

The basic idea is the same as in the case of one indeterminate: cancel the
leading term off by multiplying one of thef;’s by an appropriate monomial

and subtracting. However, there are various subtleties that arisevierate
indeterminates. For a discussion of these, as well as a precise algorithmic
description of how to find the expression (3.3), see Chapter 2 of [29].

One problem is that the expression (3.3) need not be unique. (In general
it depends on the monomial order, on the particular implementationeof th
division algorithm, and on the order in which ttgs are considered.) For



instance, iffi = zy + 1, fo = y?> — 1 € Klz,y], thenf = xy? — z can be
written in two ways,

f=ylay+1)+0@* — 1)+ (—z —y) =0(zy + 1) + z(y* — 1) + 0.

This is particularly unpleasant, since the remainder in the first express
nonzero, while the second expression shows that actgiadly f1, f-). Thus,
membership in an ideal = (fi,..., f,) is no longer characterized by the
vanishing of the remainder upon division by tfiés (it is still a sufficient, but
not a necessary condition).

Luckily, this difficulty can be resolved by passing to generating sets sype-
cial properties.

Definition 3.2 (Grobner Bases).Let I be an ideal inK[x1, ..., z4], and let
< be a monomial ordering. A finite subs@t= {¢1,...,9s} C I is called
a Grobner basiof I w.r.t. < if for every f € I, the leading termin~(f) is
divisible by one of thén(g;)’s.

Grobner bases were introduced by Buchberger in his dissertation [24] in 1965
(and named after his adviser, WolfgangdBGner). A Gbbner basis is always

a generating set for the ideal, and it turns out that every ideal haglan€ér
basis w.r.t. any given monomial order. Moreovekdt, . .., g } is a Gbbner
basis of an ideal, then the remainder upon dividing any polynomiaf €

K|z, ...,z4] by theg;’s is unique In particular,f € I iff » = 0. (We note

that even for a Gibner basis, the “quotients” in the polynomial division are
not uniquely determined.)

The Gidbner basis of an ideal w.r.t. a monomial ordering is not unique. For
instance, if we add some elements/db a Gibbner basis, we get a Goner

basis again. However, it turns out that for evetryand everyl, there is a
unique Gbbner basig~ that isreduced in the following sense: For every

g € G, we require that;,,_,) = 1, and that no monomial of be divisible

by the leading ternin < (¢’') for anyg’ € G \ {g}. The usefulness of Gbner
bases for many applications rests upon the fact that they not only lexistan

be computed. Buchberger devised an algorithm which takes a term order and
a finite set{f1,..., fs} € Klz1,...,24] as input and outputs the reduced
Grobner basis W.r.t< for the ideal(fi, . .., fs).

Again, we can use this to solve the Ideal Membership Problem. Given agener
ating setfy, ..., fs, choose a monomial orderinggand compute the (reduced)
Grobner basigy, . . ., g, forthe ideall = (fi,..., f;) w.r.t. <. As mentioned
above, a polynomiaf lies in I iff the remainder upon dividing by ¢4, . . ., g,

IS zero.



This is only a very basic one among a host of applications ¢bGer bases,

see [29, 30] and [75]. Often, it plays an impotant role which monomid¢n

ing is chosen. For instance, @mer bases with respect to the lexicographic
monomial order are very well suited for solving polynomial equatibngugh
elimination of variables (see [29], Chapter 3). Other monomial orders hav
other advantages. For example, the so-called graded reverse lexicogmaphic o
der (first order the monomials by their total degree, then by their dagree
x4, then by their degree im;_1, and so forth) usually leads to smalld@hner
bases and that Buchberger’s algorithm often performs faster (a short-discus
sion of the known results about the complexity of Buchberger’s algoriand
further references, can be found in [29], Chapte} @).

As mentioned above, there are infinitely many monomial orders if the aumb
of indeterminates is larger than one. To see this, let us identify the set of
all monomials ind indeterminates witiNg. Any vectorw € R induces

a partial order oflN¢g by comparing values of scalar products <., b :<
(w,a) < (w, b). This partial order is compatible with addition. Moreover, if
w > 0 componentwise, then there is no infinite descending chain, andsf
sufficiently generic (namely, if the entries af are linearly independent over
the field Q of rational numbers), then there are no ties, i€, IS a linear
ordering. Thus, any suctw € R%, yields a monomial ordering,, (and
these are all distinct). Note that not all monomial orderinggdn;, . . ., z4]

are of this form. The lexicographic ordering, for instance, is not.

However, if we fix an ideal, then all monomial orders can be grouped into
finitely many equivalence classes, as described below, and in each equivalence
class, there will be a representative of the fory,. For an ideall and a
monomial order<, let in-(I) be the ideal generated by the leading terms
in<(f) of polynomialsf € I. The condition foiGG being a Gébner basis can

be rephrased asi<(I) = (in<(g) : g € G). Further, ifin< () = in</ (1),

for two monomial orderings<, <’ then the reduced @bner bases of with
respect to these orderings coincide. Thus, we can deelaaed <’ to be
equivalent (more precisely, equivalent w.£}.in this case. It can be shown
that for every ideal, there are only finitely many equivalence classes, and for
each equivalence class, there is a representative of thefgrifsee [75]).

One corollary is thaf has only finitely many distinct reduced @mer bases.
Hence,I even has ainiversal Gbbner basisi.e., a finite set/ C [ that

Is simultaneously a @bner basis with respect to all monomial orderings:
simply take the union of all reduced &ner bases.

Another consequence is that we can look at the differedbGer bases of an
ideal from a geometric viewpoint. Let us generalize the notion of leaeimy



to non-generiaw by defining, for a polynomialf = " cq,x?, the “initial

form” in.,(f) as the sum over all terms,x® such that{w, a) is maximal
(among the exponents with ¢, # 0). We then defingn., (1) := (in(f) :

f € I), and say thatv, w’ € RZ, are equivalent ifn., (I) = in,, (). This
defines a partition dR< , into equivalence classes, and this partition turns out

to be a polyhedral fan, called tl&odbner fanof I (see Mora and Robbiano
[58]). That is, each equivalence class is a relatively open polyhedral cone,
and the closures of these cones form a fan in the sense that along with every
cone, all its faces are present, and that two closed cones intersect in a common
face. The full-dimensional cones of this fan correspond to the non-&euiv
monomial orders, i.e., to the reduceddBner bases af.

The link to polyhedral combinatorics is formed by the notion of aespatly-
hedron. If F is a face of a convex polyhedrd® C R, let us define the
(minimizing) normal coneV(F) as the set of altw € R that are minim-
ized onF, i.e., (w,z) = minygep(w,y) for all z € F. Thenormal fan
N (P) is the collection of all normal cone§» (F), F any face ofP. Note
that the full-dimensional cones ik (P) are precisely the normal cones of the
vertices ofP. A polyhedronP is called astate polyhedromf an ideall (see
[14]) if the normal fan ofP equals the Gibner fan of/.

Onn and Sturmfels [60] studied theset polyhedron (see Section 2.3)

Pr(NI) = CODV{Z x| X C Ndand|X| =k},
e X

which they name theorner cut polyhedronand showed that it is the state
polyhedron of a particular class of ideals. Namelyl it= I(qq,...,q;) IS

the vanishing ideal of a set éfpointsq,,...,q, € K¢, and if thegq,’s are

in a certain sense “generic” thef), (N¢) is the state polyhedron df Thus,

the distinct reduced Gbner bases are in one-to-one correspondence with the
vertices ofP, (IN¢), hence, by Fact 2.6, with the corner cuts of cardinality
dimensiond. This can be used, for instance, to compute a universabar
basis of! in polynomial time (for fixedd).

These results have been extended to a considerably broader class of ideals
(namely, all those for which the quotieft[x, .. ., x4]/I has finite dimension
as a vector space ovér) by Babson, Onn, and Thomas [9].

We leave the realm of computational commutative algebra at this point and
return to the combinatorial question of estimating the number of caurter



3.2 How Many Lattice Points Are Involved?

Unless explicitly stated otherwise, let us assume for the remaindersof th
chapter that whenever we encounter a hyperplanet containing the point

-1 = (-1,...,-1), itis oriented in such a way that1l lies in the negative
halfspaced™.
Suppose that a corner clitof sizek contains a lattice point = (uy, ..., uq).

Then the whole “lattice boxt),, = {0...u1} x ... x{0...u4} is contained
in 7', and thereforet > []%_,(1 4+ w;). In other words, all corner cuts of
cardinalityk are subsets of the finite s8f := {u € N¢ | [T, (14u;) < k}.

Observation 3.3. For any real numbey > 1,
d d—1
1Syl < y(1+logy) .

Proof. We proceed by induction ait Ford = 1, |S;| = |y < y. Moreover,
ford > 1andintegerl < j <y, {u € S} | 1 +uq = j}| = !SZZ/_jl\ <
(y/7)(1 +log(y/j))¢~2. Therefore,

L] L]
5411 < D /) (1 + Tog(u/ D) < yl1+logy)* 2 3~

j=1 Jj=1
——
<l+logy

Observation 3.4. Everyk-setT of S¢ that contains the origin is &-cut.

Proof. Suppose for a contradiction th@t> 0 is ak-set of S¢ such that, for
every hyperplane with 7= H~ N S¢, there exists some nonnegative lattice
pointu ¢ S¢ with w € H™; call such a point: aviolator andH awitnessfor

u. Clearly,d > 1, andT is not contained in any coordinate hyperplane (else
we are done by induction).

Now, consider a violatot: that minimizes]_[;.lzl(l + u;) and a witness hy-
perplaneH = {z € RY | (v,z) =t} foru. If Q = {m € N& | m; <

u; for1 < j < d}, then@ \ {u} contains at least points sinceu ¢ S¢
Moreover,Q C H~™ = {x : (v,x) < t}: By assumptionp € H~, and
sot > 0; moreover, all entries o must be positive, for ifty; < 0, then

all the pointsie; = (0,...,7,...,0), ¢ € {0...k — 1}, would belong to

H™ N S¢ = T, and hence they would constitute it, contradicting the fact that



T is not contained in any coordinate hyperplane. Sm@ndt are positive,

u € H™ implies@Q C H™.

Therefore, \ {v} = 7. But then allu; > 1 (otherwiseI’ would be con-

tained in some coordinate hyperplane) and so, for spmemust intersect
the z;-axis at a distance greater thap+ 1 from the origin. This, however,
contradicts the assumption thaseparated” from S¢ \ T because the point
(u; + 1)e; belongs taS¢ \ T and lies below. O

Together with the generdl-set bound (2.6), the first observation immedi-
ately yieldsay, (N%) < ax(S¢) = O(k%¢a) for some small constamf, > 0
(which, for simplicity, is adjusted in such a way that the varibusk factors
are absorbed) as a first improvement over the the upper bomﬂdkﬁf%).

Furthermore, both observations together imply that the corner cuigek s
are precisely thé-sets ofS¢ that contaird. This makes it easy to enumerate
all k-cuts by applying a knowi-set enumeration method by Andrzejak and
Fukuda [7] to the finite se$¢, see Section 3.5.

3.3 The Lower Bound

Lemma 3.5. For everyd and k, the number of corner cuts of cardinalikyin
dimensiond satisfies

k
ar(N§) > ) " ax(NGH).

1=1

Proof. We will show that for everyd — 1)-dimensional corner cuf' of size

J» 1 < j < k, there is some corner cift of cardinalityk in dimensiond with
T=N"'nT.

Take somél” of sizej as above with separatiig — 2)-dimensional flak C
R41, Let us identifyR4~! with R~ x {0} C R4, and for a real parameter

t > 0, consider the hyperplane; spanned by the flat and the the point
(0,...,0,t), see Figure 3.1.

Observe that by choosirmgin a sufficiently generic manner, we may assume
that noH; contains more than one lattice point.

Each of the hyperplanes defines a certaid-dimensional corner cut;. For
t < 1, this is exactly our original’. But ast grows, more and more lattice
points will be included, one at a time by our assumptionfoantil for some



Figure 3.1: Lifting a corner cut.

appropriatef, we obtain ad-dimensional corner cuf’ := T; of sizek as
advertised. (Note that depends on the choice of a separatingHlat H

Since we know thati,(N2) = Q(klogk), and sincerzljd—Qlogj >
flk 2 logz dr = k%t log k—flk 1972 ~ L k? 1 log k, we conclude
inductively:

Theorem 3.6. The number ok-cuts ind dimensions satisfies

ar(NE) = (k% log k).

3.4 The Upper Bound

For a point set in general position, it is often more convenient to denst
facets instead-sets. Let us introduce a notion that will serve a similar purpose
for degenerate point sets.

Definition 3.7. An oriented hyperplanel is called ak-hyperplaneof a set
S C R? if H is spanned by points frori and moreoverlH~ N S| < k and
IH= N S| > k.

Note that, for a given vectar # 0, there is at most onk-hyperplaned of
S with outer normals. Observe also that may be ak-hyperplane for more
than one value of.



For instance, according to our definition, the coordinate hyperplanes-are
hyperplanes ofN¢ for everyk > 0. On the other hand, considerpeoper
k-hyperplaned of N{¢, i.e., one that is not one of the coordinate hyperplanes.
We claim that the outer normal vector= (v4, ..., v4) of H must be strictly
positive, i.e., all; > 0. Clearly, we have;; > 0 (elseH™ would contain
all sufficiently large integer multiplesie; of the i coordinate vector and
thus not be finite). Further, by assumption, theredpeints inN¢ that span
H, and for eachl < ¢ < d, one of these points, call i, must havei®
coordinateu; > 0, elseH would be just the" coordinate hyperplane. Since
v is componentwise nonnegative, it follows that ...,e; € H— and that

0 € H™. Thus,v must in fact be strictly positive, for i#; = 0, then along
with 0, the whole “ray”Nge; would lie inH™.

Definition 3.8. We say that &-hyperplaned of a setS C R4 isincidentto a
k-setl’' of Sif SN H™ CT CH-.

The basic idea is that # is k-hyperplane incident to &-setT of S, then we

can “encodel” by means oH plus some additional information, which will

be specified below. In order to use this to bound the number of corner cuts
we need the following:

Lemma 3.9. If S C R is finite and at leastd — 1)-dimensional, or ifS =
N4, then fork > 0, everyk-setT of S is incident to somé-hyperplane ofS.

Admittedly, this lemma is rather obvious, but it nonetheless deserpesod,
since there are malicious point sets for which the conclusion of the lemm
does not hold. For instance,$f = Z x {0} U {(0,1)} € R?, then(0,1) is

a l-set of S that is not incident to any-hyperplane ofS (the problem is that
we insist that these be spanned by points fign

(0,1)

Figure 3.2: A malicious point set.

We also note that if is finite orS = N¢ and ifH is ak-hyperplane of5, then
the intersectior N H is again either finite oNg_l. This will be important
since we will need to apply the lemma recursively.



Proof of Lemma 3.9First observe that i = N¢, then we may assume that

T is aproper corner cut, i.e., is not contained in one of the coordinate hy-
perplanes. Otherwise, that coordinate hyperplane will serve as an incident
k-hyperplane fofl'. Let thenH, be a separating hyperplane fBr Move this
hyperplane in parallel towards until we hit the first point, i.e., until we ob-

tain the unique parallel translatg of Hy such thal’ C H—¢, TNH; # 0, and

S\T C H{ . Observe that the only reason why might not be &-hyperplane

Is that it might not yet be spanned by points frémif this is problem occurs,

pick a(d — 2)-dimensional flaF such thatS; C F C H;. We want to argue

that a suitable rotation of; aboutr will produce a hyperplane; such that

() SNHy C SNy, (i) SNHE C SnHT, and (iii) S1 = SNH; & SNH,.

That is, we can rotate until we catch a new point without traversing aimis

If we can convince ourselves that this claim is true, then we are done, since we
can successively increase the dimensiof ofH; through a sequence of such
rotations, untiH; is spanned by points froifi and hence &-hyperplane. The
claim is clear for finiteS, but for S = N¢, we need a little argument. Observe
that sincel is a proper corner cut, every hyperplamsuch tha” ¢ H— and

H~ N NY is finite has strictly positive normal vector.

Observation 3.10. For any hyperplanei with strictly positive normal vector,
there are only finitely many componentwise minimal elemem&ofH (i.e.,
elementa, € N¢ N HT such that for any otheo € Nd N HT, there is some
coordinatei with u; < v;).

Let M be the set of componentwise minimal elementNgfn H;, and let

N := SNH;. We rotated; aboutr (in an arbitrary direction) until we hit the
first pointp in N U M (we can do this since this is a finite set). We claim that
the resulting hyperplane, spanned by andp does the job. By construction,

condition (iii) is fulfilled and we havei; NN¢ C H; NINE. We only need to
verify that during the rotation, we did not inadvertedly traversediriie non-
minimal points fromN¢g N H . Let us writeHy = {x € R? : (v, z) = t}. It
suffices to show that the outer normal veatas componentwise nonnegative:
because theny € H, for somev € N¢H] would imply that alsou € Hy
for some componentwise minimal € Ng N H{", a contradiction. So, why
isv > 0? Observe thaf0,eq,...,eq} € T C H,. Thus, in the defining
equation ofHy, we havet > 0, and if somey; < 0, thenme; € H; for
all integersm > 0, contradicting the fact that for some, me; € M, and
M C Ht, by construction. O

Moreover, ifH is ak-hyperplane of5, ands is finite , thenS N H is finite, or
SNH=NZ* s0S N H is again a non-malicioug! — 1)-dimensional set.



For the remainder of this section, we only consider point sets that are “no
malicious”, i.e., that satisfy the conclusion of Lemma 3.9.

Observe that ifi is ak-hyperplane incident to &-set7" and ifHg is a separat-
ing hyperplane fof” then the open wedgei~ N H) U (HT N Hy') contains

no points froms; that is, we can get fromi, to H by a rotation (about the
(d — 2)-dimensional axisi N Hp) without traversing any points frors.

Now, considerJ := H, N H N S. This is aj-set (as witnessed by the
separating flaHy N H) of the (d — 1)-dimensional point sef N H, where
j=k—|H™ N S|. What is more, we can recovérfrom H and.J: Take any
(d — 2)-dimensional separating fla&tfor J in H; then a small rotation ofi
aboutr gives a separating hyperplang for 7.

Lemma 3.11. LetT be ak-set of a (hon-maliciousj-dimensional point set
S. Setr; := R? andk, := k. ThenT can be uniquely represented by a
sequencéFy_1,...,F1), where, forl < i < d — 1, F; is ani-dimensional
oriented flat, spanned by points fro$hn F; 4, that forms ak; 1 -hyperplane
within Fit1, andk; = ki—i—l — |S N Fig1 N Fz_|

Proof. Applying the above observation recursively, we see that éast’T’
of S can be represented by a sequeffce= F;_1,Fq4_o, ..., F2) as specified
(up to the last entry) together withja:= k,-setJ of the two-dimensional
point configurationS N F,.

But in two dimensions, every-setJ can be uniquely represented by-éine
(that is, aj-hyperplane w.r.t. the surrounding 2-dimensional space); i$ a
separating line fou take aj-line F; incident toJ such that the angle of F,
w.r.t. /o is negative (that i, arises fron¥, by a clockwise rotation).

Conversely, giverr; andj, leti = j — |S N F; | and leta andb be thei™"
and (i + 1) point of S on Fy, respectively (in the direction of;). Then a
small counterclockwise rotation & about the midpoint o&r andb gives a
separating lin¢, for J (see Figure 3.3). Observe that it is crucial to know
both F; and j (we can reproduce the latter from our knowledgeko&and

(Fd_l,...,F2)). []

Corollary 3.12. Everyk-setT of a discreted-dimensional set can be en-
coded by a sign vector € {+1,—1}?"! together with a(d — 1)-tuple
(v1,...,vq—1) Of vectors of the following kind: There exist poipts p,, . . .,
py_; € S that span ak-hyperplaneH incident to7" and such thaw; =

(p; —py) forie {1...d—1}.



Figure 3.3: An example with) = 9 and: = 1.

Proof. GivenT', represent it by(F;_1,...,F1) as above. Now, pick a pair
(py, p) Of points that span thé,-line F,. Inductively, we construct a se-
quence of pointp, € S,i € {0...d — 1} such thaip,, p;,...,p; € S span
the flatr;. Hence, if we seb, := (p, — p,), then the vectors,, ..., v; span
ani-dimensional linear flat parallel te;, and by choosing appropriate signs
e; € {+,—} we can also record the orientationmfwithin F; ;.

Moreover, this encoding is one-to-one: Given...,vq_1 andeq,...,eq4_1,
we get the outer normal of thehyperplane=;_, of S, and hence&,_, itself,
since we knowk. Thenks_; = kK —S N F,_;, and by induction, we can
reconstruct the sequente;_»,...,Fy) fromwvy, ..., v4_2,€1,...,64—2 and
kq_1. But once we know alf;’s, the setl” is uniquely determined. O

Applying this to S = NZ, we see that everg-cut T' can be uniquely en-
coded by a sign vectar € {+, —}?"! and thed x (d — 1)-matrix V' = [v;,]
whose columns are the vectars, . . ., v,_1 constructed above. Now, we de-
rive some properties df that will allow us to estimate the number of such
matrices.

If H is one of the coordinate hyperplanes, ther H is essentially a corner
cut in dimensiond — 1, and we can handle the number of these inductively.
Thus, we may assume thais a propefk-hyperplane, i.e. that its outer normal
vector is strictly positive.

Observation 3.13. A “corner simplex” A = R, NH" that containg- lattice
points has volumeol;(A) < r.

Proof. For each lattice poink € A, consider the unit cubgr | u; < z; <
u; + 1forall j}. Clearly,A is contained in the union of these boxes, whose
volume isr. m



Thus, the open simplex bounded by our propdryperplaned and the co-
ordinate hyperplanes has volume at migst follows that the same is true for
its closure.

Let B be thebounding boof the pointsp,, i € {0...d — 1}, i.e. the smallest
axis-parallel boXaq, b1] % .. . . X [ag, bg] containing them. Since the hyperplane
H spanned by thg, is not one of the coordinate hyperplanés,is a full-
dimensional box, i.eh; —a; > 0foralli € {1...d}.

Observation 3.14. LetH— be any halfspace containing all's. Then

voly(B M ™) > %vold(B).
Proof. LetH— = {x ¢ R? | v- = < t}. Suppose without loss of generality
vq > 0, and consider the projection of the points onto the the hyperglare
R | z4 = a4}. Then these projected points are containeaim {z, = ay}.
By induction,” = H— N B N {zq = aq} has(d — 1)-dimensional volume at
Ieastﬁ Hf;ll(bi —a;). But then, the pyramid whose basédsaind whose

apex is anyp; maximizing ther,-coordinate is contained iB N H- and has
volume as guaranteed. O

For each row index € {1...d} of the matrixVV = [v;;], choose a column
index;j(i) € {1...d — 1} such thatv;;(;)| = max; |v;;]. Then thei" side of

the bounding box5 has lengthb; —a; > |v;;;)| > 1, Whence]_[f:1 Vij)| <
volg(B) < d!'vol(h— N B) < d'k, by Observation 3.14.

Now, fix a sequencéj(1),...,j(d)) and positive integersiy, ..., mgy such
that[[°_, m; < dlk, thatis,(m; —1,...,mq — 1) € S%,. What is the
number of integer matrice® = [v;;] such thatm; = |v;;(;)| = max; vy
forall i € {1...d}? Well, for each entry,;;, we get to choose a sign
from {+, —}, while for the entries);; with j # j(i) we may select any in-
teger from{—m, ...m;}. Thus, we have? []"_, (2m; + 1)?~2 = O(k*2)
possibilities to choose the entries whgfi), ..., j(d) andmy, ..., mgq are
fixed. Since there aréd — 1) = O(1) choices for thej(i)’s and, by Ob-
servation 3.30(k(log k)?~1) choices for then;'s, we get a total of at most
O((klog k)?~1') candidate matrice®. These, together with sign tuplesc

{+, —}9-1 suffice to encode alt-cuts for which we have picked an incid-
entk-hyperplanée: that is not one of the coordinate hyperplanes, hence there
are at mosO((klogk)?~1) suchk-cuts. But the remaining-cuts corres-
pond to lower-dimensional corner cuts, and by induction, there are at mos
O((klog k)?~2) of those. We have proved:



Theorem 3.15. The number ok-cuts ind dimensions satisfies

ax(N§) = O((klogk)*™")

3.5 Remarks

Extensions of the upper bound. The above proof of the upper bound of
O((klog k)?—1) immediately extends to the total number of faces of the corner
cut polyhedrorP;, (N¢), and indeed even to the numberftafgsof P (Ng),
where aflag of a polytop® is a chainF; C ... C F; of faces of the polytope.
In fact, the proof really is about flags. To see this fet= conv{vy,...,v,,}

be anr-dimensional face of?, (IN¢), where eachy; = > T; for somek-
cut 7; (these are the bounded facesTf(IN¢); on the other hand each un-
bounded--face is contained in somedimensional intersection of coordinate
hyperplanes, so there are ofunbounded faces altogether). ThEmorres-
ponds, in a one-to-one fashion, toxadimensional affine flak that is parallel
to F and spanned by points froiNg, such that there exists a hyperplame
with the following properties:

1. FC H,andH NIN¢ = F N N,
2. H- NNe¢=TyN...NT,,

3. eachl; C H™ UF, andthe set$; N F are precisely thg-sets ofN¢g N F,
wherej = k — |H™ N N¢|.

(H is an appropriate translate of the supporting hyperplang,4iN¢d) that
defines?, and vice versa.)

Now, the total number of flags is at masttimes the number of maximal flags.
Thus, consider such a maximal chain= 7y C ... C F4_; of bounded faces

of P (N¢). This corresponds to a chaiig C ... C Fq_; of flats as above,
wheredimF; = dim F; = i for 0 < i < d. Now, F;_1 is ak-hyperplane of

N¢ (with the additional property tha€; , N N¢| > k), andFg_1,...,F is

a descending sequence of nested flats like the one constructed in Lemma 3.11.
But as we have seen, there are at n@§tk log £)?~1) such sequences, hence

at most that many flags.

The proof can also be adapted to show that there are at@{obtog k)¢~ 1)
many pairs (“incidences”)H, p) whereH is a properk-hyperplane angh
H N Ng.



Weakness of the lower bound. For the lower bound, we considered-&ut

T in dimensionN¢ and showed that that for ea¢h< i < k, the “fiber”

{J C NI J=TnN¢ 'V is non-empty. Since;(N}) = 1 for all j in
dimension 1, this argument would only give a linear number of cornarafut
sizek in dimension 2. But this number islog k, so the “average” fiber must
have sizdog k. This might be considered as evidence that the lower bound in
Theorem 3.6 is not optimal. (To get a lower bound that matches the upper on
we have, we would have to show that the average fiber is otsizein every
dimension.)

The algorithmic side. As noted in Section 3.2, enumerating the&uts in
dimensiond reduces to enumerating thesets ofS = S¢ that contain the
origin 0. For this purpose, we can use theset enumeration algorithm of
Andrzejak and Fukuda [7], which is based on the paradigm of reverse search.
Conceptually, the algorithm implicitly builds a subtree of the edggQ of the
corner-cut polyhedro®, (N¢) and traverses this graph in a depth first manner.
The crucial issue is how to find the neighbors of a given veotex > T'. As
shown in [7], this reduces to solving certain linear programs. Some sare i
needed to ensure that the algorithm handles degenerate point configuration
correctly, but on the other hand, the corner cut set-up is particularlyimice
that the coefficients of the LP’s will be integers in the rag@e. . £}. In total,

the running time is (cf. [7])

ar(Ng)kn* Ipy.(d, |S§1) (3.4)
wherelp, (d, n) denotes the time required to solve a linear programvari-
ables, withn constraints and coefficients frof, .. ., k}. If we substitute the

upper bound of Theorem 3.15 aff#f!| = O(k(log k)?~1) in (3.4), we obtain,
for fixed dimensiond, a time complexity of

kT2 (log k)33 1p, (d, k(log k)?~1) .

Recognizing vertices ofPy, (Ng). To conclude this section and this chapter,
let us mention a related open problem, posed by Onn and Sturmfels [60].
Suppose we are given a pointc N¢ and an integek and want to know
whetherv is a vertex of the corner cut polyhedrdn (IN¢). If the dimension

d is fixed, we can decide this in polynomial time by enumerating all corner
cutsT and checking for each of them whether= > T. In the case of a
positive answer, this also provides a witness th# a vertex. The question

Is, whether the problem can be solved in a number of steps that is boupded b
a polynomial ink andd.






Chapter 4

Origin-Embracing
Distributions

Suppose we choose> 3 random pointsp, ..., P, in the unit disk centered
at the origin, independently and identically distributed according é¢outtn-
form distribution. What is the probability that the convex hdltlvese points
contains the origin? There is an elegant way of determining this priggabi
due to Wendel [87], see also [5]: First choeseandom points)+,...,Q,
independently and uniformly distributed in the disk. For eaicidependently,
setP; to Q; or to —@Q; with equal probabilityl /2. The pointsP, ..., P, are
again independently and uniformly distributed random points in tsle ©b-
serve that almost surely (a.s.), no two of thelie on a common line through
the origin,. Moreover, for any choice of tlig;’s that satisfies this condition,
there are exactlgn possibilities to choose the signs for tli&'s such that
the origin can be separated from these points by a line: every partitie o
Q;’s by a line through the origin gives two such possibilities. Efere, the
probability for the convex hull of thé>’s to contain the origin is precisely
1 —2n/2m.

A second glance at the proof shows that all we used are the facts that the dis-
tribution is symmetric about the origin and that every line thiotlte origin

has mass zero. More generally, the same argument shows jhét & con-
tinuous probability distribution iR which is centrally symmetric about the
origin, i.e. u(B) = u(—B) for all measurable sets, then the probability that
the origin is contained in the convex hull of> 1 independent.-distributed
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random points is

d—1 n—1
>ico (")

oan—1 ’

To see this, observe that the number of ways to partition a finifgset. ., g,, }
of points inR? by a hyperplane through the origin equals the number of full-
dimensional cells in the arrangement of linear hyperplagjes= {x € R :
(g;, ) = 0} dual to the points. It is not hard to show by induction én
that forn > 1, the latter is exactlg 527" ("~1) if the points are in linearly
general position.

What happens if we choose the points from a distribution that isewtrally
symmetric? Given a continuous probability distributiorand a pointo in
RY, let us denote the probability thatis contained in the convex hull of
independengi-random points byf,,_4—1 (i, o) (the reason for the shift in the
index will become apparent later).

It was shown by Wagner and Welzl [84] that for amyando,

1 —

(4.1)

1. the probabilityf,,_4—1(u, o) is at most the one given in (4.1).

2. Furthermore, this upper bound is attaineduifs balanced aboub, in
the sense that every hyperplane througbquipartitionsy. (We note
that balancedness, in turn, can be equivalently characterized by saying
that the radial projection gf onto the unit sphere centeredais cent-
rally symmetric aboub, see Schneider [67].)

Somewhat surprisingly at first sight, this result can be consideredtaoous
analogue of McMullen’s [52Upper Bound Theorem (UBTor convex poly-
topes, which gives exact upper bounds for the face numberé-dfraensional
convex polytope with a prescribed number of vertices.

The proof of the Upper Bound Theorem rests on the notioh-gkctors
These are fundamental invariants of simplicial convex polytopes (sipga-
turbation arguments show that the numbers of faces of all dimensionsare m
imized by such polytopes). The face numbers of a simplicial polytope ean b
expressed as positive linear combinations of the entries df-itsctor, and
what the UBT really does is to give exact upper bounds for these entriles of t
h-vector. This implies the bounds for the face numbers.

For the the continuous analogue above, so-caitahctionswere introduced.
The h-function associated with a distributignin R¢ is a certain continu-
ous functionh = h,,: [0,1] — R>p, and as it turns out, up to a factor
depending only ork andd, the probability f;. (1, 0) is given by thek™ mo-
mentfo1 z¥h,, o(x)dz. Therefore, a pointwise upper bound feifunctions,



the Continuous Upper Bound Theorem (CUBimplies the bound (4.1) for
frn—a—1(u, o) stated above.

Rather than just being a formal coincidence of proof strategies, howheer, t
definition of h-functions was motivated by a geometric re-interpretation by
Welzl [86] (and in similar form already noted by Lee [49], Clarkson [261 an
Mulmuley [59]) of h-vectors and their properties under Gale duality, so that
h-functions can truly be considered continuous counterpartsvactors.

In Section 4.1, we review this duality, and the interpretatioh-@ectors and
their properties in both, the polytope set-up and the dual set-up.al¥ée
summarize the results from [84] abdufunctions.

We then proceed to prove that another important result albbagictors also

carry over to the continuous set-up. To this end, we need a few facts about
particular sequences of probability distributions on the unit iratiettvat in a
certain sense converge to point masses. We collect these facts in Section 4.2.
In Section 4.3, we use these findings to prooatinuous Generalized Lower
Bound Theoreno the extent thak-functions are monotonically increasing on

the intervall0, 1/2] and decreasing oni /2, 1].

In Section 4.4, we describe an applicatione¥ectors andh-functions. We
useh-functions (respectively;-vectors) to prove a continuous analogue of the
so-calledFirst Selection Lemméespectively, to give an alternative proof of
the discrete version).

4.1 h-Vectors andh-Functions

Gale duality, which we summarize in Section 4.1.2, involves a shdtrmen-
sion. Therefore, we will denote the dimensionbyhen speaking about the
polytope setting, and by when speaking about the dual setting.
4.1.1 h-Vectors of Simplicial Polytopes
Let P be a simplicialD-dimensional polytope. The-vector

h(P) = (ho(P),...,hp(P))

of P is defined by

. D —k
hi(P):=Y (—1)77F N1 (P), (4.2)
S ([ 5)



wherefi.(P) denotes the number éfdimensional faces dP.

The motivation for this at first sight rather mysterious definitiomes from
the following geometric interpretation (see Kalai [47]): 72t be the polar
polytope of P (i.e., the face lattice ofP* is obtained by turning that P
upside down). Any linear functiona on R? such that the value§:, v) of
the vertices ofP* are distinct induces an orientation of the edge graph’of
orient every edge from the endpoint with smaller towards the endpoiht
largerc-value.

SinceP is simplicial, its polarP* is simple, i.e., every vertex of P* of is
incident to exactlyD edges, and any of these edges spankadimensional
face of P* incident to the vertex and these edges. Moreover, every nonempty
face F of P* has a unique sink with respect to the orientation induced, by
l.e., a unique vertex € F such all edges ofF incident tov are directed
towardsuv.

Let us double-count the paif§, v), whereF is ak-dimensional face oP*.

On the one hand, we count exactly the numpg™*) of k-dimensional faces

of P*. On the other hand, if a vertexhas in-degreg,, thenv is the sink of
precisely(”}g) faces of dimensiot (any k of the incoming edges span such a
face, and any face is of that form). Thus, if we denote the number of vertices
with given in-degregj by h; (at first sight, this number depends on we

obtain '
P =>" (;) hy. (4.3)

Now we observe that if two sequencgs;) and (b;) of complex numbers
satisfyay, = ) (7)b; for all k, then this simply means that the two formal
power seriesA(z) := >, axz® andB(z) := > bz satisfyA(z) = B(z+

1). Hence,B(x) = A(x — 1), and by comparing coefficients, we obtain

b; = > (=1)*77 (¥)ay for all j. Thus,

=0 () e (4.9)

k

for all j, and the numbers; depend only orfP* and not onc. Thus, by
considering the functionat ¢, we see that the following holds:

Theorem 4.1 (Dehn-Sommerville Relations [31, 72])If P is a D-dimensional
simplicial convex polytope, then for gl

hi(P)=hp_;(P). (4.5)



Note that the special cage= 0 of (4.5) together with (4.4) yields thguler-
Poincate Formulafor simplicial polytopes:

fo(P) = fi(P) + ...+ (=1)" " fpa(P) + (-1)” =1

Observe that if we substitute into (4.4) the face numie(®) = fp_1-(P*)
and use the Dehn-Sommerville Relations, we arrive at equation (4.2¢abov

Alternatively, the numberg; (P) can be interpreted via so-calletiellingsof
P. This is the original approach of McMullen [52], who introduced the
vector as the major tool in his proof of the UBT (until then the Upperiibu
Conjecture). Vaguely speaking, a shelling of a simplicial polytBye a way
of building up the boundary of the polytope in a nice fashion. Sedly,

it is an ordering#, ..., F,, of the facets ofP such that for each < i <
m, the intersection ofF; with the unionl J, _, 7. of the previous facets is
“well-behaved”: the intersection should be nonempty and “pupe— 2)-
dimensional’, i.e., for every: < ¢ there should be some < ¢ such that
F.NF;, C FsNF; and the latter is &D — 2)-dimensional face oP.

Given such a shelling, one can defiagP) as the number of facets; such
that exactly; of the (D — 2)-dimensional faces of; are already contained in
some earlierF,.. (Observe that sincg; is a(D — 1)-dimensional simplex and
hence has a total dp faces of dimensio® — 2, the interesting range fgris
again between 0 anB.)

Since the vertices oP* are in bijection with the facets gP, any generic
linear functionalk: in the polar set-up induces an ordering on the facetB,of

and as it turns out, this is a shelling Bf and the two definitions of; (P)
agree. For an introduction to shellings of polytopes (including a tiefm

for general polytopes, or still more generally, for polytopal comgé»and an
overview of their applications and many references, see Chapter 8 of Ziegler
[91], which also contains an account of McMullen’s proof of the

Theorem 4.2 (Upper Bound Theorem [52]). The h-vector of a simplicial
d-dimensional polytop® onn vertices satisfies

hy(P) < min{(";zjj), (:_—j}—_ll)} (4.6)

for all j. Moreover, if equality is attained for somé /2| < j < D, thenP
is neighborly i.e., every set of at mosD /2| vertices span a face %, and
then (4.6) holds with equality for ajl.

In order to see whak-vectors have to do with the probabilitigs(u, o), we
need furthermore the following form of duality.



4.1.2 Gale Duality

Gale Duality for Vector Configurations. Letwvq,...,v, € R" be (not ne-
cessarily distinct) vectors that linearly spRfi. Consider they;’s as columns
of an(r x m)-matrix

Supposed is a oriented hyperplanfec € R” : (v, ) = 0} through the origin.
We can encode the waypartitions the vectors by writing down the sequence
((v,v1),...,(v,v,)) € R™ of scalar productsw; lies in H™, onH, or in
H~, respectively, depending on whether, v;) is positive, zero, or negative.
(We could also decide to only remember the sigf+-, 0, —} of each of these
scalar products, which would lead to the notioroaented matroid$17], but

let us stick with their actual values.) For any vectoe R¢ (the zero vector

v = 0 is allowed, too), the vectof(v,v,),...,{(v,v,)) € R" is called a
linear valuationof thew;’s.

Letay,...,a, € R™ denote the rows ofl,

a;
A=

a,

The set of all linear valuations of the’s is precisely the--dimensional sub-
space ofR™ spanned by these rows, or in other words, the imagd” of
the transpose ofl.

Now, choose a basts, . .., b,_, of the orthogonal complement afh A™ in
R", i.e., of the kerneker A, and letB be the matrix which has these vectors
as rows,

by
— b, ., —

If we denote the columns dB by w1, ..., w,,

B=|w wy --- w,



then it is easy to see that the collection of vectarsc R"~" is unique up
to a bijective linear transformation &"~", and they, in turn, determine the
v;’s up to a linear change of coordinatesRf.

The map that mapg$v; : 1 < i < n}to{w; : 1 < ¢ < n} and vice
versa is called th&ale transform Observe that this is a transformation not
of individual vectors, but of whole sets (or rather multisets, siheed can be
repetitions) of vectors, also sometimes calMedtor configurationsThe two
vector configurationgv; : 1 <i <n}and{w, : 1 <i <n} are calledzale
dualsof each other.

By definition, we havem A” = ker B andker A = im BY. Thus,a =
(aq,...,0,) € R™is alinear valuation of the,’s iff « is alinear depend-
enceof thew;’s, i.e.,Z?=1 a;w; = 0, and vice versa.

Gale Diagrams of Point Configurations. The standard trick to translate
affine notions into linear notions is to embBd’ as the hyperplanB? x {1}
into RPT1. Then a pointg € R corresponds tgq, 1) € RP*!, and an
affine hyperplanet = {q € R? : (v,q) = t} in R” can be interpreted
as the intersection dR? x {1} with the linear hyperplangz ¢ RP*! :
((v,—t),z) = 0}, see Figure 4.1.

R% x {1}

Figure 4.1: Translating affine to linear notions.



Given a multiset of pointg;, ..., q, € RP that affinely spaR”, the Gale

dual of the vector configuratiofy,,1),...,(q,,1) € RP*! is a vector con-
figurationw, ..., w, in R*~P~! and is called the (lineagale diagramof
theg,’s.

Observe that the Gale diagram of a point configuration has a special gropert
The vector(0,...,0,1) € RP*! yields the linear valuation1, 1,...,1) €

R" of the vectorgq,, 1). This translates to the linear dependehce , w,; =

0, i.e., the origin0 € R*~P~! is the center of gravity of the;’s.

Let us now apply this to polytopes. L&tbe the convex hull of,,...,q,, €
RP. We do not assume that ajl, are vertices of the polytop®, but we
do assume thaP is D-dimensional, i.e., that the,’s affinely spanR?. Let
wi,. .., w, € R""P~1 be the Gale diagram of the's.

Supposel C {1...n} and the pointsy;, ¢ € I, lie on asupportinghyper-
planeH of P, i.e.,q; € Hfori € I andP is contained in one of the closed
halfspaces bounded Ity If H is given as{q € R” : (v, q) = t}, we get the
linear valuation(as, . . ., ay,) with o; := (v, q;) of the vectorgq;, 1). This
translates into a linear dependencg”_, «; w; for the dual configuration.

Moreover, sinced is a supporting hyperplane, we may assumedhat 0 for
i € Ianda; > 0fori € {1...n}\I. Thus, the origird € R"~P~!liesinthe
convex hullconv{w; : i ¢ I}, as witnessed by the convex combinata-
Zig_ﬂ Aw;, Where); = Zo‘ia'. The remaining assertions of the following

lemma are derived similarlil, see [86].

Lemma 4.3. LetP be the convex hull of poingg,, .. ., q,, that affinely span
RP, and letwy, ..., w, € R"~P~! be the Gale diagram of of thgs.

1. ForI C {1...n}, the pointsg;, i € I, lie on a supporting hyperplane
of P iff the origin is contained ironv{w; : i ¢ I}

2. P is simplicial iff the origin does not lie in the convex hull of anypset
of thew,’s of size less than — D.

3. If P is simplicial, then forany C {1...n} of cardinality|/| < D, the
set{q, : i € I} isthe vertex set of af}/| — 1)-dimensional face dP iff
the origin is contained in the interior of the convex hulkaeé; : i ¢ I'}.
In particular, g, is a vertex ofP iff the origin lies in the interior of

{wll#z}

Now we are very close to the question considered at the outset of thischapt



Definition 4.4. Let S be a set ofn points inR? and o a point such that

o € conv S, buto is not contained in the convex hull of fewer thé 1 points
from S. Let us say in this case thatis in general positionw.r.t. S. (this is
satisfied ifS U {o} is in general position, but it is a weaker assumption). For
integerk, we define

fe(S;0):={X CS:|X|=d+1+k,o0 € int(conv X)}|.

Observe that we could as well writec conv X, since by assumptiom, can-
not be contained in the boundary@fv X. Moreover, since € int(conv X)
Is invariant under sufficiently small perturbations.Xf we can perturly, so
as to bringS U {o} into general position, without affectinf. (S, o).

With this notation, Lemma 4.3 says thatjfis the Gale diagram of the vertex
set of aD-dimensional simplicial convex polytope anddfis the origin in
R"P~1 then

f1(8,0) = fp_x1(P) = fu(P"),
whereP* is the simple polytope polar tB.

Conversely, letS = {p,,...,p,,} € R, and leto be a point that lies in
conv S and is in general position w.r.$.. Note that this implies thaf affinely
spansR? and thato lies in the interior ofconv S. It follows that there is a
convex combinatiom = Y., \;p; with all A; > 0. Furthermore, up to a
suitable translation, we may assume thas the origin ofR? (i.e., we can
interpretp, € S as the vectop, — o). Under that assumption, éf lies in (the
interior of) conv{p, : i € I} forsomel C {1...n}andifa; > 0,7 € I,
theno also lies in the (interior of) convex hull dfo;p;: @ € I}. Thus, we
may rescale the elements®ft our leisure without affecting. (S, o), and by
rescaling eaclp, by the factor ofli, with the \; above, we may assume that
o is the center of gravity of, i.e.,o = >_." | p,. Therefore, ifv,...,v, €
R % js the Gale dual of theectorconfigurationp,, 1 < ¢ < n, then all the
v; lie on a common hyperplane = {x €¢ R"~%: (v,z) = 1}, and we can
interpret thev;’s as pointsg; € H = R"~?~1, Then thep,’s are the Gale
diagram of they,’s, so Lemma 4.3 applies again. Summarizing, we arrive at
the following theorem, which was proved in [86]:

Theorem 4.5. 1. If P is a D-dimensional simplicial polytope ofy(P) =
n vertices, then there exist a point st RY, d:=n— D — 1,and a
pointo € R? such that

fi(S,0) = fp—k—1(P) = fu(P") (4.7)



for all k. By a sufficiently small perturbation, if necessary, we may
assume thas' U {o} is in general position.

2. Conversely, ifS is a set ofn, points inR? that is non-degenerate w.r.t,
a pointo € conv S, then there is a simplicial conveX-polytope,D =
n—d—1, onm < nvertices such that (4.7) holds for &ll In particular,
the numbem = fy(P) of vertices ofP equals the number of points
p € S that can be strictly separated froi \ {p} by a hyperplane
througho.

In analogy to (4.2) and (4.4), we could now define theector of S ando

by 1;(S,0) :== 3, (—1)kJ (’;)fk(S, o). While this is a perfectly respectable
definition, the reasons whi-vectors are useful for the study of polytopes is
that they can be interpreted geometrically (via shellings of the padytop
linear objective functions on the polar polytope, as we saw above). &t wh
follows, we describe such a geometric interpretation in the dual segign

by Welzl [86]. The basic approach is to first analyze the probability that a
given line intersects the convex hull efrandom points, which then translates
to the above setting by the projection onto the hyperplane ortladorthe
line.

4.1.3 h-Vectors in the Dual Setting, andh-Functions

Let o be an orientedd — 1)-dimensional simplex iR¢. An oriented line
¢ C R?is said toentero if ¢ intersects the relative interior of in a single
point and is directed from the positive to the negative side. df / is directed
from the negative to the positive side, we say thétatvess.

Definition 4.6 (The h-vector of a point set and a line [86]). Consider a se$
of n points inR¢, and an oriented linéwhich is disjoint from the convex hull
of any subset of of size less thaa. We say in that case théts in general
position w.r.t.S. For integerj, we defineh; (.S, ) as the number of-facets of
S which are entered by, and we callh(S, ¢) := (ho(S,¥€), ..., hn—a(S,¥))
the h-vectorof .S and/.

In order to define the corresponding concept for probability didiiobs, we
need the notion of a-random simplex Recall that orienting dd — 1)-
dimensional simplex in R? simply means to specify one of the halfspaces
bounded by the hyperplanet o as positive. In dimensiod > 2, if the
simplex is spanned by affinely independent popts. .., p,; € RY, then an



orientation is given in a natural way by the order in which the pointsecom
simply define the positive halfspace as

1 11

HY ([py,....p,]) = qERd:det[
(lp, al) = { o b

} > 0}.

We denote the resulting oriented simplexpy, . . ., p,]. In dimensiond = 1,
we need an additional signe {+, —} and sek|p] to be the oriented simplex
with HY (e[p]) ;= {ge R : e (¢ — p) > 0}.

Equipped with this notation, we define, fdr > 2, a u-random (oriented,
(d — 1)-dimensional) simpleas the oriented simple),, ..., P;] spanned
by independent-random pointsPy, ..., P; (by assumption om, the points
are a.s. affinely independent). In dimensiba= 1, we choose an additional
independent random signuniformly from {—1,+1} and obtain the random
simplexs[P;].

In analogy to Definition 4.6, we would now like to define, for a real nemb
0 <y <1,h,(y) as the probability that a-random simplex is ay-facet
of u, i.e.,u(H" (o)) = y, and is entered by. Unfortunately, that probability
will be zero for everyy. This technical nuisance is remedied by first defining
a distribution function and then taking the derivative.

Definition 4.7 (h-functions [84]). For a continuous probability distribution
and an oriented linéin R4, the functionH, , : [0, 1] — [0, 1] is given by

H, (y) := Pr[¢ enterso andu(H" (o)) <y, (4.8)

whereo is ap-random orientedd — 1)-dimensional simplex. (Note that the
map(py,...,py) — p(H ([py,...,py])) is continuous, hence measurable,
on the open set of affinely independehtuples(p,,...,p,;) € R4 such
that/ entersip,, ..., p4l.)

Clearly, H,, , is monotone, from which it follows that its derivative, the

function
d
hue(y) == d—yHM,e(y) (4.9)
of 1 and/ is defined almost everywhere (a.e., for short, i.e., the setof0, 1]
for which it is not defined has Lebesgue measure zero) and nonnegative. We
note thath is, in fact, defined everywhere and continuous, as we will see in

Theorem 4.13 below.

Furthermore, in the set-up of the above definitions and for integlet

fe(S,0) :={X CS:|X|=d+ k, and/ intersectsconv X }|,



and
fr(u, €) := Pr[l intersectsconv{ Py, ..., Pyi1r}l],

whereP,, P,, Ps, ... are independent-distributed random points. In analogy
to (4.3), we have for either orientation &f

fe(S. 0 =>" (i) h;(S,0) (4.10)

J

for all k£, as was shown in [86]. The continuous counterpart was proved in [84]
and reads

1
ety =2("5 M) [ sty (@.11)

As before, it follows from (4.10) that thie-vectorh (S, ¢) is uniquely determ-
ined by (fo(S,£), .-, fa—a(S,0)) via h;(S,€) = >, (=1)77%(%) fu(S, €).
Similarly, in the continuous case, the function, can be shown to be uniquely
determined by the sequengg(u, ¢), k € Ny, which up to constant factors
depending only od andk is just the sequence of isomentsRoughly speak-
ing, if the k" moment [ y* f(y)dy of an integrable functiorf exists, then
it is (up to constant factors) thé" derivative at zero of the Fourier transform
f(z) = J= €Y f(y)dy. Under suitable niceness assumptiong pthe Taylor

series off converges, so the moments determinevhich in turn determines
f. We refer to [33] for a proof of these facts in a more general context. See
also Remark 4.14 below.

Since fi (5, ¢), respectivelyfi (i, ¢) are independent of the orientation &f
it follows that the same holds fdr(S, ¢), respectivelyh,, », which proves the
following

Theorem 4.8 (Dehn-Sommerville Equations [86], [84])For S, i, and/ in
R? as above|S| = n, we have

hi(S,0) = hn_a—;(S,0)

for all 7, and
hu,e(y) = hp,e(1 —y)

forall 0 <y <1.

We are now ready to relatefunctions to the probabilitiegs (11, o) which we
considered at the beginning of this chapter.



Projections and Liftings. Consider a line in R4*! (we mark objects in
R4+ with a tilde to tell them apart from those R?). We identify R with
the orthogonal complemefit-. Let = be the orthogonal projectidR%+!1 —
i+~ R4,

If i is a probability distribution iR+, then we call the probability distribu-
tion pu := 7(z) in R* together with the poind := 7(¢) € R? the projection
of 7z and/ and erteﬂ(u,f) for the pair(u, 0). Analogously, ifS is a point
setinR4! andS := 7 (S) C R?, then we call the paifS, o) the projection
of S and/ and denote it byr(S, ¢). (Note thaty, S, ando are only defined
up to an affine change of coordinatesR#, but all notions we will study are
invariant under such transformations.) Observe thatsfcontinuous, then so
is 1. Similarly, if 7 is in general position w.r.tS theno is in general position
w.r.t. S.

Conversely, givero € R? and a probability distribution. (respectively, a
point setS) in R4, alifting of 1 ando (respectively, ofS ando) is any line
¢ C R4+ together with a probability distribution (respectively, a point set
S) in R*! such thai(i, 0) = (i, £) (respectively(S, o) = 7(5, 7)).

If 11 is continuous ana is in general position w.r.t5, then there are suitable
liftings with the same properties: Lét= {o} x R C R?*!. Choose your
favorite continuous probability distributianon R and takei: as the product
measure: x ¥ onRY x R = R*!; respectively, pick independentrandom
numberst,, p € S and setS := {(p,t,) € R : p € S}. We will only
consider such “generic” liftings in what follows.

Assume now thatu, o) = 7(ji, £), respectively(S, o) = (5, ¢). We have
fk(Sa 0) - fk(‘§7g)

and 3
fk(ﬂa O) = fk:(ﬁ7€)

for all k > 0. Therefore, by (4.10) and (4.11), respectively, we get for either
orientation of? that

fi(S,0) = ; (fc) h;(S,0). (4.12)
and )
d+1+k
fk(u,0)=2( ;Jj >/O y*h; i(y)dy. (4.13)

Thus,h(S, ¢), respectively: ; ; depend only orb, respectively., ando.



Definition 4.9. For a finite point setS, respectively a distributiop, and a
pointo in R¢ as above, we define

and
h,u,o(y) = h'aj(y)a

for arbitrary liftings (S, ) and(ji, ) of S, respectively:, ando.

By (4.13), a pointwise upper bound for thefunction of a probability distri-
bution and a line implies an upper bound for the probabilifigg:, o) con-
sidered at the beginning of this chapter. The proof of the the uppando
proceeds by induction on the dimension and uses the following reptramch
we will also need in Section 4.3.

4.1.4 The Upper Bound Theorem, Discrete and Continuous

Let ¢ C R< be an oriented linep a point on/, ands an orientedd — 1)-
dimensional simplex. We say thaenterso before (respectively, aftep) if ¢
enterso ando € H™ (o) (respectivelyp € HT (0)).

Definition 4.10 (h* and *h). Let/ be an oriented line ilR? ando € /.

1. Suppose that C R4, |S| = n, and thab is not contained in the convex
hull of fewer thand + 1 points fromS and that/ is not intersected by
the convex hull of fewer thad points fromS. Then we definei; =
h3(S,¢,0) and*h; = *h;(S, ¢, o), as the number of-facets ofS that
are entered by before, respectively, aftew,

2. Similarly, for a continuous probability distributignin R¢, we set
H*(y) = H}, , ,(y) := Pr[¢ enterso beforeo andp(HT () < y].
for 0 < y < 1. As before, the derivative

* * d *
h (y> - hu,ﬂ,o(y) = @Hp,é,o(y>

is defined a.e. and nonnegative. The functithisand *h are defined
analogously, with “before” replaced by “after”.



Note that by our assumptions about general position,
hi(S,0) = h;(S,4,0) +"h;(S, ¢, 0)

and
hu,f(y) = hZ,Z,o(y) + *hu,f,O(y)'

Again, the moments ob* and*h can be interpreted geometrically. We say
that/ passes intdrespectivelyexits fron) a compact convex sét beforeo

if, while walking along/ in the direction in which it is oriented, we encounter
the first (respectively, last) point of intersection/@dndC beforeo.

Consider a finite seX such that entersconv X beforeo. Either? also exists
from conv X beforeo, oro € conv X. For lack of a better notation, let us
define

sp(S,4,0):={X CS:|X|=d+1+k, ¢ passes intconv X beforeo}|
and

tr(S,4,0) :=|{X CS:|X|=d+ 1+ k, ¢ exits from conv X beforeo}|.

Analogously,

sk(p, £, 0) :== Pr[¢ passes intawonv{ Py, ..., P11} beforeo}
and

tr(u, ¢, 0) := Pr[¢ exits from conv{ Py, ..., Pyji1+x} beforeo},

where theP;’s are independeni-random points. Then,
fk(S, O) = S/{;(S,f, O) —tk(S,f, O) (4.14)

and
fk(#7o) - Skﬁ(:u7€7 O) _tk?(:uaéa O)' (415)
Observe that since the left-hand sides are independéntsofare the right.

The last link is provided by the following lemma. Fetvectors, it was proved
in [86], and forh-functions in [84].

Lemma4.11. Forall k£ > 0,

—d—-1
Skz(S7€aO) - Z (nk+1 j)h;<5a£7o>
J



and .
n(s.to) =3 (1, Js.co)
J

Similarly, in the continuous case,

swtntio)=2(TT ) [y

1
w0y =2("UTE) [ gay
0

By substituting this into (4.14) and (4.15), respectively, and apglyele-
scopic summation and integration by parts, respectively, we obtain

nisio) =3 (3) (Zh:(&e,o) :;dz«s,e,o)) (4.16)

J

and

and

fe(p,0) =
2(‘”;”“) /Olyk ((d+1)/0yh*(x)—h*(1—x)dx> dy. (4.17)

By comparing (4.16) with (4.12), we conclude (see [86]):

Theorem 4.12.If S is a set ofn. points inR? and o is a generic point wW.r.t,
S, then for any choice of a generic lifghrougho, we have

(.0 =3 (R1(S.£.0) = b4 i(S.1.0))

1=0

for all 5.

Similarly, (4.17) and (4.13) together with the uniqueness of mosienply
(see [84])

Theorem 4.13.Letu be a continuous probability distribution ardbe a point
in R<. Then for any lin¢ througho,

o) = @ +1) | T @)~ (1—@))de  (418)

for 0 <y < 1. In particular, h is continuous and differentiable a.e.



Remark 4.14. In the continuous setting, there is a technical issue which de-
serves a brief comment. Namely, even though a monotone funEtisdiffer-
entiable a.e. and its derivative is a Lebesgue integrable fundiioeed not be

the integral of its derivative. For instance, even for non-vanishingatone

F, the derivative might be zero a.e. (see the well-known example cZ&ame

tor functionin Section 1.5 of [39]. Strictly speaking, the formulae in Lemma
4.11 and (4.11) for the moments bfandh* are correct only if we know that
such problems do not arise féf or H*. Yet we apply these formulae in or-
der to conclude continuity of, for instance, which seems to be begging the
question.

The way to navigate around these difficulties is to define the moments as
Lebesgue-Stieltjes integrals with respect to the “distribution fonsti H or

H*. The above line of reasoning, properly rephrased, then establishes cer-
tain identities for these distribution functions, from which it candoncluded

that they and their derivatives behave “nicely”, i.e., that the above-meadion
pathologies do not occur. See [84] for the detalils.

Based on these findings, one can now give an alternative proof of the UBT by
induction on the dimension. This gives the following tight uppeunds on

the entries of thé-vector, respectively the values of thefunction, see [86],
respectively [84].

Theorem 4.15 (Discrete Upper Bound Theorem (UBT)[86])Let S be a set
of n points inR?, and leto € R be generic w.r.tS. Then

sz ()

Moreover, equality is attained for aflif and only if every hyperplane through
o and disjoint fromS has at least 2=2t1 | points ofS on either side. More
precisely, if there is a hyperplane> o disjoint fromS such thafH™ N S| =

a, say, then fop < j < 2=4=1,

j+d j—a+d
hj(570)§< d >_< d )
Theorem 4.16 (Continuous Upper Bound Theorem (CUBT) [84]).If o €

R< and is a continuous probability distribution iR¢, then

d+1 .
huoly) < —5—min{y?, (1 - )"}



Moreover, equality is attained for al} if and only if i is balanced aboub,
l.e., if every hyperplane throughequipartitionsu.. More precisely, if there is
a hyperplaned > o such thatu(H™) = a, say, then fof < y < 1/2,

d+1,d -

Ty if0 <y <a,and
JUES O AP

Ly = (y—a)?) ifa<y<s.

Remark 4.17. It can be shown that is balanced about if and only if its

radial projectionz onto the unit sphere centeredais symmetric aboub,

l.e. invariant under reflection about In dimensiond < 2, this is rather
trivial; for d > 3, we refer to Schneider [67], Corollary 3.4.

Corollary 4.18.

|2=g=t] . [m=g=2] ~ /.
g\ (j+d n—d—-1—-7\/j+d
so< 2 ()02 3 ()0

Equality is achieved if and only if every hyperplane throughas at least
| 2=4+L | points ofS on either side.

Yo (1H9)

Equality is achieved if and only jf is balanced aboub.

We will further investigatef;. in Section 4.4.

4.2 Approximate Point Masses

This section is a somewhat technical interlude that lays the groundf@ork

Section 4.3. The goal is to prove Lemma 4.22, which enables us to analyze

individual values of a Lebesgue integrable functjpn [0,1] — R in terms

of integrals of the fomfo1 27 (1 — x)* f(x)dx (provided these integrals exist).
Note that fork = 0, these are precisely the momentsfof

We will need the following facts (see, for instance, [65]): For real number

a, 3 >0,

1 1 3!
N a!l B!
/Ox(l x) dz_(a+ﬁ+1)!’



where thegeneralized factorialare defined by

O
od::l/u z%e " dx.
0

(The integral on the right, which is also often denoted & + 1), converges

for o > —1.) For natural numbers this definition agrees with the usual induct-
ive one. Also, the familiar relatiofix+1)! = (a+1) o! still holds. Moreover,
Stirling’s formulaprovides a useful asymptotic estimate:

aOé

al ~ —\ 21«
€Ot

asa — oo, Whereg ~ 1) means thalim £ = 1.

»
Definition 4.19. Fora, 8 > 0, define
a+B+1)
da () == ( al g ) x*(1 —a:)ﬁ

for0 <z <1.

By definition,d, g > 0 andfo1 da,(x)dxr = 1forall a, 8 > 0. Thus, each
dq s IS a probability density on the unit interval. Moreover, intuitivepeak-
ing, if o, 3 — oo and if the fractionsoﬁﬁ converge to some numbegrin the
unit interval, then the distributions, 3 become more and more concentrated
aroundy, see Figure 4.2.

To make this idea precise, we need some preparationsy Eix(0,1). For
t>0,leta = a(y,t) :=tyandp = G(y,t) := t(1 — y). Givenx € (0,1)
andr := z —y, letus writex = (1 + D)y and(l —z) = (1 — =,)(1 — y).
Thus,

(41 tap? r\Y NS EEAN
Go5(2) = " (1+ §> (1-= y) . (4.19)
(+) (+)

7

For a real numbep > 1, the functionz — zP is convex forx € [0, o).
Hence,l +pr < (1+r)? forallr € [~1,00). Applying this withp = - and
p = =, respectively, we see thatx) < (1+7)(1—r) = 1—r2. Moreover,
by Stirling’s formula,

(t +1)v2mt Vi

W aravzs ~ Vamyd—y)

(4.20)




Figure 4.2: The function9,, s for («, 5) = (3,2), (9,6), (18, 12), (30, 20).

ast — oo.

We will restrict ourselves to showing that for this choice of the paramet

a, 3, the distributions), g converge to the point mass @af(in a sense made
precise below). The crucial ingredient is the following special case of the
Lebesgue Differentiation Theorem (see [39], Chapter 3):

Fact 4.20. Let f be a Lebesgue integrable function on the inteff¢al |, that
is, a measurable function such thaf||; := fol |f(x)|dz < co. Then almost
everyy € [0, 1] is a Lebesgue poinof f, in the following sense: For every
e > 0, there is some = p(e,y) > 0 such that, for all- < p,

! / @) — f(y)]de <. (4.21)
le—y|<r

r

(That is, if we average the differen¢g(z) — f(y)| over a small interval of
radiusr aroundy, the result tends to zero as— 0.)



Lemma 4.21. Suppose thay € (0,1) is a Lebesgue point of an integrable
functionf. If « = ty and 3 = (1 — y) as above, then

/ F(y) = F(2)[0ns(x) dz — 0 (4.22)

ast — oo.

Proof. Fix somee > 0, and letp > 0 be such as asserted in Fact 4.20.
We denote the integral on the left-hand side of (4.22)bye decompose
I into a number of integrals which we can handle separately: First, set
[logy(pvt)] — 1 (i.e.,p/2 < 25/t < p). Next, letr_; := 0, r; := 21//t,
fori € {0...s}, andry 1 := oco. Finally, defined; := {z € (0,1) : r;_1 <

e —y| <r;for0<i<s+1}. Thenl =Iy+1I; + ...+ Is11, where

I —/ (5) = ()b () dor (4.23)

From (4.20) we infer that for sufficiently largethe quantity(xx) from Equa-
tion (4.19) is at mos€C'v/t (whereC and the meaning of “sufficiently large”
depend only ony). Hence,

CVt(l —r,_1)t, xe€A;,ic{0...s}, and
Peal) < { céil e et o =
Thus, by (4.21),
Iy < CV't : f(x) = f(y)ldz < Ce. (4.25)
RS
Similarly, fori € {1...s},
I, < CVt (1 - 22(1_1)) 2 < Ce2ie Y, (4.26)
t Vi
Finally,
L < CVE(1- —2) 201/l (4.27)

Sincep > 0 and||f||1 < oo, this last term tends to zero as— oo. In
particular, it will be less thae if ¢ is sufficiently large (in terms of, y and



g). Then, (4.25), (4.26), and (4.27) together yield

I<Ce (2 +3° 21'622“”> . (4.28)

=1

The seriesy" ., 9ie—2"" " converges. Therefore, sin€éédepends only on
y and since is arbitrarily small, we conclude thdt— 0 ast — oo. ]

since ) 6, (z) dz = 1, we have{ F) = [} £(2)60.5(z) d:r;‘ < M) -
f(z)|da,p(z) dz. Thus, it follows from Lemma 4.21 that for every Lebesgue
pointy of f, fol f(z)0q p(z)dx — f(y) ast — oo. For a geometric inter-

pretation of these approximating integrals, we will now replacand 5 by
suitable integers.

Lemma 4.22. For every Lebesgue point € (0,1) of f (in particular, for
almost every), there exist sequencég(v)),en and (k(v)),en Of positive

integers, such thatW,z(y) —y,j(v), k(v) — oo, and

Afummﬂmmm%f@

asSrv — o0.

Proof. Fix y. For eachv € N, choose a largentegert = ¢(v) such that
t(v) — oo and that the distance betweenr= ty and the nearest integer is less
thanv~*; let j = j(v) be that nearest integer, and define- k(v) :=¢ — j.
Clearly, lim - J = y.

We have to show thafo1 |f(x) = fW)dj0), ke (z)dr — 0 asy — oo. As
before, we decompose this integral into two parts, which we handlestepar
For this purpose, fix some parameter 0 such thaty—r > 0 andy +r < 1.
On the one hand, let = {x € (0,1) : |x — y| > r}. Then, for sufficiently
large v, we have|xr — jﬁ| > r/2 for all x € A. Therefore, by (4.19) and
(4.20),0, x(x) < (1 —r?/4)!(t + 1)v/t. This latter expression converges to
zero asy (and hence) tends to infinity. Therefore,

/Lf )18 4(x) diz — 0

asv — oo. On the other hand, consider the 8&tl)\ A = [y —r,y +r]. On
this compact interval, the ratio
M — al gt 2 i O‘(l _m)k—ﬁ

Sap(x) LK



convergesiniformlyto 1 asv — oo, by Stirling’s formula and by choice af,
B, j, andk. Hence, for large, §; x(x) < 20, g(z) forall z € [y — r,y + 7],
and so

y+r

y+r
[ 1@~ febiardr <2 [ 156 - f)laateds — 0

—r y—r

asv — oo, by Lemma 4.21. H

4.3 The Generalized Lower Bound Theorem

The UBT tells us the maximum number of facets of dmdimensional poly-
tope withn vertices. What about the minimum? For general polytopes, this
guestion is again answered by the UBT in its polar formDAdimensional

polytope withm facets can have at masg (m) = (m_(DQHW) + (m_LD;”)

[£5+] [ 25+ ]
vertices, and this bound is attained by the polar-to-cyclic polyt@pén).
Read the other way around, /apolytope withn vertices can have as few as
¢y’ (n) facets, where ;' (n) := min{m : cp(m) > n}, which for fixedD is
approximately the D /2|™ root of n.

The polar-to-cyclic polytopes are simple. What if we consider omtypéicial
polytopes? Here is a class of simplicial polytopes with few facets:

Stacked Polytopes. We consider polytopes that are obtained by glueing sim-
plices along facets, see Figure 4.3. More formallfp-polytopeP is astacked

Figure 4.3: Two stacking operations.



polytopeif there is a sequenc@,, ... ., P, of simplicial D-polytopes such that

P, is a D-simplex and eaclP;; arises as the convex hull @; U {q},
wheregq is a point that igust beyondsome facetF of P,;. Here, a poinyg is

just beyond a faceF of a polytopeQ if g € HT(F) andq € H~ (F’) for all
other facets?’ of Q, where we assume that each facet-defining hyperplane is
oriented in such a way that the polytope lies in the closed negativephats

For the polar polytope, this can be interpreted as follows: Glueinghplex

to a facetF of a simplicial polytopeP, corresponds to cutting off a vertexof
P* by a hyperplane that intersects only the edges incident tor instance,
by the hyperplane spanned by the midpoints of these edges, i.e., weeremo
from the vertex set oP and add thel midpoints as new vertices.

It is easy to analyze the face numbers of stacked polytopes by inductian on
If P, is obtained by stacking simplices, then

0= (2) oo (2)

Further, theh-vector of P, is
h(Ps) =(1,s,8,...,8,1),

l.e.,h;j(Ps) = 1forj =0,D andh;(P,) = sforl < j < D—1, of which we

can convince ourselves as follows: Let us interpret the glueing as cufting o
a vertexv from the polar polytope as described above. How does this change
the h-vector? We may assume that theector of the old polytope is defined

by a linear objective function that is maximized byand almost orthogonal

to the cutting hyperplane (but slightly tilted, so as to still beayenw.r.t. the

new vertices). Thus, by cutting off we remove one vertex with in-degrég

and by inserting the new vertices, we add one vertex of in-degree every

1 < j < D (the new vertices form &D — 1)-dimensional simplex, and have
one additional incoming edge each).

Note that for any simpliciaD-polytope?P,
hi(P) = fo(P) — D.

The following theorem implies that stacked polytopes simultaneousiynm
ize the number ok-faces, for every:, among simplicial polytopes of a given
dimension and with a prescribed number of vertices.

Theorem 4.23 (Generalized Lower Bound Theorem (GLBT) [73]).LetP
be a simplicialD-polytope. Then thé-vector of P satisfies

hj(P) = hj—1(P)



for1 <j<|[Z].

The theorem, which was conjectured by McMullen and Walkup [56], bears
its name because it generalizes the so-cdlleder Bound Theorem (LBT)
which was conjectured by Bckner in 1909 and proved by Barnette [13]. The
LBT states that for any simpliciaD-polytope, f; > D - fo — (“2"), which

can be rewritten aB, — h; > 0.

For the GLBT, the only known proofs in fact establish it as part of tile s
more powerful-Theoremwhich states that a certain set of combinatorial con-
ditions completely characterize the integer vectors that can appkaretors

of simplicial polytopes. These conditions were formulated by McMujte3]),

and their sufficiency was proved by Billera and Lee and [16], while their ne-
cessity was shown by Stanley [73], using sophisticated tools froebedic
geometry. Later, McMullen [54, 55] found a simpler and more geometric
proof of the necessity part, but even that proof is too involved toi$sudsed
here.

The name §-Theorem”, at any rate, refers to the name that the differences
h; — h;_1 have been given:

Definition 4.24 (g-vectors). The g-vectorg(P) = (go(P),- .-, 9 p/2)(P))
of a simplicial D-polytopeP is defined by

9; = 9;(P) := hj(P) — hj—1(P),

for0 < j < |D/2], where we sek_; := 0. Similarly, for a setS of n points
in R? and a poinb € RY that is generic w.r.tS, the g-vector is given by

g; = gj(S,0) := h;(S,0) — h;j_1(S,0),

for0 < j <|[(n—d-1)/2]. (Observe that it is sufficient to consider this
range ofj, by the Dehn-Sommerville relations.)

With this notation, the GLBT states that
9;(P) >0
for1 < j < |D/2], respectively
g;i(S,0) >0

for0<|[(n—d—1)/2].



By Theorem 4.12, we know that for any generic oriented fitlerougho,
9;(S,0) = hj(5,¢,0) = hy,_q_;(S5,¢, 0).

Thus, by invoking the GLBT for the polytope that arises as the Gadé alu
S w.r.t. o as origin, we see thadt; (S, ¢, 0) > h;,_,; (5, ¢,0) = "h;(S,¢,0)
for0 < j < (n—d—1)/2. Since this applies to any generic poinbn ¢, we
can interpret the GLBT “dynamically”, see [86], as saying that for siychke
can never leave morgfacets ofS than we have already entered as we move

along an oriented line, starting from a point outside@fv S.

Dual-to-stacked configurations. Here is what happens in the dual during a
stacking operation: Le§ be a set of: points inR? ando € conv S a generic
point. Pick pointg,, ..., p,; € S that span a-dimensional simplex which
containso in its interior. This corresponds to picking a facEtof the Gale
dual poytopeP (or a vertex ofP*). Consider a liftingS, ¢ of S, o such that the
d-simplexc spanned by the lifted poings, , . .., p,;,, become the “topmost”

facet, i.e., such that with suitable orientation is the unique — d)-facet ofS
which is entered by. In other words, if we consider the points of intersection
of ¢ with the d:simpliges spanngd by points frofhin the order in which they
appear alond, thenb := & N/ is the last such intersection. Léatbe the
second-to-last of these intersections, and pick two further péiatsdg on ¢
such that the pointa, 6, ¢, b appear in this order along Then the Gale dual

of SU{q} c R*! w.rt. 6 as origin is (combinatorially equivalent to) the
polytope obtained by glueing a simplex to the fagatf P. A dual-to-stacked
configuration is a sef that arises through a sequence of such operations from
a multiset of D + 1 points inR° (which is the Gale dual of &-simplex).

In the remainder of this section, we prove a continuous analogue GiliB4.
The proof will by no means be an independent one, but rather a straightfbr
derivation from the discrete version, using Lemma 4.22.

Definition 4.25 (g-functions). The g-functiong,, , of a continuous probabil-
ity measureu and a poinb in R? is defined, for a.e) < y < 1, by

1 d

gu,o(y) = ﬁ ) d_yhu,o(y)'

Thus, by Theorem 4.13, we have

GuoY) =N, 00Y) — by o o1 —y)

for any generic oriented linéthrougho.



Theorem 4.26 (Continuous Generalized Lower Bound Theorem (CGLBT)).
Theg-function of a continuous probability distributignand a pointo in R¢
satisfies

Guo(y) >0
fora.e.0 <y <1/2.

We will need the following simple but useful fact (see [84]).

Lemma 4.27 (Counting Permutations). SupposeX = (Xi,...,X,)Iis a
vector of independently and identically distributed random variableghvh
take values in some séf, and letA and B be measurable sets aftuples
(x;)_, of elements inV. Assume furthermore that there exist integers >

0 such that for every = (a;) € A and everyp = (b;) € B, there are exactly
| permutationsr such thata. := (a,(;)) € B, and exactlyn permutations
7’ for whichb,, € A.

Then
[-Pr[X € Al=m Pr|[X € B|.

Lemma 4.28. Consider a continuous probability distributigm, a point o,
and an oriented line througho in R%. Let Py, P,, Ps, . .., be independent
p-random points, and for nonnegative integerlet S,, := {P,..., P,}.
Then, for all integerg, £ > 0,

1 .
. J+k+1 .
/0 5j7]{;(x)h’u’£’o($)dx = W E[hj (Sj+k+d,€, O)]
d

and
j+k+1

1
/0 0j, k(1 = @)hi) 0 o(2)da = (R Elhy;(Sj+k+d, ¢, 0)],
d

where “E” denotes the expected value.

Proof. The transformation theorem for image measures yields

/0 2l (1 — x)* rto(r)de
— / : ./M(HJF([pl, o)) (M (1, ) dp(py) - - du(py),

Bé,o



whereB,, = {(p;)L, € R¥? : ¢ enterdpy,...,p4] beforeo}, and this
can be further rewritten as

/---/du(pd+j+k)---du(pd+1)du(pd)---du(p1)
Clo

whereC?'s is the set of all point tuplegp,)/** € R4*(@+7+k) such that

(pi)y € Bi, andpy,,....p4; € HT([P1s---,pg]) @ndpy,jiqs- .-,
Payjir €H™ ([pl, ...,Dpg])- This last integral, in turn, is just the probability

Pr[(P1,..., Piyjt+k) € CZ,’IZ]

whereP, ..., Pyt are independeni-random points.

It remains to observe that for a random permutatibof {1,...,d + j + k}
and a given point tuplép,) 7" € R4*(d+i+k) we have

;({ph s 7pd+j—|—k}7 g, O)
2<d+é+k) (j—;k‘)

Pr{(pr; ))d+]+k < CJ k] =

Thus, the first part of Lemma 4.28 follows by applying the CounBegmuta-
tions Lemma to each of the sets

CLm) = AP € CLL WPy Pays i) o) = m),

for integerm, and summing over alln. The second part is proved analog-
ously. ]

Proof of Theorem 4.26Let P, P,, Ps, ... be independent-random points.
For a Lebesgue pointof g with 0 < y < 1/2, Lemmas 4.22 and 4.28 provide
us with integer sequencég(v)),en and(k(v)),en such that

1
Juoly) = lim 85wy, k(w)(1 = T)gu,o(x)de

V—00

. Jjw)+k(v)+1
= T gy Bl S0 ol

Moreover,y < 1/2 and\% —y| < 1/v by construction, so for large,
we havej(v) < (j(v) + k(v) —1)/2, and therefore; (S () +kw), 0) > 0,

by the GLBT. It follows that the expectation is nonnegative, too, amth so

IS 9,,0(y). Since this holds for every Lebesgue point, the proof is complete.

O



4.4 The First Selection Lemma

In Section 4.1, we analyzed the numberdedimensional simplices spanned
by ann-point setS c R?, which contain a given generic poiot(in their
interior). This number is at most

|25 (2341 1/ n

(d+1> i (d+1> ~ od (d+1>'
In this section, we consider what happensSifirespectively, a continuous
probability distributionu) is given but we are allowed to choose For in-
stance, can we find a pointwhich is contained in (the interior of) “many”,
I.e., of a positive fraction of, all simplices? The assertion thatithaways
possible is known as thEirst Selection Lemmand was proved by Boros
and Riredi [21] for the planar case, and generalized to general dimension by
Barany [10]. In fact, Boros andiiedi actually showed that & is a so-called
centerpointof a setS of n points in general position in the plane, thens
contained in the interior of at Iea%t(g) S-triangles (and the consta@t 5
best possible). We ugevectors to show that centerpoints, a notion which we
review below, work in any dimension, and the same method, kvitlnctions
instead ofh-vectors, establishes a “Continuous First Selection Lemma”.

Depth and Centerpoints. If S C R! is a multiset ofn real numbers, then
any number € R! such that bothl[{p € S :p < c}| > n/2and|{p € S :

p > c}| > n/2,is called amedianof S. Centerpoints are a generalization of
this concept to higher dimensions.

Definition 4.29 (Depth). Let S be a finite set of: points inR?. We make
no general position assumptions (in fact, we can even allow multisets, |.
repetitions of the points). Theepth inS of a pointp € R? is defined as
the minimum number of points (with multiplicity) fron§ in any halfspace
containingp,

depthg(p) := min{|S N H|: Ha halfspacep € H}.

Similarly, for a (not necessarily continuous) probability disitibn 1, the
depth ofp in i is defined as

depth,,(p) := min{u(H) : Ha halfspacep € H}.

(At first sight, we should consider thefimum since there are infinitely many
halfspaces, but it is not hard to see that it is attained.)



Theorem 4.30 (Centerpoint Theorem).Let S be a (multi)set of points in
RY. Then there exits aenterpoinbf S, i.e. a pointc € R? (not necessarily
in S) such thatdepthg(c) > [ 735 1.

Similarly, for every probability distributiop in R?, there exists a centerpoint

cin the sense thatepth,, (c) > 5.

Observe that the fact% Is optimal (for instance, if is the vertex set of a
d-dimensional simplex, then there is no point of depth greater thantL $.r

Theorem 4.31 (First Selection Lemma).For any pair of integersl > 1 and
k > 0, there is a constani(d, k) > 0 such that the following holds:

1. If S is a set ofr points in general positioR¢ and if ¢ is any centerpoint
of S, then the numbef (S, c¢) of (d + 1 + k)-element subsets Sfthat
containc in the interior of their convex hull satisfies

f(S,0) > s(d, ) ( L k) ) (4.29)

2. Moreover, for any:-point setS C R? (not necessarily in general posi-
tion), there exists a centerpoiatof S such that

fi(S,¢) > s(d, k) - (d +T+ k) — O(n%thk), (4.30)

wheref;,(S,¢c) .= [{X C S:|X|=d+1+k,ccconvX}|ie.,we
also count subsets that contatron the boundary of their convex hull.

Theorem 4.32 (Continuous First Selection Lemma)lf ¢ is a centerpoint of
a continuous probability distributiop in R¢, then

fk(/L,C) > S(da k)?

with the same constantd, k) as in Theorem 4.31.

We first prove the continuous version of the First Selection Lemmaghwh
follows quite easily from the second part of the following lemma. diserete
version will require no new insights, but a bit more work to avibie difficulty
that a centerpoint need not be generic w¥.t.

Lemma 4.33. Theh-vector and the:-function with respect to a point attain
the maximum given by the (C)UBT up to the depth of the point:



1. LetS be a finite point set iR?, and leto be a generic point w.r.tS.
Suppose every hyperplane disjoint frénand containingo has at least
a points ofS on either side (in particular, this holdsdfepthg (o) = a).
Thenh,(S,0) = (79 for0 <j <a - 1.

2. If 11 is a continuous probability distribution and a point in R¢ with
depth,,(0) = a, thenh,, ,(y) = %yd for0 <y <a.

Proof. We prove the continuous case. The proof in the discrete setting is
perfectly analogous. Pick any directed lihe R througho. Observe that
for0 <y < a, we haveH} , ,(1 —y) = "Hy0,0(y) = 0, hencehy, , (1 —

y) = *hyu0(y) = 0 for a.e. suchy. It follows that

Iuo(Y) =1, 0.0(Y) = hpe(y) (4.31)

fora.e.0 < y < a. It remains to observe thatalso has depth at leagin the
orthogonal projectiof of 1 onto the orthogonal complemefit = R4, By
induction, we can conclude tha}, ,(y) = hgo(y) = gyd—l for0 <y < a,
and so, by Theorem 4.13 and (4.31),

d+1 o

d g
huoly) =d+1 i 3% dz = 5

for 0 <y < a, as desired. ]

Proof of the Continuous First Selection Lemniy the Dehn-Sommerville
Equation and (4.13),

1

1
L re) = / YR o()dy
d k Ly
2(5) 0

1/2
— /O (v" + (1= 9)") hpuoly)dy.

Thus, by the preceding lemma and the CGLBT tas depthu in i then

fr(u, 0)
(d+1)(“51")
a 1/2
> /O (" + (1 —y)*)y’dy +/ (" + (1 —y)*)a’dy
B qd+1+k N Ek:( 1)¢ qd+1+i . ad((l — )kt — ak—l—l)
d+1+k = 7 d+1+i k+1



Hence, ifo is a centerpoint ofi, i.e.,a > d%rl, then

fe(p,0) > s(d, k) = (4.32)
d+1+k\ [ (d+1)79F k i (kY (d4+1)"97? k1 _
( d+1 )( d+1+k +Zi:0(_1) (z) d+1+4 + (d+1)d+1k> > 0.

]

For instance, for the cage= 0, we see that the probability that the convex hull
of independent-random points”,, ..., P;.1 contains a given centerpoint of
1 is at least
d—1 2
@+ 07 " ([@d+ DIt

On the other hand, if: is a distribution for which no point has depth larger
than ﬁ (for instance, the uniform distribution on the uniond# 1 small
balls centered at the vertices of somidimensional simplex), then the second
part of the CUBT shows that the constatd, 0) in the First Selection Lemma
cannot be chosen larger than

12 S 1 d—1\*!
2(d+ 1 dqy — Ay | = = [1- [ =—=
(+)</0 y“dy /0 yy> Qd( <d+1> ,

which, for larged, is approximately(1 — e~2) /29 and still quite far from the
lower bound (4.33).

As mentioned above, in the discrete setting, we cannot apply our metitad ri
away, since a centerpoint of a point set need not be generic (i.e., need not be
disjoint from all convex hulls of less thah+ 1 points from.S), even if the

point set is in general position, see Figure 4.4.

However, we can always find a generic point that is almost a centerpoint:

(4.33)

Observation 4.34. Let ¢ be a centerpoint of a sef of n points in general
position inR?. Then any poinb sufficiently close ta: has depth at least
|71 —dinS.

Proof. By general position, any + 1 points from S span ad-dimensional
simplex, and each such simplex contains a maximal inscrbéthensional
ball. Letr = r(S) > 0 be the minimal radius of any such ball. Note that
if two parallel hyperplanes are at distance less thafrom each other, then
the closed strip between them contains at ldgsints from.S (else it would
contain a simplex and its inscribed ball). Assume thendhatat distance less



Figure 4.4: For this set of 4 points in the plane, the pointe S is the only
centerpoint.

than2r from ¢, and letH be any closed hyperplane through The parallel
translated, of H throughe is at distance less tham from H, hencgHtN.S| >

By N8| — [HF AR N8| > [45] - d. =

Proof of the First Selection Lemm&irst assume theff is in general position.
Let ¢ be a centerpoint of, and leto be a point sufficiently close te and
generic w.r.t.S. We also assume thatando are not strictly separated by any
hyperplane spanned by points fra#n Sincedepthg(o) = a > 77 — d, the
same argument as in the proof of the continuous version leads to

n—d—1—a

fisio) = T (@I TS )

= s(dk) <d+Z+ 1) — O™,

with the constant(d, k) as defined in (4.32). Moreover, by choiceafwe
have thatc € conv X for all X C S with o € conv X, hencef(S,c) >
fr(S,0). To conclude the proof for the case of general position, remains to
note that by the following lemma (taken from Chapter 9 of [5&]¥loes not

lie on the boundary ofonv X for more thanO(n9+*) subsetsX C S of
cardinalityd + 1 + k.

Lemma 4.35. If S is a set of» points in general position ilR?, then no point
c € R4 is contained in more thadn?—! hyperplanes spanned sy

If S = {py,...,p,} € R%is notin general position, then we choose point
sequencegp!),en, 1 < i < n, such thap! — p, asv — oo and that each



SY .= {pYy,...,pl} isin general position (for instance, we can take egich
independently uniformly at random from the open ball of radifs centered
atp,). Moreover, if we take a centerpoiat of eachS”, then since alt” are
contained in some big compact set, by passing to a suitable subsequence, if
necessary, we may assume that they converge to somedpde know that
eache” is contained in the convex hull of at leaSt = s(d, 0)kd(, 7 ;) —
O(n?**) subsets ofs” of cardinalityd + k + 1, i.e., there is some collection
IV of (d+ 1+ k)-element index sets C {1...n} such thai” € conv{p? :
i€ I} forall I € 7V, and|Z”| = N. Since there are only finitely many such
collections of index sets, one of them, callZit must appear a8 = 7" for
infinitely manyv. Therefore,c € conv{p, : i € I} forall I € Z, which
completes the proof of the First Selection Lemma. H



Chapter 5

Self-Embracing
Distributions

In the Educational Times of April, 1864, Question 1491, James JosdpésEer
[77] formulated what became known as k@ur-Point Problem(quoted after
Pfiefer [63]):

Show that he chance of four points forming the apices of a reentrant
quadrilateral isl /4 if they be taken at random in an indefinite
plane, butl /4 + ¢? + z2, wheree is a finite constant and a
variable quantity, if they be limited by an area of any magnitude
and of any form.

Here, “reentrant quadrilateral” means “not a convex quadrilateral”, i.e., four
points form a reentrant quadrilateral iff one of them is contained in theeo
hull of the other three.

Various solutions came in, some of them by well-known mathematiciads, an
most of them different (see [63] for a detailed account). To give but aefew
amples, for the case of four points taken at random in the entire plane yCayle
and Sylvester asserted that the probability in questioniyéswhile accord-

ing to DeMorgan, it wad /2. Woolhouse, in turn, suggested, that the answer
was35/1272, by computing the probability for points drawn at random from
a disk and letting the radius tend to infinity (the value is, in face, shhme

for all disks, independently of the radius, which makes the takingeofithit
particularly easy).

69



With the advantage of hindsight and the classes on twentieth centurglprob
ility and measure theory that we have taken, we know that the reasore&a th
discordant results is that in order to speak meaningfully about randorspo
we have to specify a probability distribution. (Moreover, theraasuniform
probability measure on the whole plane.)

In more rigorous terms, the Four-Point Problem concerns the pitdpat (1),

for a given probability distribution: in R?, that among four random points
I.i.d. ~ u, there is one is contained in the convex hull of the other three? Equi-
valently, we can consider the complementary probalilify.) := 1 — A(u)

that the four points are in convex position.

In order to avoid the nuisance of uncivil configurations like thdofeing,
we will assume that: is what we called continuous, i.e., that every line has
(-measure zero.

The Four-Point Problem is closely related to the question we inastign
the previous chapter. The simplest interesting instance of that gnesés:
What is the probability

fo(u, 0) = Prlo € conv{ Py, P, Ps}]

that a given poinb is contained in the convex hull of three random points
P, P, Psi.i.d. ~ u. If instead of a point specified in advance, we consider a
fourth independent random poifY, we arrive at the probability

Pr[P; € conv{ Py, P, P3}],
which is justs A(p).

When the dependence on the underlying distribution became evidevesga
reformulated his problem more carefully and asked: Which distributicins
imize, respectively maximiz&)(n)? Despite the phrase “an area of any mag-
nitude and any form” in the original formulation, investigationsidssed on
the case that is the uniform distribution on boundezbnvexset K C R?
(where we assume that the interiorf@fis nonempty, to ensure thatis con-
tinuous). For this class of distributions, the problem was corapletolved



by Blaschke [18] (see also [19)24, for a textbook exposition), who showed
that

~ 0.704. (5.1)

9 35
S <D <1—
5 SHW =1- 155

Both bounds are tight; the lower bound is attainedsifis a triangle, and the
upper bound iffK is an ellipse.

If one drops the convexity assumption theip , L(x) = 1; indeed[J(p) = 1

if 1 is the uniform distribution on the circle (or any other strictly eex Jordan
curve in the plane). But even if we exclude as too degenerate distnisutiat
are concentrated on sets without interior, and even if we further restrict o
attention to the case that is the uniform distribution on a bounded open
subsetl’ C R?, O(u) can be arbitrarily close to 1. This is the case, for
instance, iflV is a sufficiently thin open annulus, see [66].

The problem of determining the infimum

O, :=inf O(p),
n

for general continuous probability distributions, on the otherdhas much

more intricate. Unlike the probabilitie (14, o), for which exact bounds and

a complete characterization of the extreme cases are available even for the
generalization of the problem to an arbitrary number of random pointsyin an
dimension, the exact value af, is still unknown, and this chapter will be
mostly concerned with narrowing the gap of our knowledge.

The “continuous” Four-Point Problem can again be equivalently recastmster
of finite point sets, as was pointed out by Scheinerman and Wilf [66]: For
a finite setS of points in general position in the plane, IeX.S) denote
the number of 4-element subsets ®fthat are in convex position, and set
O(n) := min{O(S) : |S| = n}. Itis not hard to show that the sequence
O(n)/(}}) is non-decreasing (and obviously bounded by 1), and as we will

4
see below, its limit is precisely

H
., = lim 7(172)
n—oo (7)
In this discrete context, the problem is also known as that of detemgihie

rectilinear crossing numbesf complete graphs.

We review the concept of (rectilinear) crossing numbers of graphs, bame
sic facts and previously known bounds, and the connection to theFaot
Problem in Section 5.1, and from then on work mainly in the technicallgemo
convenient discrete setting.



In Section 5.2, we refine the techniques from Chapter 4 to derive a first low
bound for(l,. While this bound will be further improved in the subsequent
section, the proof technique and the combinatorial encoding of planat poi
sets by means of so-calleaircases of encountersight be of interest in
their own right.

In Section 5.3, we describe how to exprésgS) in terms of the numbers
e;(9) of j-edges of5S. Together with the lower bounds for the numbetgS)

of (< j)-edges ofS which we will derive in Chapter 6, we obtain a lower
bound which comes quite close to the known upper bounds.

This technique also works for a generalization (one among several) Bbtire
Point Problem to a larger number of points as well as to higher dimession
which we discuss in Section 5.4.

5.1 Crossing Numbers

Consider an abstract grajgh = (V, E). A drawingof G is a mapping that
assigns to each vertaxc V a pointp, € R?, and to every edge € F a
Jordan arcp. (i.e., the image of the closed unit interval under a continuous
injective map) such that the following conditions are satisfied:

1. Different vertices are mapped to different poinis,# p,, if u # v.

2. The arcy,. associated with an edge= {u,v} hasp, andp, as its
endpoints and contains g, w € V, in its relative interior. Thus, the
following two situations are forbidden:

Y{u,v}

3. The relative interiors of any two arcs only intersect in a finite nunober
points. Such a point of intersection is calledrassingin the drawing.

When speaking about tmeimber of crossings a given drawing, we count the
crossings with multiplicity: if a crossing is contained in the relative interiors
of s arcs, then itis counte(i;) times. Thecrossing numbeof the graphG,
denoted byr(G), is the minimum number of crossings in any drawing-of



It is usually assumed that in a drawing, no three arcs cross in a comnrn po
that there are no crossings between arcs with a common endpoint, and that
any two arcs cross in at most one point. These are sensible assumgtiems w
considering the crossing number, since they can be ensured by localgaodifi
tions that do not increase the number of crossings, see Figure 5.Weanil

also assume this in what follows. (We note that things become mdtéesu
when one considers the so-callggirwise crossing numbewxhich counts the
number of pairs of arcs that cross.)

Figure 5.1: Local modifications that do not increase the number of crossings.

If all the arcs in a drawing are line segments then the drawing is caltitin-
ear or straight-edgeand therectilinear crossing numbetr(G) of a graphG

is defined as the minimum number of crossings in any straight-edgendraw
of G.

It is a well-known theorem (proved by Steinitz [74], and independenyly
Wagner [83], and by &ry [38]) that if a graph= is planar, i.e., cr(G) = 0,
then there exists also a crossing-free straight-edge drawiigicé.,cr(G) =

0. Bienstock and Dean [15] showed that the relaofz) = cr(G) holds
more generally whenever(G) < 3. On the other hand, they also exhibited
an infinite family of graphs whose crossing number is 4 but whosdirser
crossing number is arbitrarily large. Thuscif(G) > 4, thenTr(G) cannot
even be bounded in terms af(G).

Another example that matters become more complicated once we leave the
realm of planar graphs behind is the following: While planarity ofapyrcan

be tested in linear time (see Hopcroft and Tarjan [45]), &i®-complete to
decide whetheer(G) < k for a given graphG and integetk (see Garey and
Johnson [40]). The hardness part of the proof carries over to theimeatil
crossing number, but it appears to be still unknown whether the grobf
determining the latter is i P.



These computational hardness results give some indication that tisengros
number and its rectilinear variant are intricate and subtle graph paramters. A
striking symptom of just how much so is that neither of them is fulhger-

stood even for specific and very basic classes of examples, such as complete
graphs or complete bipartite graphs, which we will discuss below.

We refrain from attempting to survey the numerous applications whizéser
ing numbers have found in discrete and computational geometry. Instead,
good starting points for exploring, we recommend the survey astic} Pach
[61] and by Pach anddth [62], Chapter 4 in Matdiek’s book [51], and the
online bibliography by Vrto [81].

Tur an’s Brick Factory Problem. The question of determining the cross-

ing number of complete bipartite graphs, posed byafyactually marks the
appearance of the notion of crossing numbers on the mathematical stage. In
a letter dated February, 1968, aarwrote about his experience in a labour
camp during the Second World War (quoted after Guy [42]):

“In 1944 our labour combattation had the extreme luck to work—
thanks to some very rich comrades—in a brick factory near Bud-
apest. Our work was to bring out bricks from the ovens where
they were made and carry them on small vehicles which run on
rails in some of several open stores which happened to be empty.
Since one could never be sure which store will be available, each
oven was connected by rail with each store. Since we had to settle
a fixed amount of loaded cars daily it was in our interest to finish
it as soon as possible. After being loaded in the (rather warm)
ovens the vehicles run smoothly with not much effort; the only
trouble arose at the crossing of two rails. Here the cars jumped
out, the bricks fell down; a lot of extra work and loss of time
arose. Having this experience a number of times it occurred to
me why on earth did they build the rail system so uneconomic-
ally; minimizing the number of crossings the production could be
made much more economical.”

Thus, the problem of determining the crossing number of the comipiledet-
ite graphk,, ,,, (the minimum number of crossings needed to connestens
to m stores) became known &aran’s Brick Factory Problem



Solutions were submitted by Zarankiewicz [89, 90] and Urbanik [Bx3th
asserted that

m, . m-—1 n—1

QHTH§H 5 I (5.2)

For a while, this was called Zarankiewicz’'s Theorem, but then it was found
that the proof of the lower bound contained a fatal fallacy, and (5.2pw n
referred to aZarankiewicz’s Conjecturesee Guy’s survey [42] for a detailed
account. We note that the conjecture has been verifieahfo{m, n} < 6 by
Kleitman [48] and form = 7,n < 10 by Woodall [88].

A

Figure 5.2: The upper bound construction for( X, ,,,) andTr(K, ., ).

(?) Cr(Kn,m) = \_

While the lower bound part of (5.2) remains unresolved, the construttiat
establishes the upper bound is very simple and produces even a rectilinear
drawing, see Figure 5.2: Plaee points on ther-axis, |m /2] of them to the

left and [m /2] of them to the right of the origin, and points on they-axis,

|n/2| below and[n /2] above the origin. Connect every point on th@xis

to every point on theg-axis by a straight segment.

Cylindrical Drawings. The crossing number of complete bipartite graphs
Is also relevant for the crossing number of complete graphs, the seassd cl
of examples mentioned above. We begin the discussion of this connection
with the description of so-calledylindrical drawingsof K, ,,,: These are
drawings where then vertices of one vertex class are placed on a cigle

then vertices of the other class lie on a cirelg properly enclosing’y, and

each vertex from the inner circtg, is joined to every vertex on the outer circle

by an arc whose relative interior lies in the open annulus boundéd, land



C1. We can interpret this as a drawing &f, ,,, on the surface of a cylindef,
with m vertices on the bottom “rimC, andn vertices on the top “rimC}.
Alternatively, we can picture’ as the strifR x [0, 1] modulo the equivalence
relation(z,y) ~ (z + k,y) for all £ € Z, with Cy = [0,1] x {0}/ ~ and
Cy =1[0,1] x {1}/ ~.

We describe a particular construction of that kind, due to Anthoni atitl
reproduced in Guy, Jenkyns, and Schaer [44]: Assume for simplicityrthat
n. For0 <i,57 <n-—1,letp, := (0,i/n) € Cy andq; := (1,i/n) € C1,
and lety; ; be the ardp, + ¢ - (1, %) :0 <t <1}/ ~onZ,which joinsp,
andq; ; mod n» S€€ Figure 5.3.

C1 q,

q,

Figure 5.3: Two ways of picturing Hill's construction.

Let us callj the “slope” of+; ;. Two arcs with the same slope do not cross,
SO we can blame each crossing in the drawing on the line with larger slope.
Thus,~; ; will be blamed precisely for the crossings with the afgs with

i <a<a+b<i+j. Therearg — 1 of these withh = 0, and(’,") of them

with b > 0. Thus, we obtain a total of

n$<<’;1)+z1> :én2(n—1)(n—2) (5.3)

crossings. A similar construction fdt,, .1 results inz(n + 1)n(n — 1)
crossings, see [44]. We note that (5.3) is optimal for for cylicelrdrawings
of K,, ,,, as proved by Richter and Thomassen [64].

Complete Graphs. Given a cylindrical drawing o¥,, ,,,, we can complete
it to a drawing ofK,, ., by inserting the missing edges in the disks bounded



by Cy andCy, at the cost of ;') + (';) additional crossings. (The drawing on
the cylinder can be transformed into a drawing in the plane by figgepting
centrally on a circumscribed sphere, and then using stereographic projection

If this is applied toK'z =, n even, with the cylindrical drawings described
above, then the resulting drawing contajhs:.(n — 2)?(n — 4) crossings. For
oddn, we first drawk,,, 1 in the above fashion and then remove an arbitrary
vertex and all incident edges. The bounds obtained for both parity cases can
be summarized as

1ln n—-1 n—2 n-—3
Cf(Kn)Szlgﬂ 5 Il 5 Il 5 ] (5.4)

This construction was described by B&k and Koman [20] (who also gave
another construction with the same number of crossings) and indepgndent
by Guy [42]. Moon [57] gave another very simple construction fawings

of complete graphs, which gives the same asymptotic upper bound 6y, )

as (5.4): He showed that if we choas@oints independently and uniformly at
random from the unit sphere and join any two of them by a minor greatcircl
arc, then the expected number of crossings in the resulting drawg'@)s

It is conjectured that this is optimal, and that moreover, (5.4) givedrtiee
value ofcr(K,).

In asymptotic form, this would actually follow from Zarankiewicz'sngec-

ture (5.2), as first pointed out by Kainen [46]. The reasoning is E&y@gXx-
ample of a basic double counting argument about crossing numbersd€ons

an optimal drawing of,,,. There are(%?) ordered partitions of the vertex

set into two color classes of equal size, and each of these partitions induces
an ordered copy aof(,, ,,, drawn in the plane. Each of these copies contains at
leastcr (K, ) crossings.

How often do we count a given crossing? By our assumption that any two
edges cross at most once, once the drawing is prescribed, we can identify
a crossing with the set of 4 endpoints of the crossing edges. Givea thes
endpoints, there are 4 possibilities of assigning two of them tacolw class

and two to the other such that the crossing survives: for each edge, wohave
choose one endpoint in the first color class. For the remaining verticag,
are(Q”_4) ways to distribute them into the two color classes. Altogether, there

n—2
are4(2”_4) copies ofK,, ,, that contain the given crossing. Hence,

n—2




and by dividing both sides bgﬁj), we obtain

CI‘(KQn)

GIRERT: )
Similar arguments show that
cr(Kpy1) _ cr(Ky)
CORES o0
and
Cr(K:jll”;“) > Cr(ff”z’”). (5.7)
("3) (2)

Thus, the sequencesin (5.6) and (5.7) are nondecreasing, and obviowstiell
from above by 1. Hence, they converge to certain limitsandcr, ., re-
spectively, which determine the respective crossing numbers up to tower-
terms. Moreover, by (5.5),

CT'x Z §CI'*’*

If Zarankiewicz’s conjecture is correct, it implies that .. = 1/4, and hence
cr, = 3/8. In particular, this would mean that the above-mentioned construc-
tions give asymptotically optimal drawings 6f,,.

Note, however, that neither of these constructions produces rectilirear dr
ings. The above double-counting arguments carry over verbatim to meetili
drawings, so the analogues of (5.5), (5.6), and (5.7) for the irezif crossing
number hold as well. We denote the corresponding limits of the reslced
rectilinear crossing number of complete graphs and complete bipartiteggrap
by cr,. andcr, ., respectively. As we will see belowr, = L., and we will
show in Section 5.3 that is strictly larger thap8 = 0.375. There appears
to be no manifest conjecture as to what the true valuerpimight be, or
what might an optimal straight-edge drawing/of, might look like. The best
construction to date is due to Aichholzer, Aurenhammer, and Krasser [3] and
yields (00, =)cr. < 0.38074.

Observe that a rectilinear drawing &f,, is completely determined by the
placement of its vertices, and that the third condition for drawingat (o

arcs share at most a finite number of points) implies that the respiiimg set

Is in general position. Moreover, among the 6 edges spanned by any 4-element
subset of the vertices, there is precisely one crossing (between thealiggbn

the corresponding 4 points are in convex position, and no crostegwase,

see Figure 5.4.



Figure 5.4: One crossing or no crossing.

Thus, with the notation introduced at the beginning of this chapterhave
Cr(K,,) equals the minimum numbéi(n) of convex 4-element subsets in any
set ofn points in general position in the plane.

The Connection to the Four Point Problem. As Scheinerman and Wilf ob-
served, the limi€r, = lim,, o, TH(K,,)/ () = lim, . O(n)/(;) coincides
with the infimum for Sylvester’s Four-Point Problem,

O, =inf0(p) = lim Dgn)
Z oo (3)

(5.8)

To see why this is, consider first an arbitrary continuous probalaigiribu-
tion p, andn points Py, ..., P, i.i.d. ~ u. Clearly,

n

0)((y) = BB 2] 2 OO,

and thereforelJ(x) > O(n)/(’,) for all n, which shows the*” part of (5.8).

For the other direction, consider anpoint setS which achieves](n) =
[J(.5). For each poinp € S, let B(p) be a small disk of radius > 0 centered
atp, and letu,, be the uniform distribution on the union of these disks. If we
take four random point#;, P, P3, P, i.i.d. ~ u, then the probability that
some two of them lie in the same digkp) is at mos6 /n. On the other hand,

if the P;’s lie in pairwise distinct disks, sa¥;, € B(p,), 1 <i < 4, andifeis
chosen sufficiently small, then tl#&’s are in convex position if and only if the
p,;’s are. For every ordered 4-element subget, p,, p;,p,} C S, we have
Pr[P; € B(p;) for 1 <i < 4] = 1/n%, and there aré!-[J(S) = 24J(n) such
ordered 4-element subsets in convex position. Hence we obtain a sequence of
probability distributionsg,, with

2400(n) 6
: d

D(Mn) <

n n



for all n, and lettingn — oo, we obtain the ¥” part of (5.8).

Small Cases, and Constructions of Rectilinear Drawings. Table 5.1 sum-
marizes what is known about( K ,,) andJ(n) = Tr(K,,) for small values of
n (see [43, 71, 22, 3)]).

n | <4567 8|9 10| 11 12

er(K,) | O |1[3]9|18[36]|60]| <102 | <153
Omn) | 0 |1]3]9]19]36]|62] 102 | 153

Table 5.1: Crossing numbers for complete graphs on few vertices.

By monotonicity of the sequendg(n)/(’;), every lower bound fofl(ng)
(respectivelycr( K, )) for some small integet, yields a lower bound farl,
(respectivelycr,). The best estimate obtained in this fashion is (confer [3])

1. > 0.31151.

As mentioned above, the best upper bound to date is due to Aichholzex, Aur
nhammer, and Krasser [3]. The construction is based on a computer-generated
rectilinear drawing ofi3¢ with few crossings. In this drawing, every vertex

of K¢ is replaced by a tiny cloud of points arranged along a convex curve
very close to a halving line. Upon doing the calculations, this yields

[, < 0.38074.

We conclude this section by mentioning a construction due to Sindér [7
While it gives a worse upper bound fat, than the construction of Aich-
holzer, Aurenhammer, and Krasser, Singer’s construction is somewhat mor
“conceptual”’. Essentially the same construction was independently found by
Edelsbrunner and Welzl [36] to give a lower boundXif, log n) for the max-
imum number of halving edges of a setropoints in the plane.

Example 5.1 (The Tripod Construction). Suppose we are given a rectilinear
drawing of K,, with few crossings, i.e., a sétC R? in general position with

few convex quadrilaterals. By applying a suitable affine transformati@n

may assume thaf is very “flat”, i.e., that the slopes of all lines spanned by

S are less than some small> 0 in absolute value. Now take three copies
S1, S9, and S3 of S, the second and the third copy rotated 129 and 240
degrees, respectively, and place them on three rays emanating from the origin



Figure 5.5: Singer’s construction.

such that every line spanned Sy has one of the other two copies on either
side, see Figure 5.5



This yields a set’ of 3n points in general position, and systematic counting

shows that
n n 2
0(S") = 3-0(S) +3n<3> +3<2> )

By applying this recursively, one obtaibs < 5/13 ~ 0.38462.

For further refinements of this construction, which yield < 6467/16848 ~
0.38384, see Brodsky, Durocher, and Gethner [23].

5.2 Staircases of Encounters

In this section, we develop a new approach towards a lower bound.for
It is based on the method @fvectors described in Chapter 4, with suitable
refinements. The aim is to show the following:

Theorem 5.2.
O, > (53 + 5V13)/216 > 0.3288

A Warm-up. We first outline how to obtain a lower bound of
O, >1/4

by a straightforward application of the Upper Bound Theorem 4.15.

We recall the conclusions of the theorem in the special context we are eonsid
ering. LetS be a set of: points in general position iR?. For a pointp € S,
the number

fo(S\p,p) ={X CS\p:|X|=3,p€convX}

(where S\ p” is short for “S'\ {p}”) can be expressed in terms of thevector
of p relative toS \ p,

n—4

fo(S\p) =Y h;(S\p,p). (5.9)

3=0

The Upper Bound Theorem tells us that the entries of/thector can be
bounded in terms of the depth pfin S\ p: if there is a line/ throughp such
that one of the open halfplanes defined bgontains onlya < |n/2| — 2
points fromS \ p, then for0 < j < [n/2] — 2,

hi(S\p.p) < (j‘;Q) - (j ‘;”2). (5.10)



Furthermore, the Dehn-Sommerville Equations read

hi(S\p,p) = hn_a—j(S\ p,p). (5.11)
Combining (5.9), (5.10), and (5.11), we obtain

s\ < L (08 -05) = S (0 - 0e)

= () = (R () - (31)

Observe that this last expression is monotonically increasing ifihus, in
order to boundfy(S \ p, p), it suffices to bound.

Up to a suitable rotation, we may assume that no two pointstafve the same
xz-coordinate. Thus, if we order the pointsSrasp,, py, . . ., p,,_; according
to theirz-coordinate, the vertical line through, hasa points on one side and
n — 1 — a points on the other.

Now we use this to estimate the number of concave (i.e., non-convex) 4
element subsets ¢f, which we can write as

A(S) = ) fo(S\p.p)

peES
L5+
< n((Ln/iHl) +(fné21)) _ a;o ((Ln/2J3+1—a)+(fn/?—a>)
|—nT_3] [In/2]4+1—a [n/2]—a
= 3 (R 4 ()

a=0
= () + () =2+ (M)

- 40+ 0.

Since this holds for every-point setS, we obtaind(n) > 1 (%) — O(n?),
i.e.,0, > 1/4, as advertised.

We note that both steps in the above reasoning are essentially tightheOn
one hand, given, it is not difficult (details omitted) to construct a se¢f n
points in general position and a pojte S such that

1. there is a line through that contains: points on one side, and

2. h;(S\ p,p) attains the upper bound (5.10) for alK n/2 — 2.



On the other hand, here is a recursive construction of 8;sef 2k + 3 points

in general position that contains 3 points of depth 0 and 2 points ofdefdr

1 <a < k: LetS, be the vertex set of an arbitrary triangle which contains the
origin 0 in its interior. Assume now that we have constructgd that0 does
not lie on any line spanned by two points 8f and that any line throug
contains at leagt + 1 points fromSy on either side. Choose any line through
0 which avoidsS.. This line determines two open halfplanes, one of which
contains exactly: + 1 points of S;. For a suitably chosea > 0, let p,p’

be two new points in that halfplane such thdtp’ is an isosceles triangle of
heights? whose basep’ is parallel to the chosen line and of lengthlt is
easy to see that for sufficiently small.Sy;1 := Sx U {p,p’} has again the
desired properties.

We remark that it is not hard to show that these “shallow” sets of 2k + 3
points contair (';) + O(n?) convex quadrilaterals.

“Global” versus “local’. We now refine our analysis. The basic idea is to
exploit a certain trade-off, to be made precise below, between the “global”
number of all crossings on the one hand and the “local” number of crassing
involving a specific point on the other hand. The main technical todlbil

a slightly different encoding of thg-vector of a point by means of so-called
“staircases of encounters.”

Let P be a set ofn points in general position in the plane. Rore P, we
define

O(p, P\ p) = |{T € (")P) : TUpisinconvex positiod.  (5.12)

As a first step, observe that we can expfag#) as the sum

0(P) = = 3" 0. P\ p). (5.13)

We now introduce the key ingredient of our proof of Theorem 5.2,ctvhi
combines “global” and “local” considerations:

Definition 5.3. Let S be a set oz + 1 points in general position in the Euc-
lidean plane, and lej € S We define

Ag, S\ q) = maX{D(S\q) D(q’S\Q)}. (5.14)

@ 6



Moreover, let
A = mi A
(n) == minmaxA(q, S\ g),
where the minimum is taken over all s&t®f n 4 1 points in general position
and the maximum over adl € S. Similarly,
X (n) = mgn max A(v, S\ v),

v

with the minimum taken over all sefs of n 4+ 1 points in general position,

and the maximum over allerticesv of conv S (“x” for “extreme point”).

Lemma 5.4.
O, = liminf A*(n) = liminf A(n).

n—oo n—oo

Proof. Observe that for alh,

O(n) < X(n) < A(n).

It follows that[D, < liminf A*(n) < liminf A(n) =: ¢, and it suffices to
show that conversely; < [J,. To this end, fixc > 0, and choose,; € N
such thatA(n) > ¢ — e for all n > ny.

Claim A.SupposéS| = n + 1 > ng. Then there exists a poipt € S such
that(p, S\ p) > (¢ —¢) ("gl)

To see this, leg € S suchthat\(g, S\q) > c—e. If O(q, S\q) > (c—¢)(5),
thengq is the point we are looking for. Otherwise(S \ g) > (¢ —¢)(}), by
definition of A(q, S \ q). Thus, by applying (5.13) to the sét= S\ q, we
see that there is somec S\ g for which

4

D@¢ﬂ&nqnz;fmS\mzmc—@(”‘l)

3

Sincel(p, S \ p) > O(p, S\ {p, q}), this proves Claim A.

Claim B.For alln > ny,

O = =) (" 77"

We proceed by induction om The claim is clearly true fot = ny. Moreover,
if n > ng, let P be a set ok points achievindgl(P) = [(n). By Claim A,
there is some point € P with O(p, P \ p) > (c —¢)("57). By induction,



O(P\ p) > (c—e)(" % "™). Together with the quadrilaterals in whigh

participates, this yields

awze-a (") (")) zema (")

quadrilaterals inP, which proves Claim B.

Finally, sincelim,, . ("~%, ") /(%) = 1, it follows that(, > ¢ — ¢, and

because this holds for all> 0, the proof is complete. 1

Staircases of Encounters. In view of Lemma 5.4, our goal is to estimate
A(n) or X(n). We focus on the latter, and now develop the necessary tools.

Let S be a set of, + 1 points in general position in the plane. Fix a vertex
of the convex hull ofS, and setP = S\ v.

Consider a poinp € P, and let/ be the line througlp andwv, oriented from
p towardsv. Let L be the set of points aP that lie to the left o/, and R the
set of those that lie to the right.

Fork :=|L|, the grid

B(p) = B(v,P,p) :={0... k— 1} x {0...n—2 — k)

will be referred to as theoxof p. We “fill” this box, i.e. we define a subset
A(p) C B(p), in the following fashion: Enumerate the points inin the
orderq,,q,,--.,q5,_1 INn Which they are first encountered when we rotate
clockwise, and set

A(p) == A, P,p) ={(a,b) € B(v, P,p) : b < |H (q,,p)NR[}. (5.15)

Here,H™ (q, p) denotes the open halfspace to the right of the oriented line
from g throughp. See also Figure 5.6. We cal(p) the staircase of encoun-
tersof p.

We proceed to relate these staircases of encounters to the object of our invest-
igation, A (v, P). Forp € P and0 < i <n — 2, let§;(p) be the number of
entries ofA(p) on theith diagonal, i.e.

di(p) = 6;(v, P,p) .= |{(a,b) € A(v,P,p) :a+b=1i}|. (5.16)

The upcoming Lemma 5.5 and Corollary 5.7 expr&sa, P) in terms of the
numbers;(p). The first describes the connection of hép)’s with (v, P).
Note that forp € P, the sum} . d;(p) counts the number of paifsz, r} C
P\ p such thaip € conv{q, r,v}. Therefore:



Figure 5.6: Staircase of Encounters.

Lemma 5.5. The number of triple§” C P that form a convex quadrilateral

with v is
O(v, P) = (g) SN s (5.17)

peEP ¢

In order to relate thé;(p)’s to LI(P), we have to work a little more. Recall
that forp € P, fo(p, P \ p) denotes the number of triplds C P \ p that
containp in their convex hull. Observe that

O(P) = (Z) ~ 5" folp. P\ p). (5.18)
peP

Lemma 5.6. For p € P, we can express thgvector (see Definition 4.24) of
p relative toP \ p as

g@(P\p) = 57;('0, P,p) — (5n_3_7;('v, P,p) (519)



Corollary 5.7. Lemma 5.6 implies

folp, P\ p) =) (n—3—2i)5(p).

1

Thus, by (5.18), we get

O(P) = (Z) . z}; z_:(n —3—20)8:(p). (5.20)

1=0

Proof of Lemma 5.6Let ¢ be the line throughp andv, oriented fromp to-
wardswv, and let/;, and/z be two parallel translates éfto the left and right
of ¢, respectively. As in the definition of (p), we write L for the set of points
from P \ p that lie to the left of¢, and R for the set of those to the right.

The §;(p)’'s only depend on the circular ordering of the rays that emanate
from p and pass through the points Bf\ p. The same holds for the numbers
fe(P\p) ={X C P\p: |X|=k+3,p € conv X}, which we know
determine thg-vector ofp relative toP \ p. Thus, by sliding the points along
these rays if necessary, we may assume that all the poidtdienon ¢;, and

all points fromR lie on/p, see Figure 5.7.

Figure 5.7: Numberings of. and R.

Consider the points i and R in the order in which they appear along the
lines?¢;, and/g, respectivelyL = {qo,...,qx—1tandR = {rg, ..., "p_r—1}-
For the points inL, this agrees with the ordering in the definition Xx(p).)
Then each paifa, b) € B(p) corresponds to the paig,, ) € L x R.



The crucial observation is that since we assume khap is concentrated on
the two lines/;, and/g, the oriented edgly,, s is a(a + b)-edge ofP \ p
that is entered by. Moreover, it is entered beforg (see Definition 4.10)
iff (a,b) € A(p). Thereforeg; (v, P, p) counts the the number éfedges of
P\ pthat are entered b§beforep. In other words,

57}(’07P7p> = h*(P\p7 fap)a
from which the lemma follows immediately. [

Let us rewrite these conclusions as follows: Define

['(v, P) := min{l' (v, P),'2(v, P)},

where B
I (v, P) := 2ui=o (M3~ 27’1)1 2_pep 9i(v, P,p)
(1)
and 3
n_— 51' v, P,
Py (v, P) i 22i=0 2per (v, PiP)

(5)
With this notation, (5.17) and (5.20) just state that
A(v,P)=1—-T(v, P). (5.21)

A Lower Bound for General Staircases. A staircaséas a set\ C Ny x Ny
of pairs of nonnegative integers such tliatb) € A and0 < o’ < a and
0<bV <bimply (a',b") € \.
Let us look back at what we did so far: In order to analyd®, P), we
associated a certain staircas@) = (v, P, p) with every pointp € P.
Then we counted the number of entries on itiediagonal of each of these
staircases, and, in (5.21), expresagd, P) in terms of the resulting numbers
0:(p)-
Let us now forget about the geometric context. For a stairdase integet,
let

di(A) :=={(a,b) e X:a+b=1i}.

Forl <k <n-3,letg, :={0...k} x {0...n — 3 — k}, and consider
a sequenc@ = (Aq,...,\,_3) of staircases\, C f;. Taking (5.21) as a
starting point, we define

Ti(N) = >_i(n—3— 31) 2k 9i(Ak) (5.22)

(3) |




To(A) = 2 Z(’;;)(SM’“), (5.23)

and
L'(A) :=min {1 (A),T2(A)}. (5.24)

(Observe tha(’;)T'2(X) = >, |Ax].) We proceed to prove an upper bound
for I'(X), which, by (5.21) and by Lemma 5.4, yields a lower boundTor

Observe that there is a certain trade-off betwEBemandI's: On the one hand,

I's is maximized if\, = G, for all £ (“all boxes are full”). On the other hand,

it is not hard to see (but we need not worry about that) Ihats maximized

if \p = {(a,b) € Bk :a+b < (n—3)/2} (“all boxes are filled up to the
middle diagonal”). Roughly speaking, we obtain the upper bountl fan by
finding the “equilibrium” ofl'; andI's.

As a first step, we observe that we can restrict our attention to staircaaes of
special shape. Let us say that results fromfilling the box3;, up to thejth
diagonalif, for all (a,b) € G,

a+b<j= (a,b) €N, and a+b>j= (a,b) & .

(Observe that we do not say anything about the elements, @n the jth
diagonal.)

Lemma 5.8. Suppose thab/ = (3;)I'2(X) = >, >, 6:(Ax) is prescribed.
Under this constraintl’; (A\) is maximized iff eachy is obtained by filling3y
up to thejth diagonal, for a certairy = j(M).

Proof. Let j be maximal with the property that ZK? 0;(Br) < M. Sup-
pose thata, b) € i\ A\ and(d’, V') € Ay, for somek, &/, such that+b < j
anda’ + b > j. Then by removinda’, b’) from Ay, and by addinda, b) to

A, we increasd’; while leavingl'y invariant. The remaining elements of the
staircases are distributed in an arbitrary fashion orytheliagonals. O

Thus, we may assume that al}’s are of this kind. The question remains, up
to which diagonal thes,’s are filled.

Lemma5.9. Letj = |a(n — 3)], for a € [0, 1], and suppose that each;, is
obtained by fillingG, up to thejth diagonal. Then,

[1(A) =120°(1 = 2a+ a?) + O(1/n) (5.25)
= Fi(o)




and

(X)) = a?(3 — 2a) + O(1/n). (5.26)
=: FQ(OL)

The proof of Lemma 5.9 consists of straightforward calculationscivine
defer to the end of this section.

Having the preceding lemma at our disposal, it is now easy to provestheed
estimate fod’(\): For A as in Lemma 5.9, we have

['(A) = min{ F1(a), Fa(a)} + o(1).

Moreover, since we are interested in the limit behavionas: oo, we can
ignore theo(1) error term. Thus, since we want to prove an upper bound for
', the question remains whiehmaximizesmin{ F; («), F>(a) }.

Let us first consider the intervé, 1]: Here,F} is a monotonically decreasing
function whileF3; is increasing. Moreover; (1/2) =3/4 > 1/2 = F»(1/2)
andFi(1) = 0 <1 = Fy(1), somax,¢[1/2,1] min{ F1 (a), F>(a)} is attained
at somex for which Fy (o) = F»(a). The roots ofF; (o) — Fy(a) = 9a? —
2203 + 12a* are

1

0,0
Y 712

(11 +V/13), %(11 —/13).

Thus, the root we are looking for is* = (11 — 1/13)/12. Moreover, by
considering first and second derivativesDatwe see thatt, > F, on the
interval[0, o*]. Therefore, sincé’ is increasinga™ maximizesmin{ £y, Fs}

over the whole intervdD, 1], andF; (a*) = Fy(a*) = (163—51/13)/216) <

0.6712. We have proved:

Theorem 5.10. For every sequencd = (Aq,...,\,_3 Of staircases\, C
{0...k} x{0...n—3 -k}, we have

T'(A) < (163 — 5V/13)/216) + O(1/n).

Corollary 5.11. In particular, for every seb of n 4 1 points in general posi-
tion and for any vertex of conv(S),

A(v, S\ v) > (534 5V13)/216 4+ O(1/n).

By Lemma 5.4, this also establishes Theorem 5.2.



Proof of Lemma 5.9By symmetry, we havé;(8x) = 9;(8,—3—x) forall ¢, k.
Furthermore, fok < (n — 3)/2,

1+ 1 if 0<i<k,
0i(Bk) =4 k+1 if k<i<n-3-k,
n—2—1 If n—-3—-k<i<n-3.

By assumptiong;(Ax) = 0;(0x) fori < j andd;(Ax) = 0 fori > j. There-
fore, for0 < i < min{yj, (n — 3)/2},

n—3 (n—3)/2
S aw) = 20y di(\) + O(n)
k=0 k=0
[(n—3)/2]
- 2(Z<k+1)+ D (i+1))+0(n)
k<1 k=1

— (-3)(i+1) - 2(“2‘1) + O(n).

(Here, theO(n) error term covers the fact that when- 3 is even, the middle
term 6;(A(,—3)/2) appears once too often. This error term also takes care
of the difference betweep(n — 3)/2|(i + 1) and(n — 3)(i + 1)/2 in the
third step. Similar simplifications will be made in what follows.hus, for
j=lon] <(n—-3)/2

S5 6 = (n—3)<j—;1> —2(‘7;'):1) +Om?)

i<j k

N 7

= (3% —20°) (”) + O(n?)

-~

= Fy(a)

Furthermore, again by symmetoy(5x) = d,—3_:(8k) foro < i,k <n — 3.



Hence, forj > (n — 3)/2, we get again

(n—3)/2 n—3—j

DY s = 2 Z Za (k) =D > 6i(A) +O(n
=0 k

i<j k

n

— (R - R(-a) (}) + 00

— B (g) + On?).

Here, the second to last step follows from the case (n — 3)/2, while the
last one reflects the properfy (o) = 2F»(1/2) — F»(1 — «), which is easily
verified. Thus, we have proved (5.26).

For (5.25), we observe that, fgr< (n — 3)/2,

SO i) = Zi((n—3)(i+1)—2(i—gl)—|—O(n)>

i<j k i<j
_ 2(n—3)<j—§1) —6(‘711) +Om?)

= (8a® —6a?) <Z) + O(n?).
Therefore, forj < (n — 3)/2,

ZZTL— —20)0;(Ax)

1<jJ k

— -9 e 20 () 2 (500 60 () + 00

= (120® — 240” + 12a*) (Z) + O(n?).

-~

= Fl(Oé)

This proves (5.25) for the case that< (n — 3)/2. Finally, to establish it
for j > (n — 3)/2, we observe that for every, we can rewritey_.(n — 3 —
29)0;(p) = >_,(n—2—14)(8;(Ak) —On—3—i(Ax)). Thus, ifj > (n—3)/2, then
for i between(n—3)/2 andj, §;(Ax) —dn—3—:(Ar) = 0, so these terms cancel
each other out. Therefore, up to afl) error term,I’; is the same whether




the boxeg3;, are filled up to the-th or up to thgn — 3 — j)-th diagonal. This
completes the proof becausg is also symmetric aboug. H

5.3 Convex Quadrilaterals andk-Sets

We now describe yet another approach to find a lower bound for the number
[J(.S) of convex quadrilaterals of a finite point sgin general position in the
plane. Our goal is to prove the following

Theorem 5.12. Let S be a set of» points in the plane in general position.
Then the number of convex quadrilaterals determined kg/at least

n

(3/8 +¢) <4> +0(n3) > 0.37501 (Z) ,

wherees ~ 1.0887 - 1072.

We note that a lower bound 6f/8(2) has been established independently by
Abrego and Ferandez-Merchant [1], using methods similar to ours.

The smalk is significant because as noted in Section 5.1, the ordinary crossing
number ofK,, is at most3/8(’;) + O(n?). Thus, while it is well-known that

the ordinary crossing number and the rectilinear crossing number ofletanp
graphs differ (the smallest for which they differ is 8, see Table 5.1), our
lower bound shows that the difference lies in the asymptotically retégam.

The first ingredient for the proof of Theorem 5.12 is a lemma thatesgas
[1(S) as a positive linear combination of the numbey§S) of j-facets ofS
(one might say, as the “second moment” of the distributiop-fafcets).

Lemma 5.13. For every setS of n points in the plane in general position,

0s) = ¥ ) ("5 —j)2 -1

. —2
j<nT

The proof of this lemma is based on the following observation, wkays,
roughly speaking, that thek*"™ moment” of the distribution ofi-facets of a

finite set in general position in dimensidrgives, up to appropriate renormal-
ization, the expected number of facets of the polytope spanned by a random
(d 4 k)-element subset:



Observation 5.14. Let S be a set of: points in general position ilR?. Then,

for all £,
Z <Z:> e;(5) = Z fa—1(conv(X)).

7 ()

Proof. By general position, we havg;_;(conv X) = eg(X) = ex(X) for

all X ¢ (dfk). Thus, the right hand side of the above equation counts the
number of pairg X, o), whereX € (,,7,) ando is ak-facet of X.

The left-hand side is just a different way of counting these pairs. elch
j-faceto of S, there are(i) possibilities to complete thé points spanning
to a(d + k)-element subset which hasas ak-facet: we have to choose the
remainingk points from the positive side of. O]

Proof of Lemma 5.13Specializing the previous observationdo= k = 2,
we obtain

2_: @) ej(S) = Z fi(conv X)) = 3A(S) 4 40(S).
=0 xe(?)
Moreover, we have

O(S) + A(S) = (Z)

Thus, we can substitute (S) = (’;) — 0(S) into the first equation and obtain

ij (;) e;(9) =0(S) + 3<Z).

Next, we use that

\V)

n—

Z e;(S) =2 (Z) , (5.27)

J=0

which implies that we can write

3(Z> —:E::ej(s) (n—2)8(n—3)




0 = 522
) j:ﬂ(;) - 2)éa(n - 4)) e () — = 5 : niej(s)
—0for j=(n—2)/2 g =0
-2 (n;2 —J):j(S) +§@,
where we use (5.227) and the fact thatS) = e,, o ;(9). -

Having expressedl(S) as a positive linear combination of the(S)’s (up to
a lower-order error term), we can substitute any lower bound for thebeus
e;(.S) to obtain a lower bound fdrl(.S).

It is not difficult to derive a sharp lower bound for each individeal

Proposition 5.15. If S is a set ofn points in general position in the plane,
then for allj < 252,
e;(S) > 25+ 3.

For every; > 0 andn > 25 + 3, there is a point set for which this bound is
attained.

Proof. Take an arbitraryi-edge[p, q] of S. Let/ be an oriented line parallel
and very close to the right @p, g] such that is disjoint fromS. Thus, there
arej + 2 points fromsS to the left of/ andn — 2 — j > j to the right. By the
Upper Bound Theorem 4.15, the numberjedédges ofS that are intersected

by ¢ is preciselyh;(S,¢) + hn,—2—;(S,¢) = 2j + 2 (this fact aboutj-edges

in the plane was already noted in [37]), and there is at least one additional
j-edge, namelyp, q|. ]

The following construction shows that the bound is sharp.

Example 5.16. Let S, be the vertex set of a regulé2;j + 3)-gon centered at
the origin0, and letS; be any set oh — 25 — 3 points very close t® such
that the whole se$ := Sy U S; is in general position.

Every line through any point i§; has at leasf+ 1 points ofS, on both sides,
so thej-edges ofS are the longest diagonals 8§, of which there ar@; + 3.



Using the bound from Proposition 5.15 in the formula of Lemni85we get

0> Y (2j+3) (”TJ—OQ—%G) :i(z>—|—0(n3).

. —2
]<”T

This lower bound foi_] is weaker than than the estimate derived in the pre-
vious section. Its weakness rests mainly in the fact that the point set-in E
ample 5.16 is highly attuned to the specifiat hand.

To obtain the stronger lower bound stated in Theorem 5.12, we do fatteg
by parts”, i.e., we pass fronifacets to(< j)-facets. We substitute; =

E; — E;_, in Lemma 5.13 (with the notatioR; = >>7_ e, introduced in
Chapter 2) and rearrange to get the following:

Lemma 5.17. For every setS of n points in the plane in general position,

08) = X (-2 -3)E5(S) ~ 3 (3) +7a(5)

. —2
J<t5=

where
1En_s(S), ifnisodd,and

0, if nis even

Note that the last two terms in the above formula@fe?).

To arrive at the conclusion of Theorem 5.12, we use the followingtheor-
ems. We will prove the first one Chapter 6:

Theorem 6.1. Let S be a set of: points in general position in the plane. Then,
forevery0) < j < ”7_2 the number of< j)-edges of5 satisfies

Ej(S)zs(j‘;2>.

This bound is tight foy < n/3.

Plugging this into the formula in Lemma 5.17 yields

0(S) > 3/8 CD +0(n?).

In order to obtain the tiny improvement ovef8, we will exploit the fact that
while the lower bound?; > 3(’1?) is sharp forj < n/3, itis no longer tight
for j close ton/2 (in particular, observe that for odd E(,_3)2 = (5) ~
4((n=2)/2)). Specifically, we will use the following result of Welzl [85]:



Theorem 5.18. Let S be a set of: points in the plane, and consider a (not ne-
cessarily contiguous) index skt C {1,2,..., |n/2]}. Then the total number
of k-sets withk € K satisfies

Z ap(S) <2n4/2> 0, i k.

keK

In particular, letm = |n/2], and apply this theorem to the intervals of the
form {j + 2,5 + 3,...,m}. Observing that; is precisely the number of
(i + 1)-sets, we obtain that for afl < m — 1,

Ep—1—E; <2n4/2377" i =2ny/m2+m—j2—3j -2,

and since,,, 1 > (1),

B, > (Z) —on/mZ tm—j2—3j 2.

Forj > n/6, we can simplify this to
E;(S) > (Z) —n2y/1—4(j/n)% + O(n). (5.28)

(The only reason for the assumptigr> 7/6 is that for smallerj, we would
need the more cumbersome error tedm3/2), and we are only going to use
(5.28) forj close ton /2, anyway.)

Combining the the estimate from Theorem 6.1 with (5.28), we see that

E, > 3<j . 2) + 2 max <0, M _ /i 4(j/n)2> +O(n).

The “max” term is positive forj /n > t, = \/(2\/1_3 —5)/9 ~ 0.4956, SO



we do gain wherj is very neam /2. Substituting into Lemma 5.17, we get

O@S) = Y (n—2j—3)E;(S) + 0(n%)

> Y b2 —3)<j;2> + O
+ n? 2“(1 —2(j/n)) (M — V1= 4(j/n)2)
_ g@ t /tomu g (1 L. ﬂ) t +O(n?).
Thus,
0> (3/8 +¢) (Z) +0(n?),
with

1/2 1 — 3¢2
5:24/ (1—2t)< 5 —\/1—4t2> dt ~ 1.0887 - 107>,

to

This completes the proof of Theorem 5.12. We remark that in the set-up of

Theorem 5.18, an asymptotically stronger bound¢f (|K| ", k:)l/g)
can be proved [6, 32]. This, in turn, can be used for a further tinyavgment
in thee. We omit the detalils.

5.4 Generalizations

For the Four-Point Problem, it does not matter whether we considértie
ability O(u) that four random point#;, P, Ps, Py i.i.d. ~ p are in convex
position, or the complementary probabiligy(p) = 1 — O(u), or

1
ZA(M) = Pr[P, € conv{ Py, P5, P53}, (5.29)

since any one of these three quantities determines the other two.

Depending on which viewpoint we take, however, different generalizatbns
the original problem suggest themselves.



If we focus on (5.29), then the following is a natural generalizatichefprob-
lem to a larger number of random points:Hf, . . ., P, are i.i.d. according to
a continuous probability distributiom in the plane, what is

Pr[P, € conv{Py,...,P,_1}]?
Equivalently, we can ask, what is
Pr[P, & conv{Py,...,P,_1}]?

In other words, to formulate the problem in more symmetric ternmstus the
expected number of vertices @nv{ P, ..., P,}?

In the plane, this is the same as the expected humbedgdof the polygon
conv{Py,..., P,}. This seems to lead the “right” formulation of the question
for generalizations to higher dimensions: What is the expected number of
facets of the polytope spanned byindependenf:-random points? Here,
“right” just means that this variant of the problem lends itself to theraach
developed in Section 5.3. Again, the question can be equivalently recast in
terms of finite point sets, and we can apply Observation 5.14 to any number
of points in any dimension. The bounds obtained in the general case are mu
weaker, though, since we have less precise knowledge about theudistrib

of j-facets in higher dimensions. We will discuss this in Chapter 6.

Another way of generalizing the problem to a larger number of randomgoint
Py, ..., P,iid. ~ pistoask: Whatis the probability(n, u) thatPy, ..., P,
are in convex position?

Unfortunately, it is not clear how to extend thidacet approach to this prob-
lem. The question can still be equivalently reformulated in terms ofefinit
points sets, but trouble is that for a finite $2€ R? andn > 5, the numbers
e;(S) apparently no longer determine the numbeneatlement subsets of
that are in convex position: Let us denotetby (5), ¢ = ¢(.S) andp = p(S)
the number of 5-element subsetssoivhose convex hull is a triangle, a quad-
rilateral, and a pentagon, respectively. FE8f = n, we we only get the two

equations
t+q+p=(_
qTp= 5
e

Z (‘;)ej = 3t +4q + Sp,

—0

and

N

<

which are insufficient to expregsin terms of thee;’s.



The probabilitie®(n, ;1) have been studied for uniform distributions on a con-
vex bodyK, in which case we just denote them by, K). We conclude this
chapter with a few notes on that topic.

Valtr [80] determined the exact probabilities for the case of triangles,

27 (3n — 3)!
(n— 1)13(2n)!’

p(n,triangle) =

Observe that this is asymptotically equivalent(27/2¢2n=2)" (where ‘€7,

for once, denotes the base of the natural logarithm). Moreover, evergxonv
body K can be sandwiched between two trianglgsand 7, such that the
ratio area(7%)/ area(77) is bounded by a constant (this is a consequence of
John’s Lemma, see [51], Section 13.4). Thus, there are universal ctstan
0 < ¢1 < cp < oo such that for every convex body C R?,

c1 <n?Y/pn, K) < co.

Barany [11] showed that for everi, the limitlim,, .., n? {/p(n, K) exists.
Furthermore, he proved a “limit shape” result: if we condition upandtent
thatPy, ..., P, arein convex position, then with high probability, their convex
hull is very close (in the sense of the Hausdorff distance) to certainegonv
bOdyKQ CK.

For further information about the probabilitién, iK') and a number of re-
lated questions, we refer to the survey article by Schneider [68].






Chapter 6

Lower Bounds for (< k)-Sets

In the previous chapter, we considered the number of convex quadrisateral
a finite point set in the plane. As we saw, this is just SylvesterigrfRbint
Problem in a discrete guise.

As our main result, we derived Theorem 5.12, which gives a lower bound fo
the minimum numbelr](n) of convex quadrilaterals in any setwofpoints in
general position in the plane.

The objective of this chapter will be to provide the missing ingeadifor
the proof of Theorem 5.12, namely the following estimate for the lm&m

E; =3"7_,e; of (< j)-edges of a point set:

Theorem 6.1. Let S be a set of: points in general position in the plane. For

every0 < j < 52,
)+ 2
Ej(S)z?)(j; )

This bound is tight fo < n/3.

Since in the plane, the numberof j-edges equals the numhbst, ; of (j+1)-
sets, Theorem 6.1 can be equivalently stated as a bound for the ndmber

S a; of (< k)-sets:

Theorem 6.1'. For every setS of n points in general position in the plane

and everyl < k < n/2,
kE+1
Ai(S) > 3< ; >
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This bound is tight fork < n/3, as is shown by the “Tripod Construction”
which we already encountered in Chapter 5 (Example 5.1).

Recall that the point s&f produced by that construction was partitioned into
three partsSy, So, S3 consisting ofrn/3 points each that were arranged very
close to three rays through the origin. Before, we also cared about émeaht
structure of the parts);, but now we only need the property that every line
spanned by two points from the same péytseparates the remaining two
parts.

It follows that for1 < k < n/3, everyk-set ofS contains the points farthest
from 0 in oneS;, for somel <[ < k, and the(k — [) points farthest front

in anotherS;. Hence the number déf-sets is3k and the number of< k)-sets
equals3("11).

The lower bound in Theorem 6.1’ was first formulated by EdelsbrunresaHI,
Seidel, and Chen [34]. Unfortunately, their proof contains a gap that seems t
be fatal, as their method of estimatirdg would in fact lead to a linear upper
bound for the number cf-sets.

Our proof will, however, follow the same basic approach via so-caliedlar

or allowable sequencewhich were introduced by Goodman and Pollack [41].
We review this notion in Section 6.1 and then prove a slightly nuzeeral
estimate which implies Theorem 6.1.

In Section 6.2, we will discuss extensions of Theorem 6.1 to highaeh
sions.

6.1 The Lower Bound in the Plane

We now proceed to prove the lower bound stated in Theorem 6.1.
Let IT be (a halfperiod of) aircular sequencef {1...n}. Thatis,II =

(I, . .. ,H(n)) is a sequence of permutations{df. . . n} such thatl, is the
2
identity permutation(1,2,...,n), H(n) is the reverse permutatiom,n —
2
1,...,1), and any two consecutive permutations differ by exactly one trans-

position of two elements in adjacent positions.

Circular sequences, which were introduced by Goodman and Pollack [41],
can be used to encode any planar point set. For our purposes and for sim-
plicity, however, we only consider the case of a pointSeh general posi-

tion. Moreover, we will make the additional assumption that no tvgmsnts
spanned by points frorfi are parallel (we can assume this without loss of gen-
erality, since it can be ensured by sufficiently small perturbations qidirgs,



and this will not affect the number of convex quadrilaterals or the nuraber
k-sets).

Let ¢ be a directed line which is not orthogonal to any of the lines spanned
by points fromS, and assume theft = {p,,...,p, }, where the points are
labeled according to the order in which their orthogonal projections appear
along the line. Now suppose that we start rotatirgpunterclockwise. Then
the ordering of the projections changes whendveaisses through a position
where it is orthogonal to a segment, with u, v € S. When such a change
occurs,u andv are adjacent in the ordering, and the ordering changeas by
andv being transposed. Thus, if we keep track of all permutations of the
projections as the liné is rotated by180°, we obtain a circular sequence
IT = TI(S). (The sequence also depends on the initial choiagg which for
sake of definiteness, we can assume to be vertical and directed upwards).

Observe that if a circular sequence arises in this fashion from a point set,
then the(i — 1)-edges (and hence thiesets) of the point set correspond to
transpositions between elements in positibasd: + 1, or in positionsn — 4

andn — ¢ + 1. These will be referred to ascritical transpositions of the
circular sequence.

For & < n/2, we consider the number ¢&K k)-critical transpositionsi.e.,
the number of transpositions that areritical for some: < k.

Theorem 6.2. For any circular sequencgl onn elements and any < n/2,
the number of < k)-critical transpositions is at least(*1').

If the sequence arises from a $ebf »n points in general position in the plane
as the list of the combinatorially different orthogonal projectioh$ @mnto a
rotating directed line, then thecritical swaps are in one-to-one correspond-
ence with thei-sets ofS, and hence with thé — 1)-edges ofS. Thus, the
numberE; = S°7_,e; of (< j)-edges ofS is at least3(’1?), which will
prove Theorem 6.1.

Proof. Fix k£ and letm := n — 2k. 1t will be convenient to label the points so
that the starting permutation is

Iy = (ak, ar—1,--.,a1,b1,b2,..., b, c1,C2,. .., k).

We introduce some terminology. FbK i < k, we say that an elememntexits
(respectivelyenterg through theith A-gateif it moves from positionk — i+ 1
to positionk — i + 2 (respectively, from positiok — : + 2 to positionk — i+ 1)
during a transposition with another element. Similagyexits (respectively,



enterg through theith C-gateif it moves from positionn + k + ¢ to position

m + k + i — 1 (respectively, fromm + k + i — 1 tom + k + ) during a
transposition. Observe that for< : < j < k, a; has to exit through théth
A-gate and to enter through tlwth C'-gate at least once, and analogously for
Cj.

Further, we say that € {a1,...,ax} (respectively,c € {c1,...,ck}) IS
confineduntil the first time it exits through thést A-gate (respectively’-
gate); then it becomdgee Elementd € {b4,...,b,,} are always free.

Simplifying Observation.For every circular sequendd’, there is another
sequencél with the same number @K k)-critical transpositions and without
transpositions between confined elements. Thus, we may restrict ourattenti
to sequences without sucbnfined transpositions

Proof of the observationTo see why this is so, consider the first confined
transposition inl1’ (if there isn’t any, we are done). Clearly, this first trans-
position must be either between twis or between twae’s. But beforen; and

a;, say, can be transposed, everywith ; < s < j has to be transposed with
eithera; ora;. And as long a&; is confined, every element, s < j which
has not yet been transposed withis also confined.

Therefore, the first confined transposition has to happen betweem'sor
between twa's) that are adjacent in the starting permutatfifi say between

a; anda; 1. Now we can modifylT’ as follows: Instead of transposingand

a;+1 When it happens idl’, let a; ., follow the “path” of a; in II” and vice
versa, and only transpose anda; 1 in the end. (Observe that for this to be
feasible, itis crucial that; anda;, are adjacent iml{,.) This does not affect
the number of < k)-critical transpositions and deletes one confined transpos-
ition without generating any new ones, which (by induction, say) esdhe
observation.

So we may assume that the circular sequddd®es not contain any confined
transpositions. Now, let us write down thieeration sequence of all «’s and
¢’s in the the order in which they become free. Siddedoes not contain
any confined transpositions, tlés appear ino in increasing order (i.eg;
precedes; in o if 7 < j) and the same holds for tlas.

We are now ready to estimate the numbe(9fk)-critical transpositions. As
observed above, far < i < j <k, a; has to exit through théth A-gate and

to enter through the-th C-gate at least once, ang has to exit through the
ith C-gate and to enter through thi A-gate at least once. For each of these
events, we count the first time it happens. This gives a total com\@kqjl)
transpositions, all of which are< k)-critical.



The transpositions that are counted twice are precisely the transpsdigtween
somea; and some; during which, for someé < min{j, (},

1. eithera; enters and; exits through theth C'-gate (both for the first
time),

2. ora; exits andc; enters through théth A-gate (both for the first time).

In order to estimate the number of such transpositions, we “credit” eacbk-tr
position to the entering element. More precisely, we defisawangs digraph
D with vertex set{aq,...,ar} U {c1,...,cr} and the following edges: In
Case 1, we put in a directed edge frojmo a;, and in Case 2 a directed edge
froma; to ¢.

Thus, the number of< k)-critical transpositions is at Ieas(’“;rl) minus the
number of edges i, and it suffices to show that the latter is at md%jl).

For this, we estimate the in-degree of each vertex. On the one haratyebs
that the in-degree of; is at most; (there is at most one incoming edge for
eachith C-gate,1 < i < j, since we only count the first time thaf enters
through a gate). On the other hand, we observe that if there is a diregfed ed
from ¢; to a;, thena; precedes; in the liberation sequence (observe that

a; must have become free before entering through @ryates, whilec; is

still confined when it exits through @-gate for the first time. Note that the
first A-gate and the firs€’-gate do not coincide since we assume n/2.
Thus, since any two elements are transposed at most (in fact, exactly) once,
the in-degree of,; is also at most the number e that come after it in the
sequence. Hence, the in-degree af; is at most the minimum, (a;) of j

and the number of's that come aftet; in the sequence. Similarly, the in-
degree of; is at most the minimum,, (¢;) of [ and the number af’s which
come after; in the sequence.

The proof is concluded by the following observation: Forsa({subject to the
constraint that the’s and thec’s appear in increasing order),

k
— 2

(ko) + uale)) = (5 1) 6.1

7j=1

To prove this, first note that it obviously holds true for thetssmace(a,, as, . . .,
ak,C1,Ca, . .., Ck). SO it suffices to show that the sum is invariant under swaps
of adjacent’s andc’s. Suppose that = px*(a;, ¢;)*7 ando’ = px(c;, a;)*7
(where %” denotes concatenation of sequences). First observe:iial =



Lo (x) for all z # a;, ¢;. Moreover,

po(a;) = min{j,k—1+1}, po(c;) = min{l,k—j},
po'(az) = min{j, k—1}, por(cr) = min{l,k—j+1}.

We distinguish two cases: On the one hand,# ! < k, theny,(a;) = j =
tor(aj) andus(c;) =1 = py(cr), i.e. nothing changes. On the other hand, if
j+ 1>k, thenpy(a;) =k —14+1= py(a;) +1andu,(c) =k —j =

i (c1) — 1, so the sum remains unaffected. This proves (6.1) and hence the
theorem. O

6.2 Higher Dimensions

The number ofj-facets of a point se§ C R is certainly not less than the
number ofj-facets that are intersected by a given linehich is in general
position w.r.t.S. Thus, for either orientation df

€j(S) > hj(S, E) + hn_d_j(S, f)

If we combine this with the existence of centerpoints, we can provéothe
lowing:

Theorem 6.3. For a setS of n points in general position iR ¢,

ozamal( 4 (5 ()

Proof. W.l.o.g., the orthogonal projectiofi of S onto the hyperplanéx ¢
R? : x4 = 0} = R% ! is a set ofn points in general position. By Observa-
tion 4.34, there exists a poibt € R~! which is almost a centerpoint faf,
i.e., which has depth at leagt/d] — d + 1in S. Thus, by Lemma 4.33, we
get for the line/ := o x R C R that

_ (54 if 0 <j < [n/d] —d,
hj(S, 0) = hj(S,E) >
(M= if [n/d] —d < j < (n—d)/2,

from which the theorem follows. ]

In particularly, we get as a corollary that for< j < [n/d| — d,

Ej(S)EQ(j;d)



On the other hand, consider the obvious generalization of Example 5.1 to
higher dimensions: Let;,...,r;.1 be rays emanating from the origin €

R through te vertices of a regular simplex centeref.df we assume that

is divisible byd + 1 and if for each of these rays, we place 15 points very
close tor; and at distance at least 1 from the origin and each other, then we
obtain anr-point setS such thatt;(S) = (d + 1)(j§d) for0<j < 5.

It is tempting to conjecture that this is the lower-bound examplel bave so

far been unable to prove this.

Conjecture 6.4. For every setS of n points in general position and every
0<j<|z ] wehave

Ej(S)Z(dnLl)(j—;d).
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