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Abstract

In this thesis, we study the notion ofk-sets from discrete geometry and its
applications to other mathematical problems.

We prove that the number ofk-sets of the setNd
0 of nonnegative lattice points

is betweenkd−1 log k andkd−1(log k)d−1 in order of magnitude.

Next, we consider the continuous counterparts ofh-vectors of simplicial poly-
topes that are known ash-functions. We prove that an important fact abouth-
vectors of polytopes, the so-calledGeneralized Lower Bound Theorem, carries
over toh-functions.

We also describe an application ofh-vectors andh-functions: We give an al-
ternative proof of theFirst Selection Lemma, which asserts that for every finite
setS in d-dimensional space, there exists a point which is contained in a pos-
itive fraction of all full-dimensional simplices spanned byS. Specifically, we
show that everycenterpointof S has this property. Our proof immediately ex-
tends to the corresponding statement for continuous probability distributions.

Finally, we consider, for a continuous probability measureµ in the plane, the
probability ¤(µ) that four random points independently and identically dis-
tributed according toµ form a convex quadrilaeral. This question, which is
known asSylvester’s Four-Point Problemwas completely solved by Blaschke
for the case of uniform distributions on convex bodies. For general distribu-
tions, however, it is still unknown which distributions minimize¤(µ) or what
the value ofinfµ ¤(µ) is.

We improve the lower bound toinfµ ¤(µ) > 3/8 + 10−5 ≈ 0.37501. This
comes quite close to the best upper bound known to date, which isinfµ ¤(µ) <
0.38074. The Four-Point Problem can be equivalently reformulated in terms
of finite point sets. In this discrete context, it is also known as theproblem of
determining therectilinear crossing numberof complete graphs. We observe
that this discrete reformulation of the Four-Point Problem is closely related
to the distribution ofk-sets, and as a main tool, we show that for every finite
point set in the plane, the number of(≤ k)-sets is at least3

(
k+1
2

)
.



Zusammenfassung

Der Schwerpunkt dieser Arbeit liegt auf dem Begriff derk-Mengeaus der
diskreten Geometrie sowie dessen Implikationen für andere mathematische
Fragestellungen.

Zunächst bescḧaftigen wir uns mit der asymptotischen Größenordung der An-
zahl ak(Nd

0) von k-Mengen vonNd
0. Wir beweisen, daß diese zwischen

kd−1 log k undkd−1(log k)d−1 liegt.

Sodann wenden wir uns den sogenanntenh-Funktionen zu, die stetige Gegen-
stücke zuh-Vektoren simplizialer Polytope darstellen. Wir zeigen, daß ein
wichtiger Satzüberh-Vektoren von Polytopen, das sogenannteGeneralized
Lower Bound Theorem, sich aufh-Funktionenübertr̈agt.

Ferner beschreiben wir eine Anwendung vonh-Vektoren, bzw.h-Funktionen:
Wir präsentieren einen neuen Beweis der alsFirst Selection Lemmabekan-
nten Tatsache, daß es zu einer gegebenen endlichen PunktemengeS im d-
dimensionalen Euklidischen Raum immer einen Punkt gibt, der in einem pos-
itiven Prozentsatz aller vonS aufgespannten volldimensionalen Simplices liegt.
Genauer gesagt zeigen wir, daß jederCenterpunktvon S diese Eigenschaft
hat. Unsere Beweismethode erlaubt uns auch unmittelbar, den analogen Satz
über stetige Wahrscheinlichkeitsverteilungen herzuleiten.

Schließlich betrachten wir für stetige Wahrscheinlichkeitsmaßeµ in der Ebene
die Wahrscheinlichkeit¤(µ), daß vier unabḧangigeµ-verteilte Zufallspunkte
ein konvexes Viereck bilden. Dieses alsSylvesters Vierpunktproblembekan-
nte Problem wurde zwar von Blaschke für den Fall einer Gleichverteilung auf
einer beschr̈ankten konvexen Menge vollständig gel̈ost, jedoch ist f̈ur allge-
meinere Verteilungen die Frage noch unbeantwortet, welche Verteilungen¤(µ)
minimieren bzw. wasinfµ ¤(µ) ist.

Wir kommen der L̈osung dieses Problems einen Schritt näher, indem wir die
untere Schranke aufinfµ ¤(µ) > 3/8 + 10−5 ≈ 0.37501 verbessern, was
der besten bisher bekannten oberen Schranke voninfµ ¤(µ) < 0.38074 recht
nahe kommt. Das Vierpunktproblem lässt sicḧaquivalent als Fragestellung
über endliche Punktemengen in der Ebene reformulieren und ist in diesem
diskreten Kontext auch als das Problem bekannt, dierektilineare Kreuzungs-
zahlvollständiger Graphen zu bestimmen. Wir zeigen, daß diese diskrete Re-
formulierung des Vierpunktproblems in engem Zusammenhang zur Verteilung
der k-Mengen steht, und beweisen als wichtigstes Hilfsmittel, daß für jede
endliche Punktmenge in der Ebene die Anzahl der(≤ k)-Mengen mindestens
3
(
k+1
2

)
betr̈agt.
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Chapter 1

Introduction

In this thesis, we study the notions ofk-setsandk-facetsfrom discrete geo-
metry and their applications to other mathematical problems.

Consider a setS of points ind-dimensional Euclidean space. A subsetT ⊆ S
is called ak-setof S, for integerk, if |T | = k andT can be strictly separated
from its complement by a hyperplane.

The question known as thek-set problemconcerns the number ofk-sets of a
finite ground set. The maximum numberad

k(n) of k-sets of anyn-element set
S ⊆ Rd has numerous applications in the analysis of geometric algorithms
and the complexity of other geometric objects, such askth-order Voronoi dia-
grams. The question is to determine the asymptotic behaviour of thefunction
ad

k(n) for fixed dimensiond andk, n → ∞. This appears to be extremely
difficult and is regarded as one of the most challenging problems in discrete
geometry. Despite considerable efforts by numerous researchers over the last
thirty-odd years, and despite recent significant progress in dimensionstwo and
three, the gap between the known upper and lower bounds remains quite large,
even in the plane.

A closely related notion is that of ak-facet. Suppose thatS ⊆ Rd is a set
of points in general position (i.e., every subset of cardinality at mostd + 1 is
affinely independent), and consider an oriented(d − 1)-dimensional simplex
σ spanned by points fromS. Such a simplex is called ak-facet of S, for
integerk, if there are preciselyk points ofS in the positive open halfspace
determined byσ. It is known that the number ofk-sets is maximized for
point sets in general position, and that up to constant factors,ad

k(n) is also
the maximum number ofk-facets of any set ofn points in general position in

1



dimensiond.

We will discuss these notions and the known bounds in somewhat more detail
(yet still quite tersely) in Chapter 2.

Interestingly,k-sets andk-facets also appear in other contexts which, at first
sight, seem rather unrelated. For instance, Onn and Sturmfels [60] considered
thek-sets of the infinite setNd

0 and showed that these are in one-to-one corres-
pondence with the Gröbner bases of a certain kind of ideal in the polynomial
ring K[x1, . . . , xd], K any infinite field.

Another example is McMullen’s [52]Upper Bound Theorem (UBT)for con-
vex polytopes. This theorem gives exact upper bounds for the face numbers of
a convex polytope, and as shown by Welzl [86], there is an equivalent reformu-
lation of the UBT in terms ofk-facets. This reformulation formed the basis for
an analogue of the UBT for continuous probability distributions, which was
developed in [84].

In this thesis, we will further investigate such connections and also study some
new ones. In particular, we will be concerned with the following questions:

1. What is the asymptotic order of magnitude of the numberak(Nd
0) of

k-sets ofNd
0 (for fixed d andk → ∞). Onn and Sturmfels gave a first

upper bound ofO(k2 d−1
d+1 ). We will prove in Chapter 3 that the correct

order of magnitude is betweenkd−1 log k and(k log k)d−1.

2. Certain linear combinations of the face numbers of a simplicial poly-
topeP form the entries of theh-vectorof P, which is a fundamental
invariant of the polytope. In [84], continuous counterparts ofh-vectors,
so-calledh-functions, were introduced. Theh-function associated with
a continuous probability measureµ and a base pointo in Rd is a certain
continuous functionshµ,o : [0, 1] → R≥0 which is determined by the
following property: For each integerk ≥ 0, the probabilityfk(µ,o) that
o is contained in the convex hull ofd+1+k independentµ-distributed
random points can be expressed (up to constant factors depending on
k andd only) as thekth moment

∫ 1

0
ykhµ,o(y)dy. It was shown that

h-functions enjoy various properties that are in direct analogy to im-
portant theorems abouth-vectors. Most notably, continuous analogues
of theDehn-Sommerville Equationsand of the UBT were proved. The
continuous version of the former asserts thath-functions are symmet-
ric about1/2, i.e., h(y) = h(1 − y) for all y. The latter gives exact
pointwise upper bounds for the values of theh-function. These, in turn
imply exact upper bounds on the probabilitiesfk(µ,o). In particular,



these probabilities are essentially maximized by distributions that are
symmetric abouto.

After reviewing the definitions and basic facts, we will see in Chapter 4
that another prominent theorem abouth-vectors also carries over: we
will prove a continuous version of theGeneralized Lower Bound The-
orem, to the extent thath-functions are monotonically increasing on
the interval[0, 1/2] (and hence decreasing on[1/2, 1], by the Dehn-
Sommerville Equation).

Furthermore, we will use the technique ofh-vectors andh-functions to
give an alternative proof of theFirst Selection Lemmaand to establish
a continuous analogue of it. The latter guarantees that for any probab-
ility distribution in Rd, we can find a pointo ∈ Rd (namely, a center-
point of µ) such that the probabilityfk(µ,o) is at least some constant
s(d, k) > 0 which depends only onk andd. Thus, it can in some sense
be considered a converse of the Continuous Upper Bound Theorem.

3. The simplest interesting instance for the probabilitiesfk(µ,o) is the
cased = 2 andk = 0: Given a continuous probability distributionµ
and a pointo in the plane, what is the probability thato is contained in
the triangle spanned by three random pointsP1, P2, P3 i.i.d. ∼ µ?

Now suppose that instead of a point fixed in advance, we consider a
fourth independent random point, i.e., the probability

Pr[P4 ∈ conv{P1, P2, P3}] =
1

4
Pr[conv{P1, P2, P3, P4} is a triangle],

or equivalently, the complementary probability

¤(µ) := Pr[conv{P1, P2, P3, P4} is a convex quadrilateral].

This is the well-knownFour-Point Problemof J.J. Sylvester [77]. While
this problem was completely solved by Blaschke [18] for uniform distri-
butions on convex bodies, for the general case it is still unknown which
distributions minimize¤(µ), or what the true value¤∗ := infµ ¤(µ)
is. It is known [66] that the problem can be equivalently stated as a
question about discrete point sets: if we denote by¤(n) the minimum
number of convex 4-element subsets of any set ofn points in general
position in the plane, then

¤∗ = lim
n→∞

¤(n)
(
n
4

) .



In this context, the problem is also known as that of determining the
rectilinear crossing numberof complete graphs.

In Chapter 5, we will work towards closing the gap of our knowledge
about¤∗. We will first prove the lower bound¤∗ > 0.3288 by a
method inspired by theh-function approach. After that, we improve
this to ¤∗ ≥ 3/8 + ε, with ε ≈ 10−5 by a more direct connection
to k-sets: We express the number of convex quadrilaterals in a point set
S ⊆ R2 as a positive linear combination of the numbersak(S) of k-sets
of S. The immediate strategy of substituting lower bounds for theak ’s
fails, since for eachk, there are point sets with very fewk-sets. How-
ever, these examples are very attuned to the specifick at hand, and we
can save our approach by doing “integration by parts”, i.e., by passing
to the numbersAk :=

∑k
i=1 ak. For ann-point set, the number¤ of

convex quadrilaterals can also be expressed as a positive linear combin-
ation of the numbersAk, 1 ≤ k < n/2. We then combine the lower
boundAk ≥ 3

(
k+1
2

)
, which we prove in Chapter 6 and which is tight

for k < n/3, with a result of Welzl that implies better estimates fork
close ton/2, and obtain the bound for¤∗ as advertised.



Chapter 2

Basics

The purpose of this chapter is to review the central notions of our investiga-
tions,k-sets andj-facets. Along the way, we will introduce the terminology
and notation used throughout this thesis. Furthermore, we compile anumber
of well-known facts which we will need in what follows. For a more thorough
and extensive survey of the landscape ofk-sets, including many of the proofs,
see Chapter 11 of Matoušek’s textbook [51].

2.1 k-Sets

Let S ⊆ Rd. A subsetT ⊆ S is called ak-setof S, for integerk, if |T | = k
and there is a hyperplaneH that strictly separatesT andS \ T , i.e.,T lies in
one of the open halfspaces bounded byH andS \ T in the other.

The number ofk-sets ofS will be denoted byak(S), or just byak if S is
understood from the context. We will only be concerned with sets for which
these numbers are finite, and always implicitly assume so.

If S is a finite set andn := |S| thenT ⊆ S is ak-set iff S \T is an(n−k)-set.
Thus, the numbersak(S) are symmetric aboutn/2, i.e.,

ak(S) = an−k(S).

Usually, the notion ofk-sets is defined only for finite ground sets, but it makes
sense and is of interest also in other contexts. For instance, Chapter 3 willbe

5



concerned with thek-sets of the infinite setNd
0, which also go under the sug-

gestive name ofcorner cutsand turn out to have applications in computational
commutative algebra [60].

Example 2.1. If S is a set ofn points in convex position in the plane, then
ak(S) = n for 1 ≤ k ≤ n − 1 (any consecutivek points along the boundary
of the convex hull form ak-set, and vice versa, see Figure 2.1).

Figure 2.1: A set of9 points in convex position and a typical4-set.

Example 2.2. Figure 2.2 shows a “tripod shaped” set of nine points in the
plane and its 4-sets: Each 4-set consists either of the two outermost points
from each of two “spokes” (3 possibilities), or of all three points from one
spoke and one point from another (3 ·5 = 15 possibilities). Thus,a4(S) = 18.
This will be a useful example to keep in mind. Suitable generalizations of it
will appear later.

It is not difficult to derive tight bounds for the total number of partitions of
a finite point setS, i.e., for the sum

∑

k ak(S), using the following form of
duality.

Point-Hyperplane Duality and Arrangements. For a pointa = (a1, . . . , ad) ∈
Rd, thedual hyperplanea∗ is defined by

a∗ := {x ∈ Rd : xd = a1x1 + . . . + ad−1xd−1 − ad}.
Conversely, if a hyperplaneH ⊆ Rd is notvertical, i.e., is not parallel to the
xd-axis, then it can be uniquely written asH = {x ∈ Rd : xd = a1x1 + . . .+
ad−1xd−1 − ad}, and we set

H∗ := (a1, . . . , ad).



Figure 2.2: Another set of9 points and its4-sets (up to symmetry).



It is easy to see that for alla and all nonverticalH, we have

1. (a∗)∗ = a and(H∗)∗ = H.

2. a ∈ H iff H∗ ∈ a∗.

3. a lies aboveH iff the point H∗ lies above the hyperplanea∗.

Now, consider a finite setS ⊆ Rd. DualizingS, we get a set of hyperplanes
S∗ = {p∗ : p ∈ S}.

If H is a hyperplane disjoint fromS then we may assume that it is not vertical;
otherwise, we can perturbH without changing the partition it induces onS.
ThenH∗ is a point which is disjoint from all hyperplanes inS∗, i.e.,H∗ lies in
the complementRd \ ⋃

p∈S p∗.

The connected components of this complement are called thefull-dimensional
facesof the arrangementS∗ of hyperplanes. More generally, a finite setH
of hyperplanes inRd defines a partition ofRd into relatively open convex
subsets, calledfaces, of various dimensionsi = 0, 1, . . . , d (see Chapter 6 of
[51]). This partition is called thearrangementinduced byH and denoted by
A(H) or sometimes simply byH.

The full-dimensional faces of the arrangementS∗ are relevant in our con-
text for the following reason: two nonvertical hyperplanesH1 andH2 disjoint
from S induce the same partition onS if and only if their dualsH∗

1 and H∗

either lie in the same full-dimensional face ofS∗ or lie in antipodal unboun-
ded full-dimensional faces. Here, two full-dimensional facesF1 andF2 of
an arrangement of hyperplanes are calledantipodalif for every hyperplaneH
defining the arrangement,F1 lies aboveH iff F2 lies belowH and vice versa.

It is not difficult to see by induction on the dimensiond that the number of
full-dimensional faces in an arrangement ofn hyperplanes inRd is at most
∑d

i=0

(
n
i

)
= O(nd), and that the number of pairs of antipodal unbounded

full-dimensional faces is at most
∑d−1

i=0

(
n−1

i

)
. Moreover, both maxima are

attained iff the arrangement issimplein the following sense.

Definition 2.3 (Various Non-Degeneracy Notions). 1. An arrangement of
hyperplanes inRd is calledsimpleif for 1 ≤ i ≤ d + 1, any i of the
hyperplanes intersect in an affine flat of dimensiond − i (in particular,
there is no point common to anyd + 1 of them).

2. Further, a point setS ⊆ Rd is said to be ingeneral positionif every
subset ofS of cardinality at mostd + 1 is affinely independent (the “at



most” is only a precaution to avoid a vacuous condition in the case that
|S| ≤ d).

3. For future reference, we also define the analogous notion for probability
distributions inRd (which, for us, will always mean probability meas-
ures on theσ-algebra of Lebesgue measurable subsets ofRd): We say
that a probability distributionµ onRd is continuousif every hyperplane
hasµ-measure zero.

Note thatS∗ is simple iff S is in general position. Moreover,µ is continuous
if and only if anyd + 1 mutually independentµ-random points are almost
surely (i.e., with probability 1) in general position, and this then holds for any
countable set of mutually independentµ-distributed random points.

But back tok-sets. How can we interpret these in terms of arrangement of
hyperplanes? For an arrangement of nonvertical hyperplanes and a pointp ∈
Rd, let us define thelevelof p to be the number of hyperplanes strictly below
p. Suppose now thatT is ak-set ofS and thatH is a separating hyperplane for
T , which we can always take to be nonvertical. IfT lies aboveH, thenH∗ is a
point of levelk, and ifT lies belowH, thenH∗ is a point of leveln− k. Thus,
thek-sets ofS correspond to the full-dimensional faces of levelk or n − k in
S∗ (with antipodal faces defining the samek-sets).

Apart from offering a different viewpoint onk-sets, this also leads to the study
of levels in arrangements of other geometric objects than hyperplanes, for
instance of algebraic surfaces. We refer to the survey [2], to the book [69],
or to Chapters 6 and 7 of [51] as starting points for the study of more general
arrangements, and restrict our attention tok-sets in what follows.

Bounds for the Number ofk-Sets. As we have seen, it is easy to give exact
bounds for the number

∑

k ak(S) of all partitions of a finite set by hyper-
planes. If we consider the numbersak individually, however, then finite point
sets in convex position in the plane are among the very few classes of point
sets for which these numbers are easy to analyze. In general, this appears to
be very difficult, and understanding the asymptotic behavior of the maximum
number

ad
k(n) := max

S⊂Rd

|S|=n

ak(S) (2.1)

of k-sets of anyn-point set ind-space is considered one of the most challen-
ging problems in discrete geometry. To be more precise, the question known
as thek-set problemis to find good upper and lower bounds (if possible tight
up to constant factors) forad

k(n) if d is fixed andk, n → ∞.



One motivation for studyingk-sets is that they have found various applications
in the analysis of geometric algorithms, see [25, 27, 36], We will encounter
further applications of a different, mostly non-algorithmic nature,in the fol-
lowing chapters, most notably in Chapter 5.

However, the main interest may simply lie in the intellectual challenge itself:
to understand this particular aspect of the combinatorial structure of finite
point sets. Moreover, despite considerable efforts by numerous researchers
over the last thirty-odd years, the gap between the known upper and lower
bounds is still quite large, even in the plane.

The k-set problem was first posed (in the slightly different guise ofhalving
edges, which we will define in the following section) by Simmons (unpub-
lished). Straus (also unpublished) found a lower bound of

a2
n/2(n) = Ω(n log n), n even, (2.2)

and Lov́asz [50] proved an upper bound of

a2
n/2(n) = O(n3/2), n even.

An extension of this to generalk,

a2
k(n) = O(n

√
k) (2.3)

appeared together with Straus’ lower bound in Erdös, Lov́asz, Simmons, and
Straus [37].

We refer to the notes at the end of Section 11.1 in [51] for a summary and
bibliography of the subsequent progress on the problem, and just state the
currently best bounds, which are as follows:

In the plane,
a2

k(n) = O(nk1/3), (2.4)

as was shown by Dey [32]. In three dimensions,

a3
k(n) = O(nk3/2), (2.5)

which was proved by Sharir, Smorodinsky, and Tardos [70]. In general di-
mensiond, Alon, Báŕany, F̈uredi, and Kleitman [4] (following and extending
a method developed by Báŕany, F̈uredi, and Lov́asz [12] ford = 3) obtained

ad
k(n) = O(nbd/2ckdd/2e−cd), (2.6)

wherecd > 0 is a small number which depends only ond and tends to zero
very fast asd grows. The crucial ingredient of the proof is the so-called
colored Tverberg Theorem, which was proved by̌Zivaljević and Vrécica [82].



On the other hand, T́oth [78] proved the lower bound

ad
k(n) = nkd−2eΩ(

√
log k). (2.7)

Note thate
√

log k is asymptotically larger than any fixed power oflog k, but
smaller thankε for any constantε > 0.

All of these bounds were shown for the case of evenn andk = n/2, to which
the general case reduces, as we will see below. Moreover, all proofs proceed
in terms of objects that are slightly different fromk-sets, but closely related
and technically more convenient to handle.

2.2 j-Facets

One of the first observations when studying thek-set problem is that not only
the sum

∑

k ak but also each singleak is maximized by point sets that are in
general position.

Observation 2.4. For every finite setS in Rd, there is another setS′ ⊂ Rd

of the same cardinality and in general position, such thatak(S) ≤ ak(S′) for
all k. In fact, any setS′ arising from suitable small perturbations of the points
in S will do.

To see why this is, consider all possible partitions ofS by hyperplanes disjoint
from S. For each of these partitions, choose a hyperplane witnessing it. In this
way, we obtain a finite collectionH of hyperplanes, and each point ofS is
contained in some full-dimensional face of the resulting arrangement. These
faces are open sets, and by moving the points within them, we can ensure
general position without affecting any of the partitions. Thus, the number of
k-sets can only grow (and ifS was not in general position, then it will, for
somek).

Now suppose thatS is a finite set in general position in the plane. LetT is a
k-set ofS, 1 ≤ k ≤ n − 1, and let̀ be a separating line forT .

It is not hard to see that there is a unique pair of pointsp ∈ T andq ∈ S \ T
with the following property (see Figure 2.3):T \ p lies to completely in the
open halfplaneH+(p, q) to the left of the oriented line fromp throughq, and
(S \ T ) \ q is contained in the open halfplaneH−(p, q) to the right of that
line. Thus, the oriented edge[p, q] contains exactlyk − 1 points ofS on its
left side.
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Figure 2.3: k-Sets and(k − 1)-Edges.

Conversely, let[p, q] be a(k − 1)-edgeof S, i.e., an oriented edge spanned
by pointsp, q ∈ S that contains exactly(k − 1) points fromS on its left
side. If L denotes the set of thesek − 1 points, thenL ∪ {p} is ak-set of
S: a small counterclockwise rotation of the line throughp andq about the
midpoint of the edge[p, q] produces a linè that strictly separatesL ∪ {p}
from S \ (L ∪ {p}).
The two operations just described yield a bijection between thek-sets ofS
and the(k − 1)-edges of a point setS in general position in the plane.

More generally, let us make the following

Definition 2.5 (j-Facets).LetS be a set ofn points in general position inRd,
and letσ be an oriented(d− 1)-dimensional simplex spanned by points ofS,
where the orientation just means that one of the open halfspaces bounded by
the affine hull ofσ is appointed thepositive sideof σ, denoted byH+(σ).

If σ contains preciselyj points fromS on its positive side thenσ is called a
j-facetof S.

We denote the number ofj-facets ofS by ej(S) or simply byej . As in the
case of the numbersak, theej ’s are symmetric, this time aboutn−d

2 (which
we see by reversing the orientation, i.e., exchanging the roles of thepositive
and the negative side of a simplex):

ej(S) = en−d−j(S).

We will also use the somewhat sloppy notatione1/2(S) for the number of
halving facetsof S. These are then−d

2 -facets ofS (and correspondingly only



exist if n − d is even).

We note that in the dual setting of hyperplane arrangements, thej-facets of
S correspond to theverticesof level (as defined above)j or n − d − j in the
arrangementS∗.

The above correspondence betweenk-sets and(k − 1)-edges immediately
tells us that in the plane,ak = ek−1. In higher dimensions, the relationship
between theak ’s and theej ’s is more subtle: In three dimension, these num-
bers still determine each other via the linear relationsak = 1

2 (ek−2+ek−1)+2,
for 1 ≤ k ≤ n − 1 andn ≥ 4 (see [6, 8]) but starting from dimension four,
this is in general no longer true (see [8]).

It remains true, however, that these quantities are equivalent as far as their
order of magnitude is concerned: It is not hard to see (confer [51], for instance)
that for a set ofn points in in general position in dimensiond,

ak ≤
k∑

j=k−d−1

ej + O(nd−1)

and

ej ≤
j+d−1
∑

k=j

ak.

Thus, for asymptotic bounds like the ones in (2.2)–(2.7), it does not matter
whether we speak aboutk-sets orj-facets.

2.3 Polytopes

In this section, we review very quickly a bit of standard terminologyof convex
polytopes and polyhedra. All of this (and the proofs of the various assertions
we just make) can be found in much more detail in Ziegler’s textbook [91].

A subset ofRd is called aconvex polyhedronif it can be written as the inter-
section of finitely many closed halfspaces. A subsetF of a convex polyhedron
P is called afaceof P if eitherF = P, or F = ∅, or there is a hyperplane
H such thatF = P ∩ H andP is completely contained in one of the closed
halfspaces bounded byH. The facesF 6= ∅,P are calledproper facesof P.
Clearly, all faces are convex polyhedra themselves.

ThedimensiondimF of a face is defined as the dimension of the affine hull
of F . By convention,dim ∅ = −1. The faces of dimensions0, 1, dimP − 2,



anddimP − 1 have special names: They are calledvertices, edges, ridges,
andfacetsof P, respectively. We denote the number ofi-dimensional faces of
a polyhedronP by fi(P), i = −1, 0, 1, . . . ,dimP.

We will mostly be concerned with convex polyhedra that are bounded. These
are calledconvex polytopes. It is a fundamental fact of life that convex poly-
topes can be equivalently characterized as convex hulls of finite point sets: a
bounded setP ⊂ Rd can be written as the intersection of finitely many closed
halfspaces if and only ifP is the convex hull of some finite setV ⊂ Rd. In
fact, there is a unique inclusion-minimal such set, namely the set of vertices
of P.

If we order the faces of a polytope by inclusion, then the resulting poset is
called theface latticeof P, often denoted byL(P). Two polytopesP,Q are
calledcombinatorially equivalentif their face lattices are isomorphic, i.e., if
if there is an inclusion-preserving bijectionL(P) → L(Q).

If, on the other hand, there is an inclusion-reversingbijectionL(P) → L(Q),
thenP andQ are calledpolars(or duals) of each other, and we writeQ = P∗

(andP = Q∗). Every polytope has a polar, which can be constructed geo-
metrically using the point-hyperplane duality mentioned earlier: Suppose that
P ⊆ Rd is d-dimensional and contains the origin0 in its interior (we can
assume this by passing to the affine hull ofP, if necessary, and by an appro-
priate translation). LetV be the set of vertices ofP, and consider the dual
hyperplanesHv := v∗, v ∈ V . If we orient all these hyperplanes consistently
so that the origin is on their negative side, then the intersectionQ of the closed
negative halfspacesH−

v , v ∈ V can be shown to be a convex polytope that is
polar toP.

Two special classes of polytopes deserve mentioning: A polytopeP is called
simplicial if all its proper faces are simplices of the appropriate dimension. A
polytope is calledsimpleif its polar is simplicial.

We conclude this section with a few words about a particular kind of polytope
that is closely related to the leitmotif of this thesis.

The k-Set Polytope. ForS ⊂ Rd, define

Pk(S) := conv
{∑

X : X ⊆ S, |X| = k
}

,

where
∑

X is a shorthand for
∑

x∈X x. If S is finite, thenPk(S) is a convex
polytope, which is known as thek-set polytopebecause of Fact 2.6 below,
and it is for this finite case thatPk(S) was first defined by Edelsbrunner,



Valtr, and Welzl [35]. ButPk(S) is also of interest in the infinite case. For
instance, in Chapter 3, we will encounterPk(Nd

0), which turns out to be a
convex polyhedron, called thecorner cut polyhedron. It was studied by Onn
and Sturmfels [60] in relation with computational commutative algebra.

It is not difficult to prove the following characterization of the vertices and
facets ofPk(S):

Fact 2.6. 1. A pointv ∈ Rd is a vertex ofPk(S) iff v =
∑

T for some
k-setT of S.

2. A facetF of Pk(S) corresponds to a hyperplaneH, spanned by points
fromS, such that|H− ∩ S| = j < k and|H− ∩ S| > k. More precisely,

F =
∑

(H− ∩ S) + Pk−j(H ∩ S),

every facet ofPk(S) is of this form, and conversely, eachH as above
gives rise to a facet.

Thus, if S is a finite set in general position, then each facet ofPk(S) cor-
responds to aj-facet ofS with k − d < j < k. The faces of intermediate
dimension can be characterized in terms of so-called(i, j)-partitions; see [8]
for the definition of this notion and a detailed analysis.

In dimensiond ≤ 3, Pk(S) is simplicial, and together with Euler’s formula,
this implies that the numbers ofk-sets respectivelyj-facets can be expressed
as linear combinations of each other. As mentioned at the end of the previous
section, this breaks down in higher dimensions.

The k-set polytope was first used [35] to derive the improved (compared to
(2.6)) upper bound

e1/2(S) = O(nd−2/d) (2.8)

if S is a so-calleddenseset of n points inRd, d ≥ 3. Here, a point set
is calleddenseif the ratio of the largest over the smallest distance between
any two points from isO(n1/d) (the constant in (2.8) depends on the implicit
constant in the definition of density). Let us digress for a moment to outline
the proof of (2.8), which proceeds along the following lines:

1. Assume thatS is a dense set ofn points inRd, n − d even, and set
j := (n − d)/2 andk := j + 1. By (2), everyj-facetσ of S gives
rise to a facetF(σ) of Pk(S), and sincek − j = 1, F(σ) is just a
translated copy of|σ|. Therefore, the total(d − 1)-dimensional area of
all j-facets is bounded from above by the(d − 1)-dimensional surface
area ofPk(S).



2. The homothetic copy1kPk(S) is contained in the convex hull ofS.
Therefore, the projection of1kPk(S) onto any coordinate hyperplane
is contained in the convex hull of the corresponding projection ofS,
and hence, by density, has(d − 1)-dimensional area at mostO(n

d−1
d ).

The total(d − 1)-dimensional surface area of a convex body is at most
two times the sum of the(d − 1)-dimensional areas of its projections
onto the coordinate hyperplanes. Therefore, the(d − 1) dimensional
surface area ofPk(S) is “not too large”, namelyO(kd−1n1−1/d). By
the first step, the same holds for the total area of allj-facets.

3. On the other hand, any collection of “many”(d − 1)-dimensional sim-
plices spanned by points from a dense set necessarily has “large” total
(d − 1)-dimensional area. (The precise statement and the proof of this
lemma are somewhat technical, see [35] for the details.) Therefore, if
there were too manyj-facets ofS (more thanCnd−2/d for some suit-
able constantC), then their total area would have to be too large, i.e.
would exceed the bound derived in the second step.

Remark 2.7. Edelsbrunner et al. [35] also showed, by a more direct approach,
that for a dense setS of n points in the plane,

e1/2(S) = O(
√

ne1/2(
√

n)).

In particular, any general bounde1/2(n) = O(n1+c) implies a bound of
O(n1+c/2) for dense point sets. If the number of halving edges was max-
imized by dense point sets, by bootstrapping, this would lead toe1/2(n) =
O(n polylog n), contradicting T́oth’s lower bound (2.7).



Chapter 3

Corner Cuts

In this chapter, we study thek-sets of the infinite setNd
0. These objects, which

also go under the suggestive names ofcorner cuts, were investigated by Onn
and Sturmfels [60] in connection with computational commutative algebra:
They showed that the corner cuts of a given sizek, or k-cuts, for short, in
dimensiond are in one-to-one correspondence with the Gröbner bases of a
certain kind of ideal in the polynomial ringK[x1, . . . , xd], K any infinite
field.

Apart from this algebraic connection, which we briefly review in Section 3.1,
corner cuts seem to be a very natural special instance of thek-set problem.

Onn and Sturmfels prove an upper bound ofO(k2d d−1
d+1 ) for the numberak(Nd

0)
of corner cuts of cardinalityk in dimensiond (as usual, the dimension is con-
sidered fixed). We will see in Section 3.2 that this can be quite easily improved
upon by restricting our attention to a suitable finite subset ofNd

0 and applying
some generalk-set bounds. However, applying methods that were devised for
point sets in general position does not do justice to corner cuts, because of the
massive affine dependencies within the setNd

0. We cannot afford to pass to
general position (by invoking some perturbation arguments, say), lest we risk
to increase the number ofk-sets dramatically: We will prove in Section 3.4
that

ak(Nd
0) = O((k log k)d−1) (3.1)

for any fixed dimensiond. Yet, as we will see below, the numbern =
n(k, d) of nonnegative integer points belonging to somek-cut roughly equals
k(log k)d−1, and from Chapter 2 we know that there are examples ofn-point
sets inRd that havenkd−2eΩ(

√
k) manyk-sets. Thus, sincee

√
log k grows
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faster than any given power oflog k, generalk-set estimates are of no avail if
we want to establish an upper bound of the formkd−1 polylog(k).

For the planar case, (3.1) specializes to the upper bound part of

ak(N2
0) = Θ(k log k),

which was proved by Corteel et al. [28]. In Section 3.3, we use this planar
result to derive a general lower bound

ak(Nd
0) = Ω(kd−1 log k), (3.2)

which shows that the upper bound (3.1) is quite tight. (It has been communic-
ated to me that the bounds (3.1) and (3.2) have been found independentlyby
Gäel Rémond.)

Finally, in Section 3.5, we discuss some algorithmic issues concerning corner
cuts, and mention a related open problem.

3.1 A Glimpse of the Algebraic Background

LetK be a field andK[x1, . . . , xd] the ring of polynomials ind indeterminates
overK. Recall that a setI of polynomials is called anideal if I contains the
zero polynomial0 and if for all f, g ∈ I and for anyh ∈ K[x1, . . . , xd], we
havef + g ∈ I andh · f ∈ I.

For any setF ⊆ K[x1, . . . , xd] of polynomials, there is a unique inclusion-
minimal ideal containingF , which is called theideal generated byF and
denoted by〈F 〉. It is a fundamental fact about polynomial rings (in a finite
number of indeterminates) over fields (or, more generally, over so-called com-
mutative Noetherian rings with unity) that every idealI in K[x1 . . . , xd] is
finitely generated, i.e., there exist a finite number of polynomialsf1, . . . , fs

such thatI = 〈f1, . . . , fs〉. This assertion is known as theHilbert Basis The-
orem(for a proof of this, and as references for the material discussed in this
Section, see the books by Cox, Little, and O‘Shea [29, 30] or by Sturmfels
[75, 76]).

Ideals are closely related to basic geometric objects, namely all those defined
by polynomial equations, such as affine subspaces (linear equations), conics
(ellipses, hyperbolas, parabolas) in the plane or quadrics in higher dimensions
(quadratic equations), and so forth. In general, a setV ⊆ Kd is called an
algebraic varietyif it is the set of zeros of a collection of polynomials, i.e., if
if for someF ⊆ K[x1, . . . , xd], we haveV = V (F ), where

V (F ) := {a ∈ Kd : f(a) = 0 for all f ∈ F}.



Observe that for anyF , we haveV (F ) = V (〈F 〉), so by the Hilbert Basis
Theorem, every variety is, in fact, defined by a finite number of polynomials.

Classic examples of ideals arevanishing ideals: For an arbitrary subsetA ⊆
Kd, the vanishing ideal ofA is the set of polynomials that evaluate to zero for
all pointsa = (a1, . . . , ad) ∈ A,

I(A) := {f ∈ K[x1, . . . , Kd] : f(a) = 0 for all a ∈ A}.
It is straightforward to check that this is indeed an ideal.

There are various basic algorithmic questions concerning ideals. For instance,
given an idealI = 〈f1, . . . , fs〉 and a polynomialf , we can ask whether
f ∈ I. This is called theIdeal Membership Problem.

In one indeterminate, this is easy. For univariate polynomialsf, g ∈ K[x1]
with g 6= 0, the standard algorithm for division with remainder produces
unique polynomialsq, r ∈ K[x1] such that

f = qg + r and deg(r) < deg(g).

Having division with remainder at our disposal, it is not difficult to see that
every idealI = 〈f1, . . . , fs〉 in K[x1] is in fact generated by one single poly-
nomial, namely by the greatest common divisor (GCD) of thefi’s. Recall that
the GCD is defined as the unique (up to multiplication by a nonzero constant)
polynomial inK[x1] that divides everyfi and is itself divisible by every other
polynomial dividing allfi. The essential observation for finding the GCD is
that for two polynomialsf, g, eitherg = 0, in which caseGCD(f, g) = f ,
or GCD(f, g) = GCD(f, r), wherer is the remainder upon dividingf by
g. Sincedeg(r) < deg(g), this gives an efficient algorithm to compute
the GCD of two polynomials, theEuclidean Algorithm, which extends im-
mediately to any finite number of polynomials sinceGCD(f1, . . . , fs) =
GCD(GCD(f1, . . . , fs−1), fs). Thus, for one indeterminate, the Ideal Mem-
bership Problem “f ∈ 〈f1, . . . , fs〉?” reduces to the question whetherf lies in
the ideal generated byg := GCD(f1, . . . , fs), which is the case iffg divides
f , i.e., iff the remainder upon dividingf by g is zero.

The extension to more indeterminates requires a measure of progress thattakes
the role of the degree for one indeterminate.

Definition 3.1 (Monomial orderings). A monomial orderingonK[x1, . . . , xd]
is a linear ordering≺ on the set of monomialsxα := xα1

1 · · ·xαd

d , α ∈ Nd
0

that

1. is compatible with multiplication, i.e.,xα ≺ xβ ⇒ xαxγ ≺ xβxγ

for all α, β, γ ∈ Nd
0, and



2. is awell-ordering, i.e., there is no infinite descending chainxα1 Â
xα2 Â xα3 Â . . .

Equivalently, we can view a monomial ordering as a well-ordering onNd
0 that

is compatible with addition.

For one indeterminate, the ordering1 = x0 ≺ x1 ≺ x2 ≺ . . . by degree is
the only monomial order. For several indeterminates, there are infinitely many
(see below). One standard example is the lexicographic order≺lex which for
two monomials first compares their degrees in the first variablex1, in case
of a tie compares the degrees in the second variable, and so forth. (Formally,
xa ≺lex xb iff for j := min{i : ai 6= bi}, we haveaj < bj .)

For a polynomialf =
∑

a caxa, the(multi)degreeof f w.r.t. to a monomial
ordering≺ is

deg≺(f) := max{a ∈ Nd
0 : ca 6= 0},

where the maximum is taken w.r.t.≺. Further,

in≺(f) := cdeg≺(f)x
deg≺(f)

is called theinitial or leading termof f .

With this terminology, the extension of polynomial division toseveral vari-
ables can be phrased as follows. Fix a monomial order≺ on K[x1, . . . , xd].
Given polynomialsf1, . . . , fs andf in K[x1, . . . , xd], there are polynomials
q1, . . . , qs (the “quotients”) andr (the “remainder”) such that

f = q1f1 + . . . + qsfs + r (3.3)

and the remainderr is either zero, or is aK-linear combination of monomials
none of which is divisible by any of the initial termsin≺(fi). Division by
several polynomials at once is necessary because for more than one indeterm-
inate, ideals in the polynomial ring are in general not generated by a single
polynomial.

The basic idea is the same as in the case of one indeterminate: cancel the
leading term off by multiplying one of thefi’s by an appropriate monomial
and subtracting. However, there are various subtleties that arise for several
indeterminates. For a discussion of these, as well as a precise algorithmic
description of how to find the expression (3.3), see Chapter 2 of [29].

One problem is that the expression (3.3) need not be unique. (In general,
it depends on the monomial order, on the particular implementation of the
division algorithm, and on the order in which thefi’s are considered.) For



instance, iff1 = xy + 1, f2 = y2 − 1 ∈ K[x, y], thenf = xy2 − x can be
written in two ways,

f = y(xy + 1) + 0(y2 − 1) + (−x − y) = 0(xy + 1) + x(y2 − 1) + 0.

This is particularly unpleasant, since the remainder in the first expression is
nonzero, while the second expression shows that actuallyf ∈ 〈f1, f2〉. Thus,
membership in an idealI = 〈f1, . . . , fs〉 is no longer characterized by the
vanishing of the remainder upon division by thefi’s (it is still a sufficient, but
not a necessary condition).

Luckily, this difficulty can be resolved by passing to generating sets with spe-
cial properties.

Definition 3.2 (Gröbner Bases).Let I be an ideal inK[x1, . . . , xd], and let
≺ be a monomial ordering. A finite subsetG = {g1, . . . , gs} ⊆ I is called
a Gröbner basisof I w.r.t. ≺ if for every f ∈ I, the leading termin≺(f) is
divisible by one of thein≺(gi)’s.

Gröbner bases were introduced by Buchberger in his dissertation [24] in 1965
(and named after his adviser, Wolfgang Gröbner). A Gr̈obner basis is always
a generating set for the ideal, and it turns out that every ideal has a Gröbner
basis w.r.t. any given monomial order. Moreover, if{g1, . . . , gs} is a Gr̈obner
basis of an idealI, then the remainderr upon dividing any polynomialf ∈
K[x1, . . . , xd] by thegi’s is unique. In particular,f ∈ I iff r = 0. (We note
that even for a Gr̈obner basis, the “quotients” in the polynomial division are
not uniquely determined.)

The Gr̈obner basis of an ideal w.r.t. a monomial ordering is not unique. For
instance, if we add some elements ofI to a Gr̈obner basis, we get a Gröbner
basis again. However, it turns out that for every≺ and everyI, there is a
unique Gr̈obner basisG that is reduced, in the following sense: For every
g ∈ G, we require thatcin≺(g) = 1, and that no monomial ofg be divisible
by the leading termin≺(g′) for anyg′ ∈ G \ {g}. The usefulness of Gröbner
bases for many applications rests upon the fact that they not only exist,but can
be computed. Buchberger devised an algorithm which takes a term order and
a finite set{f1, . . . , fs} ⊆ K[x1, . . . , xd] as input and outputs the reduced
Gröbner basis w.r.t.≺ for the ideal〈f1, . . . , fs〉.
Again, we can use this to solve the Ideal Membership Problem. Given a gener-
ating setf1, . . . , fs, choose a monomial ordering≺ and compute the (reduced)
Gröbner basisg1, . . . , gr for the idealI = 〈f1, . . . , fs〉 w.r.t.≺. As mentioned
above, a polynomialf lies inI iff the remainder upon dividingf by g1, . . . , gr

is zero.



This is only a very basic one among a host of applications of Gröbner bases,
see [29, 30] and [75]. Often, it plays an impotant role which monomial order-
ing is chosen. For instance, Gröbner bases with respect to the lexicographic
monomial order are very well suited for solving polynomial equations through
elimination of variables (see [29], Chapter 3). Other monomial orders have
other advantages. For example, the so-called graded reverse lexicographic or-
der (first order the monomials by their total degree, then by their degreein
xd, then by their degree inxd−1, and so forth) usually leads to small Gröbner
bases and that Buchberger’s algorithm often performs faster (a short discus-
sion of the known results about the complexity of Buchberger’s algorithm, and
further references, can be found in [29], Chapter 2,§ 9).

As mentioned above, there are infinitely many monomial orders if the number
of indeterminates is larger than one. To see this, let us identify the set of
all monomials ind indeterminates withNd

0. Any vectorw ∈ Rd induces
a partial order onNd

0 by comparing values of scalar products,a 4w b :⇔
〈w, a〉 ≤ 〈w, b〉. This partial order is compatible with addition. Moreover, if
w ≥ 0 componentwise, then there is no infinite descending chain, and ifw is
sufficiently generic (namely, if the entries ofw are linearly independent over
the fieldQ of rational numbers), then there are no ties, i.e.,4w is a linear
ordering. Thus, any suchw ∈ Rd

≥0 yields a monomial ordering≺w (and
these are all distinct). Note that not all monomial orderings onK[x1, . . . , xd]
are of this form. The lexicographic ordering, for instance, is not.

However, if we fix an idealI, then all monomial orders can be grouped into
finitely many equivalence classes, as described below, and in each equivalence
class, there will be a representative of the form≺w. For an idealI and a
monomial order≺, let in≺(I) be the ideal generated by the leading terms
in≺(f) of polynomialsf ∈ I. The condition forG being a Gr̈obner basis can
be rephrased asin≺(I) = 〈in≺(g) : g ∈ G〉. Further, ifin≺(I) = in≺′(I),
for two monomial orderings≺,≺′ then the reduced Gröbner bases ofI with
respect to these orderings coincide. Thus, we can declare≺ and≺′ to be
equivalent (more precisely, equivalent w.r.t.I) in this case. It can be shown
that for every idealI, there are only finitely many equivalence classes, and for
each equivalence class, there is a representative of the form≺w (see [75]).

One corollary is thatI has only finitely many distinct reduced Gröbner bases.
Hence,I even has auniversal Gr̈obner basis, i.e., a finite setU ⊆ I that
is simultaneously a Gröbner basis with respect to all monomial orderings:
simply take the union of all reduced Gröbner bases.

Another consequence is that we can look at the different Gröbner bases of an
ideal from a geometric viewpoint. Let us generalize the notion of leadingterm



to non-genericw by defining, for a polynomialf =
∑

a caxa, the “initial
form” inw(f) as the sum over all termscaxa such that〈w, a〉 is maximal
(among the exponentsa with ca 6= 0). We then defineinw(I) := 〈inw(f) :
f ∈ I〉, and say thatw, w′ ∈ Rd

≥0 are equivalent ifinw(I) = inw′(I). This
defines a partition ofRd

≥0 into equivalence classes, and this partition turns out
to be a polyhedral fan, called theGröbner fanof I (see Mora and Robbiano
[58]). That is, each equivalence class is a relatively open polyhedral cone,
and the closures of these cones form a fan in the sense that along with every
cone, all its faces are present, and that two closed cones intersect in a common
face. The full-dimensional cones of this fan correspond to the non-equivalent
monomial orders, i.e., to the reduced Gröbner bases ofI.

The link to polyhedral combinatorics is formed by the notion of a state poly-
hedron. IfF is a face of a convex polyhedronP ⊆ Rd, let us define the
(minimizing) normal coneNP(F) as the set of allw ∈ Rd that are minim-
ized onF , i.e., 〈w, x〉 = miny∈P〈w, y〉 for all x ∈ F . The normal fan
N (P) is the collection of all normal conesNP(F), F any face ofP. Note
that the full-dimensional cones inN (P) are precisely the normal cones of the
vertices ofP. A polyhedronP is called astate polyhedronof an idealI (see
[14]) if the normal fan ofP equals the Gr̈obner fan ofI.

Onn and Sturmfels [60] studied thek-set polyhedron (see Section 2.3)

Pk(Nd
0) = conv{

∑

x∈X

x | X ⊆ Nd
0 and|X| = k},

which they name thecorner cut polyhedron, and showed that it is the state
polyhedron of a particular class of ideals. Namely, ifI = I(q1, . . . , qk) is
the vanishing ideal of a set ofk pointsq1, . . . , qk ∈ Kd, and if theqi’s are
in a certain sense “generic” thenPk(Nd

0) is the state polyhedron ofI. Thus,
the distinct reduced Gröbner bases are in one-to-one correspondence with the
vertices ofPk(Nd

0), hence, by Fact 2.6, with the corner cuts of cardinalityk in
dimensiond. This can be used, for instance, to compute a universal Gröbner
basis ofI in polynomial time (for fixedd).

These results have been extended to a considerably broader class of ideals
(namely, all those for which the quotientK[x1, . . . , xd]/I has finite dimension
as a vector space overK) by Babson, Onn, and Thomas [9].

We leave the realm of computational commutative algebra at this point and
return to the combinatorial question of estimating the number of cornercuts.



3.2 How Many Lattice Points Are Involved?

Unless explicitly stated otherwise, let us assume for the remainder of this
chapter that whenever we encounter a hyperplaneH not containing the point
−1 = (−1, . . . ,−1), it is oriented in such a way that−1 lies in the negative
halfspaceH−.

Suppose that a corner cutT of sizek contains a lattice pointu = (u1, . . . , ud).
Then the whole “lattice box”Qu = {0 . . . u1}× . . .×{0 . . . ud} is contained
in T , and thereforek ≥ ∏d

i=1(1 + ui). In other words, all corner cuts of
cardinalityk are subsets of the finite setSd

k := {u ∈ Nd
0 | ∏d

i=1(1+ui) ≤ k}.

Observation 3.3. For any real numbery ≥ 1,

|Sd
y | ≤ y(1 + log y)d−1.

Proof. We proceed by induction ond: Ford = 1, |S1
y | = byc ≤ y. Moreover,

for d > 1 and integer1 ≤ j ≤ y, |{u ∈ Sd
y | 1 + ud = j}| = |Sd−1

y/j | ≤
(y/j)(1 + log(y/j))d−2. Therefore,

|Sd
y | ≤

byc
∑

j=1

(y/j)(1 + log(y/j))d−2 ≤ y(1 + log y)d−2

byc
∑

j=1

1

j
︸ ︷︷ ︸

≤1+log y

.

Observation 3.4. Everyk-setT of Sd
k that contains the origin is ak-cut.

Proof. Suppose for a contradiction thatT 3 0 is ak-set ofSd
k such that, for

every hyperplaneH with T = H− ∩ Sd
k , there exists some nonnegative lattice

pointu 6∈ Sd
k with u ∈ H−; call such a pointu a violator andH a witnessfor

u. Clearly,d > 1, andT is not contained in any coordinate hyperplane (else
we are done by induction).

Now, consider a violatoru that minimizes
∏d

j=1(1 + uj) and a witness hy-
perplaneH = {x ∈ Rd | 〈ν, x〉 = t} for u. If Q = {m ∈ Nd

0 | mj ≤
uj for 1 ≤ j ≤ d}, thenQ \ {u} contains at leastk points sinceu 6∈ Sd

k

Moreover,Q ⊂ H− = {x : 〈ν, x〉 < t}: By assumption,0 ∈ H−, and
so t > 0; moreover, all entries ofν must be positive, for ifνj ≤ 0, then
all the pointsiej = (0, . . . , i, . . . , 0), i ∈ {0 . . . k − 1}, would belong to
H− ∩ Sd

k = T , and hence they would constitute it, contradicting the fact that



T is not contained in any coordinate hyperplane. Sinceν andt are positive,
u ∈ H− impliesQ ⊂ H−.

Therefore,Q \ {u} = T . But then alluj ≥ 1 (otherwiseT would be con-
tained in some coordinate hyperplane) and so, for somej, H must intersect
thexj-axis at a distance greater thanuj + 1 from the origin. This, however,
contradicts the assumption thatH separatesT from Sd

k \ T because the point
(uj + 1)ej belongs toSd

k \ T and lies belowH.

Together with the generalk-set bound (2.6), the first observation immedi-
ately yieldsak(Nd

0) ≤ ak(Sd
k) = O(kd−c′d) for some small constantc′d > 0

(which, for simplicity, is adjusted in such a way that the variouslog k factors

are absorbed) as a first improvement over the the upper bound ofO(k2d d−1
d+1 ).

Furthermore, both observations together imply that the corner cuts of size k
are precisely thek-sets ofSd

k that contain0. This makes it easy to enumerate
all k-cuts by applying a knownk-set enumeration method by Andrzejak and
Fukuda [7] to the finite setSd

k , see Section 3.5.

3.3 The Lower Bound

Lemma 3.5. For everyd andk, the number of corner cuts of cardinalityk in
dimensiond satisfies

ak(Nd
0) ≥

k∑

i=1

ak(Nd−1
0 ).

Proof. We will show that for every(d − 1)-dimensional corner cutT of size
j, 1 ≤ j ≤ k, there is some corner cut̂T of cardinalityk in dimensiond with
T = Nd−1

0 ∩ T̂ .

Take someT of sizej as above with separating(d − 2)-dimensional flatF ⊆
Rd−1. Let us identifyRd−1 with Rd−1×{0} ⊆ Rd, and for a real parameter
t > 0, consider the hyperplaneHt spanned by the flatF and the the point
(0, . . . , 0, t), see Figure 3.1.

Observe that by choosingF in a sufficiently generic manner, we may assume
that noHt contains more than one lattice point.

Each of the hyperplanesHt defines a certaind-dimensional corner cutTt. For
t < 1, this is exactly our originalT . But ast grows, more and more lattice
points will be included, one at a time by our assumption onf , until for some



Ht xd-axis

0

T̂

T
F

H1/2

Rd−1

Figure 3.1: Lifting a corner cut.

appropriatêt, we obtain ad-dimensional corner cut̂T := Tt̂ of size k as
advertised. (Note that̂T depends on the choice of a separating flatF.)

Since we know thatak(N2
0) = Ω(k log k), and since

∑k
j=1 jd−2 log j ≥

∫ k

1
xd−2 log x dx = 1

d−1kd−1 log k−
∫ k

1
xd−2 ∼ 1

d−1kd−1 log k, we conclude
inductively:

Theorem 3.6. The number ofk-cuts ind dimensions satisfies

ak(Nd
0) = Ωd(k

d−1 log k).

3.4 The Upper Bound

For a point set in general position, it is often more convenient to considerk-
facets insteadk-sets. Let us introduce a notion that will serve a similar purpose
for degenerate point sets.

Definition 3.7. An oriented hyperplaneH is called ak-hyperplaneof a set
S ⊆ Rd if H is spanned by points fromS and moreover,|H− ∩ S| < k and
|H− ∩ S| ≥ k.

Note that, for a given vectorν 6= 0, there is at most onek-hyperplaneH of
S with outer normalν. Observe also thatH may be ak-hyperplane for more
than one value ofk.



For instance, according to our definition, the coordinate hyperplanes arek-
hyperplanes ofNd

0 for everyk > 0. On the other hand, consider aproper
k-hyperplaneH of Nd

0, i.e., one that is not one of the coordinate hyperplanes.
We claim that the outer normal vectorν = (ν1, . . . , νd) of H must be strictly
positive, i.e., allνi > 0. Clearly, we haveνi ≥ 0 (elseH− would contain
all sufficiently large integer multiplesmei of the ith coordinate vector and
thus not be finite). Further, by assumption, there ared points inNd

0 that span
H, and for each1 ≤ i ≤ d, one of these points, call itu, must haveith

coordinateui > 0, elseH would be just theith coordinate hyperplane. Since
ν is componentwise nonnegative, it follows thate1, . . . ,ed ∈ H− and that
0 ∈ H−. Thus,ν must in fact be strictly positive, for ifνi = 0, then along
with 0, the whole “ray”N0ei would lie in H−.

Definition 3.8. We say that ak-hyperplaneH of a setS ⊆ Rd is incidentto a
k-setT of S if S ∩ H− ⊆ T ⊆ H−.

The basic idea is that ifH is k-hyperplane incident to ak-setT of S, then we
can “encode”T by means ofH plus some additional information, which will
be specified below. In order to use this to bound the number of corner cuts,
we need the following:

Lemma 3.9. If S ⊆ Rd is finite and at least(d − 1)-dimensional, or ifS =
Nd

0, then fork > 0, everyk-setT of S is incident to somek-hyperplane ofS.

Admittedly, this lemma is rather obvious, but it nonetheless deserves aproof,
since there are malicious point sets for which the conclusion of the Lemma
does not hold. For instance, ifS = Z × {0} ∪ {(0, 1)} ∈ R2, then(0, 1) is
a 1-set ofS that is not incident to any1-hyperplane ofS (the problem is that
we insist that these be spanned by points fromS).

(0, 1)

. . . . . .

Figure 3.2: A malicious point set.

We also note that ifS is finite orS = Nd
0 and if H is ak-hyperplane ofS, then

the intersectionS ∩ H is again either finite orNd−1
0 . This will be important

since we will need to apply the lemma recursively.



Proof of Lemma 3.9.First observe that ifS = Nd
0, then we may assume that

T is a proper corner cut, i.e., is not contained in one of the coordinate hy-
perplanes. Otherwise, that coordinate hyperplane will serve as an incident
k-hyperplane forT . Let thenH0 be a separating hyperplane forT . Move this
hyperplane in parallel towardsT until we hit the first point, i.e., until we ob-
tain the unique parallel translateH1 of H0 such thatT ⊆ H−

1, T ∩H1 6= ∅, and
S\T ⊆ H+

1 . Observe that the only reason whyH1 might not be ak-hyperplane
is that it might not yet be spanned by points fromS. If this is problem occurs,
pick a (d − 2)-dimensional flatF such thatS1 ⊆ F ⊆ H1. We want to argue
that a suitable rotation ofH1 aboutF will produce a hyperplaneH2 such that
(i) S ∩ H−

2 ⊆ S ∩ H−
1 , (ii) S ∩ H+

2 ⊆ S ∩ H+
1 , and (iii)S1 = S ∩ H1 $ S ∩ H2.

That is, we can rotate until we catch a new point without traversing any points.
If we can convince ourselves that this claim is true, then we are done, since we
can successively increase the dimension ofS ∩ Hi through a sequence of such
rotations, untilHi is spanned by points fromS and hence ak-hyperplane. The
claim is clear for finiteS, but forS = Nd

0, we need a little argument. Observe
that sinceT is a proper corner cut, every hyperplaneH such thatT ⊂ H− and
H− ∩ Nd

0 is finite has strictly positive normal vector.

Observation 3.10. For any hyperplaneH with strictly positive normal vector,
there are only finitely many componentwise minimal elements ofNd

0 ∩H+ (i.e.,
elementsu ∈ Nd

0 ∩ H+ such that for any otherv ∈ Nd
0 ∩ H+, there is some

coordinatei with ui < vi).

Let M be the set of componentwise minimal elements ofNd
0 ∩ H+

1 , and let
N := S ∩ H−

1 . We rotateH1 aboutF (in an arbitrary direction) until we hit the
first pointp in N ∪M (we can do this since this is a finite set). We claim that
the resulting hyperplaneH2 spanned byF andp does the job. By construction,
condition (iii) is fulfilled and we haveH−

1 ∩Nd
0 ⊆ H−

2 ∩Nd
0. We only need to

verify that during the rotation, we did not inadvertedly traverse anyof the non-
minimal points fromNd

0 ∩ H+
1 . Let us writeH2 = {x ∈ Rd : 〈ν, x〉 = t}. It

suffices to show that the outer normal vectorν is componentwise nonnegative:
because then,v ∈ H−

2 for somev ∈ Nd
0H+

1 would imply that alsou ∈ H−
2

for some componentwise minimalu ∈ Nd
0 ∩ H+

1 , a contradiction. So, why

is ν ≥ 0? Observe that{0, e1, . . . ,ed} ⊆ T ⊆ H−
2 . Thus, in the defining

equation ofH2, we havet ≥ 0, and if someνi < 0, thenmei ∈ H−
2 for

all integersm > 0, contradicting the fact that for somem, mei ∈ M , and
M ⊆ H+

2 by construction.

Moreover, ifH is ak-hyperplane ofS, andS is finite , thenS ∩ H is finite, or
S ∩ H = Nd−1

0 , soS ∩ H is again a non-malicious(d − 1)-dimensional set.



For the remainder of this section, we only consider point sets that are “non-
malicious”, i.e., that satisfy the conclusion of Lemma 3.9.

Observe that ifH is ak-hyperplane incident to ak-setT and if H0 is a separat-
ing hyperplane forT then the open wedge(H− ∩ H+

0 ) ∪ (H+ ∩ H−
0 ) contains

no points fromS; that is, we can get fromH0 to H by a rotation (about the
(d − 2)-dimensional axisH ∩ H0) without traversing any points fromS.

Now, considerJ := H−
0 ∩ H ∩ S. This is aj-set (as witnessed by the

separating flatH0 ∩ H) of the (d − 1)-dimensional point setS ∩ H, where
j = k − |H− ∩ S|. What is more, we can recoverT from H andJ : Take any
(d − 2)-dimensional separating flatF for J in H; then a small rotation ofH
aboutF gives a separating hyperplaneH0 for T .

Lemma 3.11. Let T be ak-set of a (non-malicious)d-dimensional point set
S. SetFd := Rd and kd := k. ThenT can be uniquely represented by a
sequence(Fd−1, . . . , F1), where, for1 ≤ i ≤ d − 1, Fi is an i-dimensional
oriented flat, spanned by points fromS ∩ Fi+1, that forms aki+1-hyperplane
within Fi+1, andki = ki+1 − |S ∩ Fi+1 ∩ F−i |.

Proof. Applying the above observation recursively, we see that eachk-setT
of S can be represented by a sequence(h = Fd−1, Fd−2, . . . , F2) as specified
(up to the last entry) together with aj := k2-setJ of the two-dimensional
point configurationS ∩ F2.

But in two dimensions, everyj-setJ can be uniquely represented by aj-line
(that is, aj-hyperplane w.r.t. the surrounding 2-dimensional space): If`0 is a
separating line forJ take aj-line F1 incident toJ such that the angleα of F1

w.r.t. `0 is negative (that is,̀ arises from̀ 0 by a clockwise rotation).

Conversely, givenF1 andj, let i = j − |S ∩ F−1 | and leta andb be theith

and(i + 1)th point of S on F1, respectively (in the direction ofF1). Then a
small counterclockwise rotation ofF1 about the midpoint ofa andb gives a
separating linè 0 for J (see Figure 3.3). Observe that it is crucial to know
both F1 and j (we can reproduce the latter from our knowledge ofk and
(Fd−1, . . . , F2)).

Corollary 3.12. Everyk-setT of a discreted-dimensional setS can be en-
coded by a sign vectorε ∈ {+1,−1}d−1 together with a(d − 1)-tuple
(v1, . . . ,vd−1) of vectors of the following kind: There exist pointsp0, p1, . . . ,
pd−1 ∈ S that span ak-hyperplaneH incident toT and such thatvi =
(pi − p0) for i ∈ {1 . . . d − 1}.



F1

`0

J

a

b

Figure 3.3: An example withj = 9 andi = 1.

Proof. Given T , represent it by(Fd−1, . . . , F1) as above. Now, pick a pair
(p0, p1) of points that span thek2-line F1. Inductively, we construct a se-
quence of pointspi ∈ S, i ∈ {0 . . . d − 1} such thatp0, p1, . . . ,pi ∈ S span
the flatFi. Hence, if we setvi := (pi − p0), then the vectorsv1, . . . ,vi span
an i-dimensional linear flat parallel toFi, and by choosing appropriate signs
εi ∈ {+,−} we can also record the orientation ofFi within Fi+1.

Moreover, this encoding is one-to-one: Givenv1, . . . ,vd−1 andε1, . . . , εd−1,
we get the outer normal of thek-hyperplaneFd−1 of S, and henceFd−1 itself,
since we knowk. Thenkd−1 = k − S ∩ F−d−1, and by induction, we can
reconstruct the sequence(Fd−2, . . . , F1) from v1, . . . ,vd−2, ε1, . . . , εd−2 and
kd−1. But once we know allFi’s, the setT is uniquely determined.

Applying this toS = Nd
0, we see that everyk-cut T can be uniquely en-

coded by a sign vectorε ∈ {+,−}d−1 and thed × (d − 1)-matrixV = [vij ]
whose columns are the vectorsv1, . . . ,vd−1 constructed above. Now, we de-
rive some properties ofV that will allow us to estimate the number of such
matrices.

If H is one of the coordinate hyperplanes, thenT ⊆ H is essentially a corner
cut in dimensiond − 1, and we can handle the number of these inductively.
Thus, we may assume thatH is a properk-hyperplane, i.e. that its outer normal
vector is strictly positive.

Observation 3.13.A “corner simplex”∆ = Rd
≥0∩H− that containsr lattice

points has volumevold(∆) ≤ r.

Proof. For each lattice pointu ∈ ∆, consider the unit cube{x | uj ≤ xj ≤
uj + 1 for all j}. Clearly,∆ is contained in the union of these boxes, whose
volume isr.



Thus, the open simplex bounded by our properk-hyperplaneH and the co-
ordinate hyperplanes has volume at mostk; it follows that the same is true for
its closure.

Let B be thebounding boxof the pointspi, i ∈ {0 . . . d− 1}, i.e. the smallest
axis-parallel box[a1, b1]×. . .×[ad, bd] containing them. Since the hyperplane
H spanned by thepi is not one of the coordinate hyperplanes,B is a full-
dimensional box, i.e.bi − ai > 0 for all i ∈ {1 . . . d}.

Observation 3.14. Let H− be any halfspace containing allpi’s. Then

vold(B ∩ H−) ≥ 1

d!
vold(B).

Proof. Let H− = {x ∈ Rd | ν · x ≤ t}. Suppose without loss of generality
νd ≥ 0, and consider the projection of the points onto the the hyperplane{x ∈
Rd | xd = ad}. Then these projected points are contained inH−∩{xd = ad}.
By induction,P = H− ∩ B ∩ {xd = ad} has(d− 1)-dimensional volume at
least 1

(d−1)!

∏d−1
i=1 (bi −ai). But then, the pyramid whose base isP and whose

apex is anypj maximizing thexd-coordinate is contained inB ∩ H− and has
volume as guaranteed.

For each row indexi ∈ {1 . . . d} of the matrixV = [vij ], choose a column
indexj(i) ∈ {1 . . . d − 1} such that|vij(i)| = maxj |vij |. Then theith side of

the bounding boxB has lengthbi −ai ≥ |vij(i)| ≥ 1, whence
∏d

i=1 |vij(i)| ≤
vold(B) ≤ d! vol(h− ∩ B) ≤ d!k, by Observation 3.14.

Now, fix a sequence(j(1), . . . , j(d)) and positive integersm1, . . . , md such
that

∏d
i=1 mi ≤ d!k, that is,(m1 − 1, . . . , md − 1) ∈ Sd

d!k. What is the
number of integer matricesV = [vij ] such thatmi = |vij(i)| = maxj |vij |
for all i ∈ {1 . . . d}? Well, for each entryvij(i) we get to choose a sign
from {+,−}, while for the entriesvij with j 6= j(i) we may select any in-
teger from{−mi . . .mi}. Thus, we have2d

∏d
i=1(2mi + 1)d−2 = O(kd−2)

possibilities to choose the entries whenj(1), . . . , j(d) andm1, . . . , md are
fixed. Since there are(d − 1)d = O(1) choices for thej(i)’s and, by Ob-
servation 3.3,O(k(log k)d−1) choices for themi’s, we get a total of at most
O((k log k)d−1) candidate matricesV . These, together with sign tuplesε ∈
{+,−}d−1 suffice to encode allk-cuts for which we have picked an incid-
entk-hyperplaneh that is not one of the coordinate hyperplanes, hence there
are at mostO((k log k)d−1) suchk-cuts. But the remainingk-cuts corres-
pond to lower-dimensional corner cuts, and by induction, there are at most
O((k log k)d−2) of those. We have proved:



Theorem 3.15. The number ofk-cuts ind dimensions satisfies

ak(Nd
0) = O((k log k)d−1)

3.5 Remarks

Extensions of the upper bound. The above proof of the upper bound of
O((k log k)d−1) immediately extends to the total number of faces of the corner
cut polyhedronPk(Nd

0), and indeed even to the number offlagsof Pk(Nd
0),

where a flag of a polytopeP is a chainF1 ( . . . ( Fs of faces of the polytope.
In fact, the proof really is about flags. To see this, letF = conv{v1, . . . ,vm}
be anr-dimensional face ofPk(Nd

0), where eachvi =
∑

Ti for somek-
cut Ti (these are the bounded faces ofPk(Nd

0); on the other hand each un-
boundedr-face is contained in somer-dimensional intersection of coordinate
hyperplanes, so there are only2d unbounded faces altogether). ThenF corres-
ponds, in a one-to-one fashion, to anr-dimensional affine flatF that is parallel
to F and spanned by points fromNd

0, such that there exists a hyperplaneH

with the following properties:

1. F ⊆ H, andH ∩ Nd
0 = F ∩ Nd

0,

2. H− ∩ Nd
0 = T1 ∩ . . . ∩ Tm,

3. eachTi ⊆ H− ∪ F, and the setsTi ∩ F are precisely thej-sets ofNd
0 ∩ F,

wherej = k − |H− ∩ Nd
0|.

(H is an appropriate translate of the supporting hyperplane ofPk(Nd
0) that

definesF , and vice versa.)

Now, the total number of flags is at most2d times the number of maximal flags.
Thus, consider such a maximal chainv = F0 ( . . . ( Fd−1 of bounded faces
of Pk(Nd

0). This corresponds to a chainF0 ( . . . ( Fd−1 of flats as above,
wheredim Fi = dimFi = i for 0 ≤ i < d. Now, Fd−1 is ak-hyperplane of
Nd

0 (with the additional property that|F−d−1 ∩ Nd
0| > k), andFd−1, . . . , F1 is

a descending sequence of nested flats like the one constructed in Lemma 3.11.
But as we have seen, there are at mostO((k log k)d−1) such sequences, hence
at most that many flags.

The proof can also be adapted to show that there are at mostO((k log k)d−1)
many pairs (“incidences”)(H, p) whereH is a properk-hyperplane andp ∈
H ∩ Nd

0.



Weakness of the lower bound. For the lower bound, we considered ak-cut
T in dimensionNd

0 and showed that that for each0 ≤ i ≤ k, the “fiber”
{J ⊆ Nd−1

0 : J = T ∩ Nd−1
0 } is non-empty. Sinceaj(N

1
0) = 1 for all j in

dimension 1, this argument would only give a linear number of corner cuts of
sizek in dimension 2. But this number isk log k, so the “average” fiber must
have sizelog k. This might be considered as evidence that the lower bound in
Theorem 3.6 is not optimal. (To get a lower bound that matches the upper one
we have, we would have to show that the average fiber is of sizelog k in every
dimension.)

The algorithmic side. As noted in Section 3.2, enumerating thek-cuts in
dimensiond reduces to enumerating thek-sets ofS = Sd

k that contain the
origin 0. For this purpose, we can use thek-set enumeration algorithm of
Andrzejak and Fukuda [7], which is based on the paradigm of reverse search.
Conceptually, the algorithm implicitly builds a subtree of the edge graph of the
corner-cut polyhedronPk(Nd

0) and traverses this graph in a depth first manner.
The crucial issue is how to find the neighbors of a given vertexv =

∑
T . As

shown in [7], this reduces to solving certain linear programs. Some care is
needed to ensure that the algorithm handles degenerate point configurations
correctly, but on the other hand, the corner cut set-up is particularly nicein
that the coefficients of the LP’s will be integers in the range{0 . . . k}. In total,
the running time is (cf. [7])

ak(Nd
0)kn2 lpk(d, |Sd

k |) , (3.4)

wherelpk(d, n) denotes the time required to solve a linear program ind vari-
ables, withn constraints and coefficients from{0, . . . , k}. If we substitute the
upper bound of Theorem 3.15 and|Sd

k | = O(k(log k)d−1) in (3.4), we obtain,
for fixed dimensiond, a time complexity of

kd+2(log k)3d−3 lpk(d, k(log k)d−1) .

Recognizing vertices ofPk(N
d
0
). To conclude this section and this chapter,

let us mention a related open problem, posed by Onn and Sturmfels [60].
Suppose we are given a pointv ∈ Nd

0 and an integerk and want to know
whetherv is a vertex of the corner cut polyhedronPk(Nd

0). If the dimension
d is fixed, we can decide this in polynomial time by enumerating all corner
cutsT and checking for each of them whetherv =

∑
T . In the case of a

positive answer, this also provides a witness thatv is a vertex. The question
is, whether the problem can be solved in a number of steps that is bounded by
a polynomial ink andd.





Chapter 4

Origin-Embracing
Distributions

Suppose we choosen ≥ 3 random points,P1, . . . , Pn in the unit disk centered
at the origin, independently and identically distributed according to the uni-
form distribution. What is the probability that the convex hull of these points
contains the origin? There is an elegant way of determining this probability,
due to Wendel [87], see also [5]: First choosen random pointsQ1, . . . , Qn

independently and uniformly distributed in the disk. For eachi independently,
setPi to Qi or to−Qi with equal probability1/2. The pointsP1, . . . , Pn are
again independently and uniformly distributed random points in the disk. Ob-
serve that almost surely (a.s.), no two of theQi lie on a common line through
the origin,. Moreover, for any choice of theQi’s that satisfies this condition,
there are exactly2n possibilities to choose the signs for thePi’s such that
the origin can be separated from these points by a line: every partition of the
Qi’s by a line through the origin gives two such possibilities. Therefore, the
probability for the convex hull of thePi’s to contain the origin is precisely
1 − 2n/2n.

A second glance at the proof shows that all we used are the facts that the dis-
tribution is symmetric about the origin and that every line through the origin
has mass zero. More generally, the same argument shows that ifµ is a con-
tinuous probability distribution inRd which is centrally symmetric about the
origin, i.e. µ(B) = µ(−B) for all measurable sets, then the probability that
the origin is contained in the convex hull ofn ≥ 1 independentµ-distributed
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random points is

1 −
∑d−1

i=0

(
n−1

i

)

2n−1
. (4.1)

To see this, observe that the number of ways to partition a finite set{q1, . . . , qn}
of points inRd by a hyperplane through the origin equals the number of full-
dimensional cells in the arrangement of linear hyperplanesq∗

i := {x ∈ Rd :
〈qi, x〉 = 0} dual to the points. It is not hard to show by induction ond

that forn ≥ 1, the latter is exactly2
∑d−1

i=0

(
n−1

i

)
if the points are in linearly

general position.

What happens if we choose the points from a distribution that is notcentrally
symmetric? Given a continuous probability distributionµ and a pointo in
Rd, let us denote the probability thato is contained in the convex hull ofn
independentµ-random points byfn−d−1(µ,o) (the reason for the shift in the
index will become apparent later).

It was shown by Wagner and Welzl [84] that for anyµ ando,

1. the probabilityfn−d−1(µ,o) is at most the one given in (4.1).

2. Furthermore, this upper bound is attained iffµ is balanced abouto, in
the sense that every hyperplane througho equipartitionsµ. (We note
that balancedness, in turn, can be equivalently characterized by saying
that the radial projection ofµ onto the unit sphere centered ato is cent-
rally symmetric abouto, see Schneider [67].)

Somewhat surprisingly at first sight, this result can be considered a continuous
analogue of McMullen’s [52]Upper Bound Theorem (UBT)for convex poly-
topes, which gives exact upper bounds for the face numbers of ad-dimensional
convex polytope with a prescribed number of vertices.

The proof of the Upper Bound Theorem rests on the notion ofh-vectors.
These are fundamental invariants of simplicial convex polytopes (simple per-
turbation arguments show that the numbers of faces of all dimensions are max-
imized by such polytopes). The face numbers of a simplicial polytope can be
expressed as positive linear combinations of the entries of itsh-vector, and
what the UBT really does is to give exact upper bounds for these entries of the
h-vector. This implies the bounds for the face numbers.

For the the continuous analogue above, so-calledh-functionswere introduced.
The h-function associated with a distributionµ in Rd is a certain continu-
ous functionh = hµ,o : [0, 1] → R≥0, and as it turns out, up to a factor
depending only onk andd, the probabilityfk(µ,o) is given by thekth mo-
ment

∫ 1

0
xkhµ,o(x)dx. Therefore, a pointwise upper bound forh-functions,



the Continuous Upper Bound Theorem (CUBT), implies the bound (4.1) for
fn−d−1(µ,o) stated above.

Rather than just being a formal coincidence of proof strategies, however, the
definition of h-functions was motivated by a geometric re-interpretation by
Welzl [86] (and in similar form already noted by Lee [49], Clarkson [26], and
Mulmuley [59]) of h-vectors and their properties under Gale duality, so that
h-functions can truly be considered continuous counterparts ofh-vectors.

In Section 4.1, we review this duality, and the interpretation ofh-vectors and
their properties in both, the polytope set-up and the dual set-up. Wealso
summarize the results from [84] abouth-functions.

We then proceed to prove that another important result abouth-vectors also
carry over to the continuous set-up. To this end, we need a few facts about
particular sequences of probability distributions on the unit interval that in a
certain sense converge to point masses. We collect these facts in Section 4.2.
In Section 4.3, we use these findings to prove aContinuous Generalized Lower
Bound Theoremto the extent thath-functions are monotonically increasing on
the interval[0, 1/2] and decreasing on[1/2, 1].

In Section 4.4, we describe an application ofh-vectors andh-functions. We
useh-functions (respectively,h-vectors) to prove a continuous analogue of the
so-calledFirst Selection Lemma(respectively, to give an alternative proof of
the discrete version).

4.1 h-Vectors andh-Functions

Gale duality, which we summarize in Section 4.1.2, involves a shift indimen-
sion. Therefore, we will denote the dimension byD when speaking about the
polytope setting, and byd when speaking about the dual setting.

4.1.1 h-Vectors of Simplicial Polytopes

LetP be a simplicialD-dimensional polytope. Theh-vector

h(P) = (h0(P), . . . , hD(P))

of P is defined by

hj(P) :=
∑

k

(−1)j−k

(
D − k

D − j

)

fk−1(P), (4.2)



wherefk(P) denotes the number ofk-dimensional faces ofP.

The motivation for this at first sight rather mysterious definition comes from
the following geometric interpretation (see Kalai [47]): LetP∗ be the polar
polytope ofP (i.e., the face lattice ofP∗ is obtained by turning that ofP
upside down). Any linear functionalc on RD such that the values〈c, v〉 of
the vertices ofP∗ are distinct induces an orientation of the edge graph ofP∗:
orient every edge from the endpoint with smaller towards the endpointwith
largerc-value.

SinceP is simplicial, its polarP∗ is simple, i.e., every vertexv of P∗ of is
incident to exactlyD edges, and anyk of these edges span ak-dimensional
face ofP∗ incident to the vertexv and these edges. Moreover, every nonempty
faceF of P∗ has a unique sink with respect to the orientation induced byc,
i.e., a unique vertexv ∈ F such all edges ofF incident tov are directed
towardsv.

Let us double-count the pairs(F , v), whereF is ak-dimensional face ofP∗.
On the one hand, we count exactly the numberfk(P∗) of k-dimensional faces
of P∗. On the other hand, if a vertexv has in-degreejv, thenv is the sink of
precisely

(
jv

k

)
faces of dimensionk (anyk of the incoming edges span such a

face, and any face is of that form). Thus, if we denote the number of vertices
with given in-degreej by hj (at first sight, this number depends onc), we
obtain

fk(P∗) =
∑

j

(
j

k

)

hj . (4.3)

Now we observe that if two sequences(ak) and (bj) of complex numbers
satisfyak =

∑

j

(
j
k

)
bj for all k, then this simply means that the two formal

power seriesA(x) :=
∑

k akxk andB(x) :=
∑

j bjx
j satisfyA(x) = B(x+

1). Hence,B(x) = A(x − 1), and by comparing coefficients, we obtain
bj =

∑

k(−1)k−j
(
k
j

)
ak for all j. Thus,

hj =
∑

k

(−1)k−j

(
k

j

)

fk(P∗) (4.4)

for all j, and the numbershj depend only onP∗ and not onc. Thus, by
considering the functional−c, we see that the following holds:

Theorem 4.1 (Dehn-Sommerville Relations [31, 72]).If P is aD-dimensional
simplicial convex polytope, then for allj,

hj(P) = hD−j(P). (4.5)



Note that the special casej = 0 of (4.5) together with (4.4) yields theEuler-
Poincaŕe Formulafor simplicial polytopes:

f0(P) − f1(P) + . . . + (−1)D−1fD−1(P) + (−1)D = 1

Observe that if we substitute into (4.4) the face numbersfk(P) = fD−1−k(P∗)
and use the Dehn-Sommerville Relations, we arrive at equation (4.2) above.

Alternatively, the numbershj(P) can be interpreted via so-calledshellingsof
P. This is the original approach of McMullen [52], who introduced theh-
vector as the major tool in his proof of the UBT (until then the Upper Bound
Conjecture). Vaguely speaking, a shelling of a simplicial polytopeP is a way
of building up the boundary of the polytope in a nice fashion. Specifically,
it is an orderingF1, . . . ,Fm of the facets ofP such that for each1 < i ≤
m, the intersection ofFi with the union

⋃

r<i Fr of the previous facets is
“well-behaved”: the intersection should be nonempty and “pure(D − 2)-
dimensional”, i.e., for everyr < i there should be somes < i such that
Fr ∩ Fi ⊆ Fs ∩ Fi and the latter is a(D − 2)-dimensional face ofP.

Given such a shelling, one can definehj(P) as the number of facetsFi such
that exactlyj of the(D− 2)-dimensional faces ofFi are already contained in
some earlierFr. (Observe that sinceFi is a(D−1)-dimensional simplex and
hence has a total ofD faces of dimensionD − 2, the interesting range forj is
again between 0 andD.)

Since the vertices ofP∗ are in bijection with the facets ofP, any generic
linear functionalc in the polar set-up induces an ordering on the facets ofP,
and as it turns out, this is a shelling ofP and the two definitions ofhj(P)
agree. For an introduction to shellings of polytopes (including a definition
for general polytopes, or still more generally, for polytopal complexes) and an
overview of their applications and many references, see Chapter 8 of Ziegler
[91], which also contains an account of McMullen’s proof of the

Theorem 4.2 (Upper Bound Theorem [52]).Theh-vector of a simplicial
d-dimensional polytopeP onn vertices satisfies

hj(P) ≤ min

{(
n − D − 1 + j

n − D − 1

)

,

(
n − j − 1

n − D − 1

)}

(4.6)

for all j. Moreover, if equality is attained for somebD/2c ≤ j ≤ D, thenP
is neighborly, i.e., every set of at mostbD/2c vertices span a face ofP, and
then (4.6) holds with equality for allj.

In order to see whath-vectors have to do with the probabilitiesfk(µ,o), we
need furthermore the following form of duality.



4.1.2 Gale Duality

Gale Duality for Vector Configurations. Let v1, . . . ,vn ∈ Rr be (not ne-
cessarily distinct) vectors that linearly spanRr. Consider thevi’s as columns
of an(r × n)-matrix

A :=





| | |
v1 v2 · · · vn

| | |



 .

SupposeH is a oriented hyperplane{x ∈ Rr : 〈ν, x〉 = 0} through the origin.
We can encode the wayH partitions the vectors by writing down the sequence
(〈ν, v1〉, . . . , 〈ν, vn〉) ∈ Rn of scalar products:vi lies in H+, on H, or in
H−, respectively, depending on whether〈ν, vi〉 is positive, zero, or negative.
(We could also decide to only remember the sign∈ {+, 0,−} of each of these
scalar products, which would lead to the notion oforiented matroids[17], but
let us stick with their actual values.) For any vectorν ∈ Rd (the zero vector
ν = 0 is allowed, too), the vector(〈ν, v1〉, . . . , 〈ν, vn〉) ∈ Rn is called a
linear valuationof thevi’s.

Let a1, . . . ,ar ∈ Rn denote the rows ofA,

A =






−−−−−a1 −−−−−
...

−−−−−ar −−−−−




 .

The set of all linear valuations of thevi’s is precisely ther-dimensional sub-
space ofRn spanned by these rows, or in other words, the imageim AT of
the transpose ofA.

Now, choose a basisb1, . . . , bn−r of the orthogonal complement ofim AT in
Rn, i.e., of the kernelkerA, and letB be the matrix which has these vectors
as rows,

B :=






−−−−− b1 −−−−−
...

−−−− bn−r −−−−




 .

If we denote the columns ofB by w1, . . . ,wn,

B =





| | |
w1 w2 · · · wn

| | |



 ,



then it is easy to see that the collection of vectorswi ∈ Rn−r is unique up
to a bijective linear transformation ofRn−r, and they, in turn, determine the
vi’s up to a linear change of coordinates ofRr.

The map that maps{vi : 1 ≤ i ≤ n} to {wi : 1 ≤ i ≤ n} and vice
versa is called theGale transform. Observe that this is a transformation not
of individual vectors, but of whole sets (or rather multisets, since there can be
repetitions) of vectors, also sometimes calledvector configurations. The two
vector configurations{vi : 1 ≤ i ≤ n} and{wi : 1 ≤ i ≤ n} are calledGale
dualsof each other.

By definition, we haveim AT = kerB andker A = imBT . Thus,α =
(α1, . . . , αn) ∈ Rn is a linear valuation of thevi’s iff α is a linear depend-
enceof thewi’s, i.e.,

∑n
i=1 αiwi = 0, and vice versa.

Gale Diagrams of Point Configurations. The standard trick to translate
affine notions into linear notions is to embedRD as the hyperplaneRD ×{1}
into RD+1. Then a pointq ∈ RD corresponds to(q, 1) ∈ RD+1, and an
affine hyperplaneH = {q ∈ RD : 〈ν, q〉 = t} in RD can be interpreted
as the intersection ofRD × {1} with the linear hyperplane{x ∈ RD+1 :
〈(ν,−t), x〉 = 0}, see Figure 4.1.

0

q H

R
d × {1}

Figure 4.1: Translating affine to linear notions.



Given a multiset of pointsq1, . . . , qn ∈ RD that affinely spanRD, the Gale
dual of the vector configuration(q1, 1), . . . , (qn, 1) ∈ RD+1 is a vector con-
figurationw1, . . . ,wn in Rn−D−1 and is called the (linear)Gale diagramof
theqi’s.

Observe that the Gale diagram of a point configuration has a special property:
The vector(0, . . . , 0, 1) ∈ RD+1 yields the linear valuation(1, 1, . . . , 1) ∈
Rn of the vectors(qi, 1). This translates to the linear dependence

∑n
i=1 wi =

0, i.e., the origin0 ∈ Rn−D−1 is the center of gravity of thewi’s.

Let us now apply this to polytopes. LetP be the convex hull ofq1, . . . , qn ∈
RD. We do not assume that allqi are vertices of the polytopeP, but we
do assume thatP is D-dimensional, i.e., that theqi’s affinely spanRD. Let
w1, . . . ,wn ∈ Rn−D−1 be the Gale diagram of thepi’s.

SupposeI ⊆ {1 . . . n} and the pointsqi, i ∈ I, lie on asupportinghyper-
planeH of P, i.e.,qi ∈ H for i ∈ I andP is contained in one of the closed
halfspaces bounded byH. If H is given as{q ∈ RD : 〈ν, q〉 = t}, we get the
linear valuation(α1, . . . , αn) with αi := 〈ν, qi〉 of the vectors(qi, 1). This
translates into a linear dependence

∑n
i=1 αiwi for the dual configuration.

Moreover, sinceH is a supporting hyperplane, we may assume thatαi = 0 for
i ∈ I andαi ≥ 0 for i ∈ {1 . . . n}\I. Thus, the origin0 ∈ Rn−D−1 lies in the
convex hullconv{wi : i 6∈ I}, as witnessed by the convex combination0 =
∑

i 6∈I λiwi, whereλi = αi
P

i αi
. The remaining assertions of the following

lemma are derived similarly, see [86].

Lemma 4.3. LetP be the convex hull of pointsq1, . . . , qn that affinely span
RD, and letw1, . . . ,wn ∈ Rn−D−1 be the Gale diagram of of theqi’s.

1. For I ⊆ {1 . . . n}, the pointsqi, i ∈ I, lie on a supporting hyperplane
ofP iff the origin is contained inconv{wi : i 6∈ I}

2. P is simplicial iff the origin does not lie in the convex hull of any subset
of thewi’s of size less thann − D.

3. If P is simplicial, then for anyI ⊆ {1 . . . n} of cardinality|I| ≤ D, the
set{qi : i ∈ I} is the vertex set of an(|I|−1)-dimensional face ofP iff
the origin is contained in the interior of the convex hull of{wi : i 6∈ I}.
In particular, qi is a vertex ofP iff the origin lies in the interior of
{wl : l 6= i}.

Now we are very close to the question considered at the outset of this chapter.



Definition 4.4. Let S be a set ofn points in Rd and o a point such that
o ∈ conv S, buto is not contained in the convex hull of fewer thand+1 points
from S. Let us say in this case thato is in general positionw.r.t. S. (this is
satisfied ifS ∪̇ {o} is in general position, but it is a weaker assumption). For
integerk, we define

fk(S, o) := |{X ⊆ S : |X| = d + 1 + k,o ∈ int(conv X)}|.

Observe that we could as well writeo ∈ conv X, since by assumption,o can-
not be contained in the boundary ofconv X. Moreover, sinceo ∈ int(conv X)
is invariant under sufficiently small perturbations ofX, we can perturbS, so
as to bringS ∪̇ {o} into general position, without affectingfk(S, o).

With this notation, Lemma 4.3 says that ifS is the Gale diagram of the vertex
set of aD-dimensional simplicial convex polytope and if0 is the origin in
Rn−D−1, then

fk(S,0) = fD−k−1(P) = fk(P∗),

whereP∗ is the simple polytope polar toP.

Conversely, letS = {p1, . . . ,pn} ⊆ Rd, and leto be a point that lies in
conv S and is in general position w.r.t.S. Note that this implies thatS affinely
spansRd and thato lies in the interior ofconv S. It follows that there is a
convex combinationo =

∑n
i=1 λipi with all λi > 0. Furthermore, up to a

suitable translation, we may assume thato is the origin ofRd (i.e., we can
interpretpi ∈ S as the vectorpi − o). Under that assumption, ifo lies in (the
interior of) conv{pi : i ∈ I} for someI ⊆ {1 . . . n} and if αi > 0, i ∈ I,
theno also lies in the (interior of) convex hull of{αipi: i ∈ I}. Thus, we
may rescale the elements ofS at our leisure without affectingfk(S, o), and by
rescaling eachpi by the factor of 1

λi
, with theλi above, we may assume that

o is the center of gravity ofS, i.e.,o =
∑n

i=1 pi. Therefore, ifv1, . . . ,vn ∈
Rn−d is the Gale dual of thevectorconfigurationpi, 1 ≤ i ≤ n, then all the
vi lie on a common hyperplaneH = {x ∈ Rn−d : 〈ν, x〉 = 1}, and we can
interpret thevi’s as pointsqi ∈ H ∼= Rn−d−1. Then thepi’s are the Gale
diagram of theqi’s, so Lemma 4.3 applies again. Summarizing, we arrive at
the following theorem, which was proved in [86]:

Theorem 4.5. 1. If P is aD-dimensional simplicial polytope onf0(P) =
n vertices, then there exist a point setS ⊆ Rd, d := n − D − 1, and a
pointo ∈ Rd such that

fk(S, o) = fD−k−1(P) = fk(P∗) (4.7)



for all k. By a sufficiently small perturbation, if necessary, we may
assume thatS ∪̇ {o} is in general position.

2. Conversely, ifS is a set ofn points inRd that is non-degenerate w.r.t.
a pointo ∈ conv S, then there is a simplicial convexD-polytope,D =
n−d−1, onm ≤ n vertices such that (4.7) holds for allk. In particular,
the numberm = f0(P) of vertices ofP equals the number of points
p ∈ S that can be strictly separated fromS \ {p} by a hyperplane
througho.

In analogy to (4.2) and (4.4), we could now define theh-vector ofS ando

by hj(S, o) :=
∑

k(−1)k−j
(
k
j

)
fk(S, o). While this is a perfectly respectable

definition, the reasons whyh-vectors are useful for the study of polytopes is
that they can be interpreted geometrically (via shellings of the polytope or
linear objective functions on the polar polytope, as we saw above). In what
follows, we describe such a geometric interpretation in the dual set-up, given
by Welzl [86]. The basic approach is to first analyze the probability that a
given line intersects the convex hull ofn random points, which then translates
to the above setting by the projection onto the hyperplane orthogonal to the
line.

4.1.3 h-Vectors in the Dual Setting, andh-Functions

Let σ be an oriented(d − 1)-dimensional simplex inRd. An oriented line
` ⊆ Rd is said toenterσ if ` intersects the relative interior ofσ in a single
point and is directed from the positive to the negative side ofσ. If ` is directed
from the negative to the positive side, we say that itleavesσ.

Definition 4.6 (Theh-vector of a point set and a line [86]).Consider a setS
of n points inRd, and an oriented linèwhich is disjoint from the convex hull
of any subset ofS of size less thand. We say in that case that` is in general
position w.r.t.S. For integerj, we definehj(S, `) as the number ofj-facets of
S which are entered bỳ, and we callh(S, `) := (h0(S, `), . . . , hn−d(S, `))
theh-vectorof S and`.

In order to define the corresponding concept for probability distributions, we
need the notion of aµ-random simplex. Recall that orienting a(d − 1)-
dimensional simplexσ in Rd simply means to specify one of the halfspaces
bounded by the hyperplaneaff σ as positive. In dimensiond ≥ 2, if the
simplex is spanned by affinely independent pointsp1, . . . ,pd ∈ Rd, then an



orientation is given in a natural way by the order in which the points come:
simply define the positive halfspace as

H+([p1, . . . ,pd]) :=
{
q ∈ Rd : det

[
1

p1

· · · 1

pd

1

q

]

> 0
}
.

We denote the resulting oriented simplex by[p1, . . . ,pd]. In dimensiond = 1,
we need an additional signε ∈ {+,−} and setε[p] to be the oriented simplex
with H+(ε[p]) := {q ∈ R1 : ε · (q − p) > 0}.

Equipped with this notation, we define, ford ≥ 2, a µ-random (oriented,
(d − 1)-dimensional) simplexas the oriented simplex[P1, . . . , Pd] spanned
by independentµ-random pointsP1, . . . , Pd (by assumption onµ, the points
are a.s. affinely independent). In dimensiond = 1, we choose an additional
independent random signε uniformly from {−1, +1} and obtain the random
simplexε[P1].

In analogy to Definition 4.6, we would now like to define, for a real number
0 ≤ y ≤ 1, hµ,`(y) as the probability that aµ-random simplexσ is ay-facet
of µ, i.e.,µ(H+(σ)) = y, and is entered bỳ. Unfortunately, that probability
will be zero for everyy. This technical nuisance is remedied by first defining
a distribution function and then taking the derivative.

Definition 4.7 (h-functions [84]). For a continuous probability distribution
and an oriented linè in Rd, the functionHµ,` : [0, 1] → [0, 1] is given by

Hµ,`(y) := Pr[` entersσ andµ(H+(σ)) ≤ y], (4.8)

whereσ is aµ-random oriented(d − 1)-dimensional simplex. (Note that the
map(p1, . . . ,pd) 7→ µ(H+([p1, . . . ,pd])) is continuous, hence measurable,
on the open set of affinely independentd-tuples(p1, . . . ,pd) ∈ Rd×d such
that` enters[p1, . . . ,pd].)

Clearly, Hµ,` is monotone, from which it follows that its derivative, theh-
function

hµ,`(y) :=
d

dy
Hµ,`(y) (4.9)

of µ and` is defined almost everywhere (a.e., for short, i.e., the set ofy ∈ [0, 1]
for which it is not defined has Lebesgue measure zero) and nonnegative. We
note thath is, in fact, defined everywhere and continuous, as we will see in
Theorem 4.13 below.

Furthermore, in the set-up of the above definitions and for integerk, let

fk(S, `) := |{X ⊆ S : |X| = d + k, and` intersectsconv X}|,



and
fk(µ, `) := Pr[` intersectsconv{P1, . . . , Pd+k}],

whereP1, P2, P3, . . . are independentµ-distributed random points. In analogy
to (4.3), we have for either orientation of`,

fk(S, `) =
∑

j

(
j

k

)

hj(S, `) (4.10)

for all k, as was shown in [86]. The continuous counterpart was proved in [84]
and reads

fk(µ, `) = 2

(
d + k

d

) ∫ 1

0

ykhµ,`(y)dy. (4.11)

As before, it follows from (4.10) that theh-vectorh(S, `) is uniquely determ-
ined by (f0(S, `), . . . , fn−d(S, `)) via hj(S, `) =

∑

k(−1)j−k
(
k
j

)
fk(S, `).

Similarly, in the continuous case, the functionhµ,` can be shown to be uniquely
determined by the sequencefk(µ, `), k ∈ N0, which up to constant factors
depending only ond andk is just the sequence of itsmoments. Roughly speak-
ing, if the kth moment

∫

R
ykf(y)dy of an integrable functionf exists, then

it is (up to constant factors) thekth derivative at zero of the Fourier transform
f̂(x) =

∫

R
eixyf(y)dy. Under suitable niceness assumptions onf , the Taylor

series off̂ converges, so the moments determinef̂ , which in turn determines
f . We refer to [33] for a proof of these facts in a more general context. See
also Remark 4.14 below.

Sincefk(S, `), respectivelyfk(µ, `) are independent of the orientation of`,
it follows that the same holds forh(S, `), respectivelyhµ,`, which proves the
following

Theorem 4.8 (Dehn-Sommerville Equations [86], [84]).For S, µ, and` in
Rd as above,|S| = n, we have

hj(S, `) = hn−d−j(S, `)

for all j, and
hµ,`(y) = hµ,`(1 − y)

for all 0 ≤ y ≤ 1.

We are now ready to relateh-functions to the probabilitiesfk(µ,o) which we
considered at the beginning of this chapter.



Projections and Liftings. Consider a linẽ̀ in Rd+1 (we mark objects in
Rd+1 with a tilde to tell them apart from those inRd). We identifyRd with
the orthogonal complement̃`⊥. Let π be the orthogonal projectionRd+1 →
˜̀⊥ ∼= Rd.

If µ̃ is a probability distribution inRd+1, then we call the probability distribu-
tion µ := π(µ̃) in Rd together with the pointo := π(˜̀) ∈ Rd theprojection
of µ̃ and ˜̀and writeπ(µ̃, ˜̀) for the pair(µ,o). Analogously, ifS̃ is a point
set inRd+1 andS := π(S̃) ⊆ Rd, then we call the pair(S, o) the projection
of S̃ and ˜̀and denote it byπ(S̃, ˜̀). (Note thatµ, S, ando are only defined
up to an affine change of coordinates ofRd, but all notions we will study are
invariant under such transformations.) Observe that ifµ̃ is continuous, then so
is µ. Similarly, if ˜̀ is in general position w.r.t.̃S theno is in general position
w.r.t. S.

Conversely, giveno ∈ Rd and a probability distributionµ (respectively, a
point setS) in Rd, a lifting of µ ando (respectively, ofS ando) is any line
˜̀⊆ Rd+1 together with a probability distributioñµ (respectively, a point set
S̃) in Rd+1 such that(µ,o) = π(µ̃, ˜̀) (respectively,(S, o) = π(S̃, ˜̀)).

If µ is continuous ando is in general position w.r.t.S, then there are suitable
liftings with the same properties: Let̃` = {o} × R ⊆ Rd+1. Choose your
favorite continuous probability distributionν onR and takẽµ as the product
measureµ× ν onRd ×R = Rd+1; respectively, pick independentν-random
numberstp, p ∈ S and setS̃ := {(p, tp) ∈ Rd+1 : p ∈ S}. We will only
consider such “generic” liftings in what follows.

Assume now that(µ,o) = π(µ̃, ˜̀), respectively,(S, o) = π(S̃, ˜̀). We have

fk(S, o) = fk(S̃, ˜̀).

and
fk(µ,o) = fk(µ̃, ˜̀)

for all k ≥ 0. Therefore, by (4.10) and (4.11), respectively, we get for either
orientation of˜̀ that

fk(S, o) =
∑

j

(
j

k

)

hj(S̃, ˜̀). (4.12)

and

fk(µ,o) = 2

(
d + 1 + k

d + 1

) ∫ 1

0

ykhµ̃,˜̀(y)dy. (4.13)

Thus,h(S̃, ˜̀), respectivelyhµ̃,˜̀ depend only onS, respectivelyµ, ando.



Definition 4.9. For a finite point setS, respectively a distributionµ, and a
pointo in Rd as above, we define

hj(S, o) := hj(S̃, ˜̀)

and
hµ,o(y) := hµ̃,˜̀(y),

for arbitrary liftings(S̃, ˜̀) and(µ̃, ˜̀) of S, respectivelyµ, ando.

By (4.13), a pointwise upper bound for theh-function of a probability distri-
bution and a line implies an upper bound for the probabilitiesfk(µ,o) con-
sidered at the beginning of this chapter. The proof of the the upper bound
proceeds by induction on the dimension and uses the following notions, which
we will also need in Section 4.3.

4.1.4 The Upper Bound Theorem, Discrete and Continuous

Let ` ⊆ Rd be an oriented line,o a point on`, andσ an oriented(d − 1)-
dimensional simplex. We say that` entersσ before (respectively, after)o if `
entersσ ando ∈ H−(σ) (respectively,o ∈ H+(σ)).

Definition 4.10 (h∗ and ∗h). Let ` be an oriented line inRd ando ∈ `.

1. Suppose thatS ⊆ Rd, |S| = n, and thato is not contained in the convex
hull of fewer thand + 1 points fromS and that̀ is not intersected by
the convex hull of fewer thand points fromS. Then we defineh∗

j =
h∗

j (S, `,o) and∗hj = ∗hj(S, `,o), as the number ofj-facets ofS that
are entered bỳ before, respectively, after,o.

2. Similarly, for a continuous probability distributionµ in Rd, we set

H∗(y) = H∗
µ,`,o(y) := Pr[` entersσ beforeo andµ(H+(σ)) ≤ y].

for 0 ≤ y ≤ 1. As before, the derivative

h∗(y) = h∗
µ,`,o(y) :=

d

dy
H∗

µ,`,o(y)

is defined a.e. and nonnegative. The functions∗H and∗h are defined
analogously, with “before” replaced by “after”.



Note that by our assumptions about general position,

hj(S, `) = h∗
j (S, `,o) + ∗hj(S, `,o)

and
hµ,`(y) = h∗

µ,`,o(y) + ∗hµ,`,o(y).

Again, the moments ofh∗ and∗h can be interpreted geometrically. We say
that ` passes into(respectively,exits from) a compact convex setC beforeo

if, while walking along` in the direction in which it is oriented, we encounter
the first (respectively, last) point of intersection of` andC beforeo.

Consider a finite setX such that̀ entersconv X beforeo. Either` also exists
from conv X beforeo, or o ∈ conv X. For lack of a better notation, let us
define

sk(S, `,o) := |{X ⊆ S : |X| = d + 1 + k, ` passes intoconv X beforeo}|

and

tk(S, `,o) := |{X ⊆ S : |X| = d + 1 + k, ` exits from conv X beforeo}|.

Analogously,

sk(µ, `,o) := Pr[` passes intoconv{P1, . . . , Pd+1+k} beforeo}

and

tk(µ, `,o) := Pr[` exits from conv{P1, . . . , Pd+1+k} beforeo},

where thePi’s are independentµ-random points. Then,

fk(S, o) = sk(S, `,o) − tk(S, `,o) (4.14)

and
fk(µ,o) = sk(µ, `,o) − tk(µ, `,o). (4.15)

Observe that since the left-hand sides are independent of`, so are the right.

The last link is provided by the following lemma. Forh-vectors, it was proved
in [86], and forh-functions in [84].

Lemma 4.11. For all k ≥ 0,

sk(S, `,o) =
∑

j

(
n − d − j

k + 1

)

h∗
j (S, `,o)



and

tk(S, `,o) =
∑

j

(
j

k + 1

)

h∗
j (S, `,o).

Similarly, in the continuous case,

sk(µ, `,o) = 2

(
d + 1 + k

d

) ∫ 1

0

(1 − y)k+1h∗(y)dy

and

tk(µ, `,o) = 2

(
d + 1 + k

d

) ∫ 1

0

yk+1h∗(y)dy.

By substituting this into (4.14) and (4.15), respectively, and applying tele-
scopic summation and integration by parts, respectively, we obtain

fk(S, o) =
∑

j

(
j

k

) (
j

∑

i=0

h∗
i (S, `,o) − h∗

n−d−i(S, `,o)

)

(4.16)

and

fk(µ,o) =

2

(
d + 1 + k

d

) ∫ 1

0

yk

(

(d + 1)

∫ y

0

h∗(x) − h∗(1 − x) dx

)

dy. (4.17)

By comparing (4.16) with (4.12), we conclude (see [86]):

Theorem 4.12. If S is a set ofn points inRd ando is a generic point w.r.t.
S, then for any choice of a generic line` througho, we have

hj(S, o) =

j
∑

i=0

(

h∗
i (S, `,o) − h∗

n−d−i(S, `,o)
)

for all j.

Similarly, (4.17) and (4.13) together with the uniqueness of moments imply
(see [84])

Theorem 4.13.Letµ be a continuous probability distribution ando be a point
in Rd. Then for any linè througho,

hµ,o(y) = (d + 1)

∫ y

0

(
h∗

µ,`,o(x) − h∗
µ,`,o(1 − x)

)
dx (4.18)

for 0 ≤ y ≤ 1. In particular,h is continuous and differentiable a.e.



Remark 4.14. In the continuous setting, there is a technical issue which de-
serves a brief comment. Namely, even though a monotone functionF is differ-
entiable a.e. and its derivative is a Lebesgue integrable function,F need not be
the integral of its derivative. For instance, even for non-vanishing monotone
F , the derivative might be zero a.e. (see the well-known example of theCan-
tor functionin Section 1.5 of [39]. Strictly speaking, the formulae in Lemma
4.11 and (4.11) for the moments ofh andh∗ are correct only if we know that
such problems do not arise forH or H∗. Yet we apply these formulae in or-
der to conclude continuity ofh, for instance, which seems to be begging the
question.

The way to navigate around these difficulties is to define the moments as
Lebesgue-Stieltjes integrals with respect to the “distribution functions” H or
H∗. The above line of reasoning, properly rephrased, then establishes cer-
tain identities for these distribution functions, from which it can be concluded
that they and their derivatives behave “nicely”, i.e., that the above-mentioned
pathologies do not occur. See [84] for the details.

Based on these findings, one can now give an alternative proof of the UBT by
induction on the dimension. This gives the following tight upperbounds on
the entries of theh-vector, respectively the values of theh-function, see [86],
respectively [84].

Theorem 4.15 (Discrete Upper Bound Theorem (UBT)[86]).LetS be a set
of n points inRd, and leto ∈ Rd be generic w.r.t.S. Then

hj(S, o) ≤ min

{(
j + d

d

)

,

(
n − d − 1 − j

d

)}

Moreover, equality is attained for allj if and only if every hyperplane through
o and disjoint fromS has at leastbn−d+1

2 c points ofS on either side. More
precisely, if there is a hyperplaneH 3 o disjoint fromS such that|H− ∩ S| =
a, say, then for0 ≤ j ≤ n−d−1

2 ,

hj(S, o) ≤
(

j + d

d

)

−
(

j − a + d

d

)

.

Theorem 4.16 (Continuous Upper Bound Theorem (CUBT) [84]).If o ∈
Rd andµ is a continuous probability distribution inRd, then

hµ,o(y) ≤ d + 1

2
min{yd, (1 − y)d}



Moreover, equality is attained for ally if and only ifµ is balanced abouto,
i.e., if every hyperplane througho equipartitionsµ. More precisely, if there is
a hyperplaneH 3 o such thatµ(H−) = a, say, then for0 ≤ y ≤ 1/2,

h(y) ≤
{

d+1
2 yd if 0 ≤ y ≤ a, and

d+1
2

(
yd − (y − a)d

)
if a ≤ y ≤ 1

2 .

Remark 4.17. It can be shown thatµ is balanced abouto if and only if its
radial projectionµ̆ onto the unit sphere centered ato is symmetric abouto,
i.e. invariant under reflection abouto. In dimensiond ≤ 2, this is rather
trivial; for d ≥ 3, we refer to Schneider [67], Corollary 3.4.

Corollary 4.18.

fk(S, o) ≤
bn−d−1

2 c
∑

j=0

(
j

k

)(
j + d

d

)

+

dn−d−2
2 e

∑

j=0

(
n − d − 1 − j

k

)(
j + d

d

)

.

Equality is achieved if and only if every hyperplane througho has at least
bn−d+1

2 c points ofS on either side.

fk(µ,o) ≤
∑k

i=0

(
d+k

i

)

2d+k
.

Equality is achieved if and only ifµ is balanced abouto.

We will further investigatefk in Section 4.4.

4.2 Approximate Point Masses

This section is a somewhat technical interlude that lays the groundworkfor
Section 4.3. The goal is to prove Lemma 4.22, which enables us to analyze
individual values of a Lebesgue integrable functionf : [0, 1] → R in terms
of integrals of the form

∫ 1

0
xj(1−x)kf(x)dx (provided these integrals exist).

Note that fork = 0, these are precisely the moments off .

We will need the following facts (see, for instance, [65]): For real numbers
α, β ≥ 0,

∫ 1

0

xα(1 − x)βdx =
α! β!

(α + β + 1)!
,



where thegeneralized factorialsare defined by

α! :=

∫ ∞

0

xαe−x dx.

(The integral on the right, which is also often denoted byΓ(α + 1), converges
for α > −1.) For natural numbers this definition agrees with the usual induct-
ive one. Also, the familiar relation(α+1)! = (α+1) α! still holds. Moreover,
Stirling’s formulaprovides a useful asymptotic estimate:

α! ∼ αα

eα

√
2πα

asα → ∞, whereφ ∼ ψ means thatlim φ
ψ = 1.

Definition 4.19. Forα, β ≥ 0, define

δα,β(x) :=
(α + β + 1)!

α! β!
xα(1 − x)β

for 0 ≤ x ≤ 1.

By definition,δα,β ≥ 0 and
∫ 1

0
δα,β(x)dx = 1 for all α, β ≥ 0. Thus, each

δα,β is a probability density on the unit interval. Moreover, intuitively speak-
ing, if α, β → ∞ and if the fractions α

α+β converge to some numbery in the
unit interval, then the distributionsδα,β become more and more concentrated
aroundy, see Figure 4.2.

To make this idea precise, we need some preparations. Fixy ∈ (0, 1). For
t > 0, let α = α(y, t) := ty andβ = β(y, t) := t(1 − y). Givenx ∈ (0, 1)
andr := x − y, let us writex = (1 + r

y )y and(1 − x) = (1 − r
1−y )(1 − y).

Thus,

δα,β(x) =
(t + 1) t!

α! β!

ααββ

tt
︸ ︷︷ ︸

(∗)

( (

1 +
r

y

)y(

1 − r

1 − y

)1−y

︸ ︷︷ ︸

(∗∗)

)t

. (4.19)

For a real numberp ≥ 1, the functionx 7→ xp is convex forx ∈ [0,∞).
Hence,1 + pr ≤ (1 + r)p for all r ∈ [−1,∞). Applying this withp = 1

y and

p = 1
1−y , respectively, we see that(∗∗) ≤ (1+r)(1−r) = 1−r2. Moreover,

by Stirling’s formula,

(∗) ∼ (t + 1)
√

2πt√
2πα

√
2πβ

∼
√

t
√

2π y(1 − y)
(4.20)
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Figure 4.2: The functionsδα,β for (α, β) = (3, 2), (9, 6), (18, 12), (30, 20).

ast → ∞.

We will restrict ourselves to showing that for this choice of the parameters
α, β, the distributionsδα,β converge to the point mass aty (in a sense made
precise below). The crucial ingredient is the following special case of the
Lebesgue Differentiation Theorem (see [39], Chapter 3):

Fact 4.20. Letf be a Lebesgue integrable function on the interval[0, 1], that
is, a measurable function such that‖f‖1 :=

∫ 1

0
|f(x)| dx < ∞. Then almost

everyy ∈ [0, 1] is a Lebesgue pointof f , in the following sense: For every
ε > 0, there is someρ = ρ(ε, y) > 0 such that, for allr < ρ,

1

r

∫

|x−y|<r

|f(x) − f(y)| dx < ε. (4.21)

(That is, if we average the difference|f(x) − f(y)| over a small interval of
radiusr aroundy, the result tends to zero asr → 0.)



Lemma 4.21. Suppose thaty ∈ (0, 1) is a Lebesgue point of an integrable
functionf . If α = ty andβ = t(1 − y) as above, then

∫ 1

0

|f(y) − f(x)|δα,β(x) dx → 0 (4.22)

ast → ∞.

Proof. Fix someε > 0, and letρ > 0 be such as asserted in Fact 4.20.
We denote the integral on the left-hand side of (4.22) byI; we decompose
I into a number of integrals which we can handle separately: First, sets :=
dlog2(ρ

√
t)e − 1 (i.e.,ρ/2 ≤ 2s/

√
t < ρ). Next, letr−1 := 0, ri := 2i/

√
t,

for i ∈ {0 . . . s}, andrs+1 := ∞. Finally, defineAi := {x ∈ (0, 1) : ri−1 ≤
|x − y| < ri for 0 ≤ i ≤ s + 1}. ThenI = I0 + I1 + . . . + Is+1, where

Ii :=

∫

Ai

|f(y) − f(x)|δα,β(x) dx. (4.23)

From (4.20) we infer that for sufficiently larget, the quantity(∗∗) from Equa-
tion (4.19) is at mostC

√
t (whereC and the meaning of “sufficiently large”

depend only ony). Hence,

δα,β(x) ≤
{

C
√

t(1 − ri−1)
t, x ∈ Ai, i ∈ {0 . . . s}, and

C
√

t(1 − ρ2/4)t, x ∈ As+1.
(4.24)

Thus, by (4.21),

I0 ≤ C
√

t

∫

A0

|f(x) − f(y)| dx

︸ ︷︷ ︸

≤εr0=ε/
√

t

≤ Cε. (4.25)

Similarly, for i ∈ {1 . . . s},

Ii ≤ C
√

t

(

1 − 22(i−1)

t

)t
2i

√
t
ε ≤ Cε 2ie−22(i−1)

. (4.26)

Finally,

Is+1 ≤ C
√

t

(

1 − ρ2

4

)t

2‖f‖1. (4.27)

Sinceρ > 0 and ‖f‖1 < ∞, this last term tends to zero ast → ∞. In
particular, it will be less thanCε if t is sufficiently large (in terms off , y and



ε). Then, (4.25), (4.26), and (4.27) together yield

I ≤ Cε

(

2 +
s∑

i=1

2ie−22(i−1)

)

. (4.28)

The series
∑∞

i=1 2ie−22(i−1)

converges. Therefore, sinceC depends only on
y and sinceε is arbitrarily small, we conclude thatI → 0 ast → ∞.

Since
∫ 1

0
δα,β(x) dx = 1, we have

∣
∣
∣f(y) −

∫ 1

0
f(x)δα,β(x) dx

∣
∣
∣ ≤

∫ 1

0
|f(y)−

f(x)|δα,β(x) dx. Thus, it follows from Lemma 4.21 that for every Lebesgue

point y of f ,
∫ 1

0
f(x)δα,β(x) dx → f(y) ast → ∞. For a geometric inter-

pretation of these approximating integrals, we will now replaceα andβ by
suitable integers.

Lemma 4.22. For every Lebesgue pointy ∈ (0, 1) of f (in particular, for
almost everyy), there exist sequences(j(ν))ν∈N and (k(ν))ν∈N of positive
integers, such that j(ν)

j(ν)+k(ν) → y, j(ν), k(ν) → ∞, and

∫ 1

0

f(x)δj(ν),k(ν)(x)dx → f(y)

asν → ∞.

Proof. Fix y. For eachν ∈ N, choose a largeinteger t = t(ν) such that
t(ν) → ∞ and that the distance betweenα = ty and the nearest integer is less
thanν−1; let j = j(ν) be that nearest integer, and definek = k(ν) := t − j.
Clearly,lim j

j+k = y.

We have to show that
∫ 1

0
|f(x) − f(y)|δj(ν),k(ν)(x)dx → 0 asν → ∞. As

before, we decompose this integral into two parts, which we handle separately.
For this purpose, fix some parameterr > 0 such thaty−r > 0 andy +r < 1.
On the one hand, letA = {x ∈ (0, 1) : |x − y| > r}. Then, for sufficiently
largeν, we have|x − j

j+k | > r/2 for all x ∈ A. Therefore, by (4.19) and

(4.20),δj,k(x) ≤ (1 − r2/4)t(t + 1)
√

t. This latter expression converges to
zero asν (and hencet) tends to infinity. Therefore,

∫

A

|f(x) − f(y)|δj,k(x) dx → 0

asν → ∞. On the other hand, consider the set(0, 1) \A = [y − r, y + r]. On
this compact interval, the ratio

δj,k(x)

δα,β(x)
=

α!

j!

β!

k!
xj−α(1 − x)k−β



convergesuniformlyto 1 asν → ∞, by Stirling’s formula and by choice ofα,
β, j, andk. Hence, for largeν, δj,k(x) ≤ 2δα,β(x) for all x ∈ [y − r, y + r],
and so

∫ y+r

y−r

|f(x) − f(y)|δj,k(x) dx ≤ 2

∫ y+r

y−r

|f(x) − f(y)|δα,β(x) dx → 0

asν → ∞, by Lemma 4.21.

4.3 The Generalized Lower Bound Theorem

The UBT tells us the maximum number of facets of anyD-dimensional poly-
tope withn vertices. What about the minimum? For general polytopes, this
question is again answered by the UBT in its polar form: AD-dimensional

polytope withm facets can have at mostcD(m) =
(m−dD+1

2 e
dD−1

2 e
)
+

(m−bD+1
2 c

bD−1
2 c

)

vertices, and this bound is attained by the polar-to-cyclic polytopeC∗
D(m).

Read the other way around, aD-polytope withn vertices can have as few as
c−1
D (n) facets, wherec−1

D (n) := min{m : cD(m) ≥ n}, which for fixedD is
approximately thebD/2cth root ofn.

The polar-to-cyclic polytopes are simple. What if we consider only simplicial
polytopes? Here is a class of simplicial polytopes with few facets:

Stacked Polytopes. We consider polytopes that are obtained by glueing sim-
plices along facets, see Figure 4.3. More formally, aD-polytopeP is astacked

Figure 4.3: Two stacking operations.



polytopeif there is a sequenceP1, . . . ,Ps of simplicialD-polytopes such that
P1 is a D-simplex and eachPi+1 arises as the convex hull ofPi ∪ {q},
whereq is a point that isjust beyondsome facetF of Pi. Here, a pointq is
just beyond a facetF of a polytopeQ if q ∈ H+(F) andq ∈ H−(F ′) for all
other facetsF ′ of Q, where we assume that each facet-defining hyperplane is
oriented in such a way that the polytope lies in the closed negative halfspace.

For the polar polytope, this can be interpreted as follows: Glueing a simplex
to a facetF of a simplicial polytopeP, corresponds to cutting off a vertexv of
P∗ by a hyperplane that intersects only the edges incident tov; for instance,
by the hyperplane spanned by the midpoints of these edges, i.e., we removev
from the vertex set ofP and add thed midpoints as new vertices.

It is easy to analyze the face numbers of stacked polytopes by induction ons:
If Ps is obtained by stackings simplices, then

fk(Ps) =

(
D

k + 1

)

+ s ·
(

D

k

)

.

Further, theh-vector ofPs is

h(Ps) = (1, s, s, . . . , s, 1),

i.e.,hj(Ps) = 1 for j = 0, D andhj(Ps) = s for 1 ≤ j ≤ D−1, of which we
can convince ourselves as follows: Let us interpret the glueing as cutting off
a vertexv from the polar polytope as described above. How does this change
theh-vector? We may assume that theh-vector of the old polytope is defined
by a linear objective function that is maximized byv and almost orthogonal
to the cutting hyperplane (but slightly tilted, so as to still be generic w.r.t. the
new vertices). Thus, by cutting offv, we remove one vertex with in-degreeD,
and by inserting the new vertices, we add one vertex of in-degreej, for every
1 ≤ j ≤ D (the new vertices form a(D − 1)-dimensional simplex, and have
one additional incoming edge each).

Note that for any simplicialD-polytopeP,

h1(P) = f0(P) − D.

The following theorem implies that stacked polytopes simultaneously minim-
ize the number ofk-faces, for everyk, among simplicial polytopes of a given
dimension and with a prescribed number of vertices.

Theorem 4.23 (Generalized Lower Bound Theorem (GLBT) [73]).LetP
be a simplicialD-polytope. Then theh-vector ofP satisfies

hj(P) ≥ hj−1(P)



for 1 ≤ j ≤ bD
2 c.

The theorem, which was conjectured by McMullen and Walkup [56], bears
its name because it generalizes the so-calledLower Bound Theorem (LBT),
which was conjectured by Brückner in 1909 and proved by Barnette [13]. The
LBT states that for any simplicialD-polytope,f1 ≥ D · f0 −

(
d+1
2

)
, which

can be rewritten ash2 − h1 ≥ 0.

For the GLBT, the only known proofs in fact establish it as part of the still
more powerfulg-Theorem, which states that a certain set of combinatorial con-
ditions completely characterize the integer vectors that can appear ash-vectors
of simplicial polytopes. These conditions were formulated by McMullen[53],
and their sufficiency was proved by Billera and Lee and [16], while their ne-
cessity was shown by Stanley [73], using sophisticated tools from algebraic
geometry. Later, McMullen [54, 55] found a simpler and more geometric
proof of the necessity part, but even that proof is too involved to be discussed
here.

The name “g-Theorem”, at any rate, refers to the name that the differences
hj − hj−1 have been given:

Definition 4.24 (g-vectors). The g-vectorg(P) = (g0(P), . . . , gbD/2c(P))
of a simplicialD-polytopeP is defined by

gj = gj(P) := hj(P) − hj−1(P),

for 0 ≤ j ≤ bD/2c, where we seth−1 := 0. Similarly, for a setS of n points
in Rd and a pointo ∈ Rd that is generic w.r.t.S, theg-vector is given by

gj = gj(S, o) := hj(S, o) − hj−1(S, o),

for 0 ≤ j ≤ b(n − d − 1)/2c. (Observe that it is sufficient to consider this
range ofj, by the Dehn-Sommerville relations.)

With this notation, the GLBT states that

gj(P) ≥ 0

for 1 ≤ j ≤ bD/2c, respectively

gj(S, o) ≥ 0

for 0 ≤ b(n − d − 1)/2c.



By Theorem 4.12, we know that for any generic oriented line` througho,

gj(S, o) = h∗
j (S, `,o) − h∗

n−d−j(S, `,o).

Thus, by invoking the GLBT for the polytope that arises as the Gale dual of
S w.r.t. o as origin, we see thath∗

j (S, `,o) ≥ h∗
n−d−j(S, `,o) = ∗hj(S, `,o)

for 0 ≤ j ≤ (n − d − 1)/2. Since this applies to any generic pointo on `, we
can interpret the GLBT “dynamically”, see [86], as saying that for suchj, we
can never leave morej-facets ofS than we have already entered as we move
along an oriented line, starting from a point outside ofconv S.

Dual-to-stacked configurations. Here is what happens in the dual during a
stacking operation: LetS be a set ofn points inRd ando ∈ conv S a generic
point. Pick pointsp1, . . . ,pd+1 ∈ S that span ad-dimensional simplex which
containso in its interior. This corresponds to picking a facetF of the Gale
dual poytopeP (or a vertex ofP∗). Consider a liftingS̃, ˜̀of S, o such that the
d-simplexσ̃ spanned by the lifted points̃p1, . . . , p̃d+1 become the “topmost”
facet, i.e., such that̃σ with suitable orientation is the unique(n−d)-facet ofS̃
which is entered bỳ̃. In other words, if we consider the points of intersection
of ˜̀with thed-simplices spanned by points from̃S in the order in which they
appear along̃̀, then b̃ := σ̃ ∩ ˜̀ is the last such intersection. Letã be the
second-to-last of these intersections, and pick two further pointsõ andq̃ on ˜̀

such that the points̃a, õ, q̃, b̃ appear in this order along̀̃. Then the Gale dual
of S̃ ∪̇ {q̃} ⊂ Rd+1 w.r.t. õ as origin is (combinatorially equivalent to) the
polytope obtained by glueing a simplex to the facetF of P. A dual-to-stacked
configuration is a setS that arises through a sequence of such operations from
a multiset ofD + 1 points inR0 (which is the Gale dual of aD-simplex).

In the remainder of this section, we prove a continuous analogue of theGLBT.
The proof will by no means be an independent one, but rather a straightforward
derivation from the discrete version, using Lemma 4.22.

Definition 4.25 (g-functions). Theg-functiongµ,o of a continuous probabil-
ity measureµ and a pointo in Rd is defined, for a.e.0 ≤ y ≤ 1, by

gµ,o(y) :=
1

d + 1
· d

dy
hµ,o(y).

Thus, by Theorem 4.13, we have

gµ,o(y) = h∗
µ,`,o(y) − h∗

µ,`,o(1 − y)

for any generic oriented linèthrougho.



Theorem 4.26 (Continuous Generalized Lower Bound Theorem (CGLBT)).
Theg-function of a continuous probability distributionµ and a pointo in Rd

satisfies
gµ,o(y) ≥ 0

for a.e.0 ≤ y ≤ 1/2.

We will need the following simple but useful fact (see [84]).

Lemma 4.27 (Counting Permutations). SupposeX = (X1, . . . , Xn) is a
vector of independently and identically distributed random variables which
take values in some setN , and letA and B be measurable sets ofn-tuples
(xi)

n
i=1 of elements inN . Assume furthermore that there exist integersl, m ≥

0 such that for everya = (ai) ∈ A and everyb = (bi) ∈ B, there are exactly
l permutationsπ such thataπ := (aπ(i)) ∈ B, and exactlym permutations
π′ for whichbπ′ ∈ A.

Then
l · Pr[X ∈ A] = m · Pr[X ∈ B].

Lemma 4.28. Consider a continuous probability distributionµ, a point o,
and an oriented linè througho in Rd. Let P1, P2, P3, . . . , be independent
µ-random points, and for nonnegative integern, let Sn := {P1, . . . , Pn}.
Then, for all integersj, k ≥ 0,

∫ 1

0

δj,k(x)h∗
µ,`,o(x)dx =

j + k + 1
(
j+k+d

d

) E[h∗
j (Sj+k+d, `,o)]

and
∫ 1

0

δj,k(1 − x)h∗
µ,`,o(x)dx =

j + k + 1
(
j+k+d

d

) E[h∗
k(Sj+k+d, `,o)],

where “E” denotes the expected value.

Proof. The transformation theorem for image measures yields

∫ 1

0

xj(1 − x)kh∗
µ,`,o(x)dx

=

∫

· · ·
∫

B`,o

µ(H+([p1, . . . ,pd]))
jµ(H−([p1, . . . ,pd]))

kdµ(pd) . . .dµ(p1),



whereB`,o := {(pi)
d
i=1 ∈ Rd×d : ` enters[p1, . . . , pd] beforeo}, and this

can be further rewritten as
∫

· · ·
∫

Cj,k

`,o

dµ(pd+j+k) . . .dµ(pd+1)dµ(pd) . . .dµ(p1)

whereCj,k
`,o is the set of all point tuples(pi)

d+j+k
i=1 ∈ Rd×(d+j+k) such that

(pi)
d
i=1 ∈ Bd

`,o andpd+1, . . . ,pd+j ∈ H+([p1, . . . ,pd]) andpd+j+1, . . . ,

pd+j+k ∈ H−([p1, . . . ,pd]). This last integral, in turn, is just the probability

Pr[(P1, . . . , Pd+j+k) ∈ Cj,k
`,o ]

whereP1, . . . , Pd+j+k are independentµ-random points.

It remains to observe that for a random permutationΠ of {1, . . . , d + j + k}
and a given point tuple(pi)

d+j+k
i=1 ∈ Rd×(d+j+k), we have

Pr[(pΠ(i))
d+j+k
i=1 ∈ Cj,k

`,o ] =
h∗

j ({p1, . . . ,pd+j+k}, `,o)

2
(
d+j+k

d

)(
j+k

j

) .

Thus, the first part of Lemma 4.28 follows by applying the CountingPermuta-
tions Lemma to each of the sets

Cj,k
`,o(m) := {(pi)

d+j+k
i=1 ∈ Cj,k

`,o : h∗
j ({p1, . . . ,pd+j+k}, `,o) = m},

for integerm, and summing over allm. The second part is proved analog-
ously.

Proof of Theorem 4.26.Let P1, P2, P3, . . . be independentµ-random points.
For a Lebesgue pointy of g with 0 < y < 1/2, Lemmas 4.22 and 4.28 provide
us with integer sequences(j(ν))ν∈N and(k(ν))ν∈N such that

gµ,o(y) = lim
ν→∞

∫ 1

0

δj(ν),k(ν)(1 − x)gµ,o(x)dx

= lim
ν→∞

j(ν) + k(ν) + 1
(
j(ν)+k(ν)+d

d

) E[gj(Sj(ν)+k(ν)+d, o)].

Moreover,y < 1/2 and| j(ν)
j(ν)+k(ν) − y| < 1/ν by construction, so for largeν,

we havej(ν) ≤ (j(ν) + k(ν)− 1)/2, and thereforegj(Sd+j(ν)+k(ν), o) ≥ 0,
by the GLBT. It follows that the expectation is nonnegative, too, and hence so
is gµ,o(y). Since this holds for every Lebesgue point, the proof is complete.



4.4 The First Selection Lemma

In Section 4.1, we analyzed the number ofd-dimensional simplices spanned
by ann-point setS ⊂ Rd, which contain a given generic pointo (in their
interior). This number is at most

(bn+d
2 c

d + 1

)

+

(dn+d
2 e

d + 1

)

∼ 1

2d

(
n

d + 1

)

.

In this section, we consider what happens ifS (respectively, a continuous
probability distributionµ) is given but we are allowed to chooseo. For in-
stance, can we find a pointo which is contained in (the interior of) “many”,
i.e., of a positive fraction of, all simplices? The assertion that thisis always
possible is known as theFirst Selection Lemmaand was proved by Boros
and F̈uredi [21] for the planar case, and generalized to general dimension by
Báŕany [10]. In fact, Boros and F̈uredi actually showed that ifo is a so-called
centerpointof a setS of n points in general position in the plane, theno is
contained in the interior of at least29

(
n
3

)
S-triangles (and the constant2

9 is
best possible). We useh-vectors to show that centerpoints, a notion which we
review below, work in any dimension, and the same method, withh-functions
instead ofh-vectors, establishes a “Continuous First Selection Lemma”.

Depth and Centerpoints. If S ⊆ R1 is a multiset ofn real numbers, then
any numberc ∈ R1 such that both,|{p ∈ S : p ≤ c}| ≥ n/2 and|{p ∈ S :
p ≥ c}| ≥ n/2, is called amedianof S. Centerpoints are a generalization of
this concept to higher dimensions.

Definition 4.29 (Depth). Let S be a finite set ofn points inRd. We make
no general position assumptions (in fact, we can even allow multisets, i.e.,
repetitions of the points). Thedepth inS of a pointp ∈ Rd is defined as
the minimum number of points (with multiplicity) fromS in any halfspace
containingp,

depthS(p) := min{|S ∩ H| : Ha halfspace,p ∈ H}.

Similarly, for a (not necessarily continuous) probability distribution µ, the
depth ofp in µ is defined as

depthµ(p) := min{µ(H) : Ha halfspace,p ∈ H}.

(At first sight, we should consider theinfimum, since there are infinitely many
halfspaces, but it is not hard to see that it is attained.)



Theorem 4.30 (Centerpoint Theorem).Let S be a (multi)set ofn points in
Rd. Then there exits acenterpointof S, i.e. a pointc ∈ Rd (not necessarily
in S) such thatdepthS(c) ≥ d n

d+1e.
Similarly, for every probability distributionµ in Rd, there exists a centerpoint
c in the sense thatdepthµ(c) ≥ 1

d+1 .

Observe that the factor1d+1 is optimal (for instance, ifS is the vertex set of a
d-dimensional simplex, then there is no point of depth greater than 1 w.r.t. S).

Theorem 4.31 (First Selection Lemma).For any pair of integersd ≥ 1 and
k ≥ 0, there is a constants(d, k) > 0 such that the following holds:

1. If S is a set ofn points in general positionRd and ifc is any centerpoint
of S, then the numberfk(S, c) of (d + 1 + k)-element subsets ofS that
containc in the interior of their convex hull satisfies

fk(S, c) ≥ s(d, k) ·
(

n

d + 1 + k

)

− O(nd+k). (4.29)

2. Moreover, for anyn-point setS ⊆ Rd (not necessarily in general posi-
tion), there exists a centerpointc of S such that

f̄k(S, c) ≥ s(d, k) ·
(

n

d + 1 + k

)

− O(nd+k), (4.30)

wheref̄k(S, c) := |{X ⊆ S : |X| = d + 1 + k, c ∈ conv X}|, i.e., we
also count subsets that containc on the boundary of their convex hull.

Theorem 4.32 (Continuous First Selection Lemma).If c is a centerpoint of
a continuous probability distributionµ in Rd, then

fk(µ, c) ≥ s(d, k),

with the same constants(d, k) as in Theorem 4.31.

We first prove the continuous version of the First Selection Lemma, which
follows quite easily from the second part of the following lemma. Thediscrete
version will require no new insights, but a bit more work to avoid the difficulty
that a centerpoint need not be generic w.r.t.S.

Lemma 4.33. Theh-vector and theh-function with respect to a point attain
the maximum given by the (C)UBT up to the depth of the point:



1. LetS be a finite point set inRd, and leto be a generic point w.r.t.S.
Suppose every hyperplane disjoint fromS and containingo has at least
a points ofS on either side (in particular, this holds ifdepthS(o) = a).
Thenhj(S, o) =

(
j+d

d

)
for 0 ≤ j ≤ a − 1.

2. If µ is a continuous probability distribution ando a point inRd with
depthµ(o) = a, thenhµ,o(y) = d+1

2 yd for 0 ≤ y ≤ a.

Proof. We prove the continuous case. The proof in the discrete setting is
perfectly analogous. Pick any directed line` ⊂ Rd througho. Observe that
for 0 < y < a, we haveH∗

µ,`,o(1 − y) = ∗Hµ,`,o(y) = 0, henceh∗
µ,`,o(1 −

y) = ∗hµ,`,o(y) = 0 for a.e. suchy. It follows that

gµ,o(y) = h∗
µ,`,o(y) = hµ,`(y) (4.31)

for a.e.0 < y < a. It remains to observe thato also has depth at leasta in the
orthogonal projectionµ of µ onto the orthogonal complement`⊥ ≡ Rd−1. By
induction, we can conclude thathµ,`(y) = hµ,o(y) = d

2yd−1 for 0 ≤ y ≤ a,
and so, by Theorem 4.13 and (4.31),

hµ,o(y) = d + 1

∫ y

0

d

2
xd−1dx =

d + 1

2
yd

for 0 ≤ y ≤ a, as desired.

Proof of the Continuous First Selection Lemma.By the Dehn-Sommerville
Equation and (4.13),

1

2
(
d+1+k

d+1

)fk(µ,o) =

∫ 1

0

ykhµ,o(y)dy

=

∫ 1/2

0

(
yk + (1 − y)k

)
hµ,o(y)dy.

Thus, by the preceding lemma and the CGLBT, ifo has deptha in µ then

fk(µ,o)

(d + 1)
(
d+1+k

d+1

)

≥
∫ a

0

(
yk + (1 − y)k

)
yddy +

∫ 1/2

a

(
yk + (1 − y)k

)
addy

=
ad+1+k

d + 1 + k
+

k∑

i=0

(−1)i ad+1+i

d + 1 + i
+

ad
(
(1 − a)k+1 − ak+1

)

k + 1



Hence, ifo is a centerpoint ofµ, i.e.,a ≥ 1
d+1 , then

fk(µ,o) ≥ s(d, k) := (4.32)

(
d+1+k

d+1

) (
(d+1)−d−k

d+1+k +
∑k

i=0(−1)i
(
k
i

) (d+1)−d−i

d+1+i + dk+1−1
(d+1)d+k

)

> 0.

For instance, for the casek = 0, we see that the probability that the convex hull
of independentµ-random pointsP1, . . . , Pd+1 contains a given centerpoint of
µ is at least

d − 1

(d + 1)d
+

2

(d + 1)d+1
. (4.33)

On the other hand, ifµ is a distribution for which no point has depth larger
than 1

d+1 (for instance, the uniform distribution on the union ofd + 1 small
balls centered at the vertices of somed-dimensional simplex), then the second
part of the CUBT shows that the constants(d, 0) in the First Selection Lemma
cannot be chosen larger than

2(d + 1)

(
∫ 1/2

0

yddy −
∫ 1

2− 1
d+1

0

yddy

)

=
1

2d

(

1 −
(

d − 1

d + 1

)d+1
)

,

which, for larged, is approximately(1 − e−2)/2d and still quite far from the
lower bound (4.33).

As mentioned above, in the discrete setting, we cannot apply our method right
away, since a centerpoint of a point set need not be generic (i.e., need not be
disjoint from all convex hulls of less thand + 1 points fromS), even if the
point set is in general position, see Figure 4.4.

However, we can always find a generic point that is almost a centerpoint:

Observation 4.34. Let c be a centerpoint of a setS of n points in general
position inRd. Then any pointo sufficiently close toc has depth at least
d n

d+1e − d in S.

Proof. By general position, anyd + 1 points fromS span ad-dimensional
simplex, and each such simplex contains a maximal inscribedd-dimensional
ball. Let r = r(S) > 0 be the minimal radius of any such ball. Note that
if two parallel hyperplanes are at distance less than2r from each other, then
the closed strip between them contains at leastd points fromS (else it would
contain a simplex and its inscribed ball). Assume then thato is at distance less



a

b

c

d

Figure 4.4: For this set of 4 points in the plane, the pointc ∈ S is the only
centerpoint.

than2r from c, and letH be any closed hyperplane througho. The parallel
translateH1 of H throughc is at distance less than2r from H, hence|H+∩S| ≥
|H+

1 ∩ S| − |H+
1 ∩ H− ∩ S| ≥ d n

d+1e − d.

Proof of the First Selection Lemma.First assume thatS is in general position.
Let c be a centerpoint ofS, and leto be a point sufficiently close toc and
generic w.r.t.S. We also assume thatc ando are not strictly separated by any
hyperplane spanned by points fromS. SincedepthS(o) = a ≥ n

d+1 − d, the
same argument as in the proof of the continuous version leads to

fk(S, o) ≥
a−1∑

j=0

((
j
k

)
+

(
n−d−1−j

k

))(
j+d

d

)
+

(
a−1+d

d

) n−d−1−a∑

j=a

(
j
k

)

= s(d, k)

(
n

d + k + 1

)

− O(nd+k),

with the constants(d, k) as defined in (4.32). Moreover, by choice ofo, we
have thatc ∈ conv X for all X ⊆ S with o ∈ conv X, hencef̄k(S, c) ≥
fk(S, o). To conclude the proof for the case of general position, remains to
note that by the following lemma (taken from Chapter 9 of [51]),c does not
lie on the boundary ofconv X for more thanO(nd+k) subsetsX ⊆ S of
cardinalityd + 1 + k.

Lemma 4.35. If S is a set ofn points in general position inRd, then no point
c ∈ Rd is contained in more thandnd−1 hyperplanes spanned byS.

If S = {p1, . . . ,pn} ⊆ Rd is not in general position, then we choose point
sequences(pν

i )ν∈N, 1 ≤ i ≤ n, such thatpν
i → pi asν → ∞ and that each



Sν := {pν
1 , . . . ,pν

n} is in general position (for instance, we can take eachpν
i

independently uniformly at random from the open ball of radius1/ν centered
atpi). Moreover, if we take a centerpointcν of eachSν , then since allcν are
contained in some big compact set, by passing to a suitable subsequence, if
necessary, we may assume that they converge to some pointc. We know that
eachcν is contained in the convex hull of at leastN = s(d, 0)kd

(
n

d+k+1

)
−

O(nd+k) subsets ofSν of cardinalityd + k + 1, i.e., there is some collection
Iν of (d + 1 + k)-element index setsI ⊆ {1 . . . n} such thatcν ∈ conv{pν

i :
i ∈ I} for all I ∈ Iν , and|Iν | = N . Since there are only finitely many such
collections of index sets, one of them, call itI, must appear asI = Iν for
infinitely manyν. Therefore,c ∈ conv{pi : i ∈ I} for all I ∈ I, which
completes the proof of the First Selection Lemma.



Chapter 5

Self-Embracing
Distributions

In the Educational Times of April, 1864, Question 1491, James Joseph Sylvester
[77] formulated what became known as hisFour-Point Problem(quoted after
Pfiefer [63]):

Show that he chance of four points forming the apices of a reentrant
quadrilateral is1/4 if they be taken at random in an indefinite
plane, but1/4 + e2 + x2, wheree is a finite constant andx a
variable quantity, if they be limited by an area of any magnitude
and of any form.

Here, “reentrant quadrilateral” means “not a convex quadrilateral”, i.e., four
points form a reentrant quadrilateral iff one of them is contained in the convex
hull of the other three.

Various solutions came in, some of them by well-known mathematicians, and
most of them different (see [63] for a detailed account). To give but a fewex-
amples, for the case of four points taken at random in the entire plane, Cayley
and Sylvester asserted that the probability in question was1/4, while accord-
ing to DeMorgan, it was1/2. Woolhouse, in turn, suggested, that the answer
was35/12π2, by computing the probability for points drawn at random from
a disk and letting the radius tend to infinity (the value is, in fact, the same
for all disks, independently of the radius, which makes the taking of the limit
particularly easy).
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With the advantage of hindsight and the classes on twentieth century probab-
ility and measure theory that we have taken, we know that the reason for these
discordant results is that in order to speak meaningfully about random points,
we have to specify a probability distribution. (Moreover, there isno uniform
probability measure on the whole plane.)

In more rigorous terms, the Four-Point Problem concerns the probability ·4(µ),
for a given probability distributionµ in R2, that among four random points
i.i.d. ∼ µ, there is one is contained in the convex hull of the other three? Equi-
valently, we can consider the complementary probability¤(µ) := 1 − ·4(µ)
that the four points are in convex position.

In order to avoid the nuisance of uncivil configurations like the following,
we will assume thatµ is what we called continuous, i.e., that every line has
µ-measure zero.

The Four-Point Problem is closely related to the question we investigated in
the previous chapter. The simplest interesting instance of that question was:
What is the probability

f0(µ,o) = Pr[o ∈ conv{P1, P2, P3}]

that a given pointo is contained in the convex hull of three random points
P1, P2, P3 i.i.d. ∼ µ. If instead of a point specified in advance, we consider a
fourth independent random pointP4, we arrive at the probability

Pr[P4 ∈ conv{P1, P2, P3}],

which is just14 ·4(µ).

When the dependence on the underlying distribution became evident, Sylvester
reformulated his problem more carefully and asked: Which distributionsmin-
imize, respectively maximize,¤(µ)? Despite the phrase “an area of any mag-
nitude and any form” in the original formulation, investigations focussed on
the case thatµ is the uniform distribution on boundedconvexsetK ⊆ R2

(where we assume that the interior ofK is nonempty, to ensure thatµ is con-
tinuous). For this class of distributions, the problem was completely solved



by Blaschke [18] (see also [19],§24, for a textbook exposition), who showed
that

2

3
≤ ¤(µ) ≤ 1 − 35

12π2
≈ 0.704. (5.1)

Both bounds are tight; the lower bound is attained iffK is a triangle, and the
upper bound iffK is an ellipse.

If one drops the convexity assumption thensupµ ¤(µ) = 1; indeed,¤(µ) = 1
if µ is the uniform distribution on the circle (or any other strictly convex Jordan
curve in the plane). But even if we exclude as too degenerate distributions that
are concentrated on sets without interior, and even if we further restrict our
attention to the case thatµ is the uniform distribution on a bounded open
subsetV ⊆ R2, ¤(µ) can be arbitrarily close to 1. This is the case, for
instance, ifV is a sufficiently thin open annulus, see [66].

The problem of determining the infimum

¤∗ := inf
µ

¤(µ),

for general continuous probability distributions, on the other hand, is much
more intricate. Unlike the probabilitiesf0(µ,o), for which exact bounds and
a complete characterization of the extreme cases are available even for the
generalization of the problem to an arbitrary number of random points in any
dimension, the exact value of¤∗ is still unknown, and this chapter will be
mostly concerned with narrowing the gap of our knowledge.

The “continuous” Four-Point Problem can again be equivalently recast in terms
of finite point sets, as was pointed out by Scheinerman and Wilf [66]: For
a finite setS of points in general position in the plane, let¤(S) denote
the number of 4-element subsets ofS that are in convex position, and set
¤(n) := min{¤(S) : |S| = n}. It is not hard to show that the sequence
¤(n)/

(
n
4

)
is non-decreasing (and obviously bounded by 1), and as we will

see below, its limit is precisely

¤∗ = lim
n→∞

¤(n)
(
n
4

) .

In this discrete context, the problem is also known as that of determining the
rectilinear crossing numberof complete graphs.

We review the concept of (rectilinear) crossing numbers of graphs, someba-
sic facts and previously known bounds, and the connection to the Four-Point
Problem in Section 5.1, and from then on work mainly in the technically more
convenient discrete setting.



In Section 5.2, we refine the techniques from Chapter 4 to derive a first lower
bound for¤∗. While this bound will be further improved in the subsequent
section, the proof technique and the combinatorial encoding of planar point
sets by means of so-calledstaircases of encountersmight be of interest in
their own right.

In Section 5.3, we describe how to express¤(S) in terms of the numbers
ej(S) of j-edges ofS. Together with the lower bounds for the numbersEj(S)
of (≤ j)-edges ofS which we will derive in Chapter 6, we obtain a lower
bound which comes quite close to the known upper bounds.

This technique also works for a generalization (one among several) of theFour
Point Problem to a larger number of points as well as to higher dimensions,
which we discuss in Section 5.4.

5.1 Crossing Numbers

Consider an abstract graphG = (V, E). A drawing of G is a mapping that
assigns to each vertexv ∈ V a pointpv ∈ R2, and to every edgee ∈ E a
Jordan arcϕe (i.e., the image of the closed unit interval under a continuous
injective map) such that the following conditions are satisfied:

1. Different vertices are mapped to different points,pu 6= pv if u 6= v.

2. The arcγe associated with an edgee = {u, v} haspu andpv as its
endpoints and contains nopw, w ∈ V , in its relative interior. Thus, the
following two situations are forbidden:

γ{u,v}pu

pv

pw

γ{u,v}

pu

pv

3. The relative interiors of any two arcs only intersect in a finite numberof
points. Such a point of intersection is called acrossingin the drawing.

When speaking about thenumber of crossingsin a given drawing, we count the
crossings with multiplicity: if a crossingq is contained in the relative interiors
of s arcs, then it is counted

(
s
2

)
times. Thecrossing numberof the graphG,

denoted bycr(G), is the minimum number of crossings in any drawing ofG.



It is usually assumed that in a drawing, no three arcs cross in a common point,
that there are no crossings between arcs with a common endpoint, and that
any two arcs cross in at most one point. These are sensible assumptions when
considering the crossing number, since they can be ensured by local modifica-
tions that do not increase the number of crossings, see Figure 5.1, andwe will
also assume this in what follows. (We note that things become more subtle
when one considers the so-calledpairwise crossing numberwhich counts the
number of pairs of arcs that cross.)

→

Figure 5.1: Local modifications that do not increase the number of crossings.

If all the arcs in a drawing are line segments then the drawing is calledrectilin-
ear or straight-edge, and therectilinear crossing numbercr(G) of a graphG
is defined as the minimum number of crossings in any straight-edge drawing
of G.

It is a well-known theorem (proved by Steinitz [74], and independentlyby
Wagner [83], and by F́ary [38]) that if a graphG is planar, i.e., cr(G) = 0,
then there exists also a crossing-free straight-edge drawing ofG, i.e.,cr(G) =
0. Bienstock and Dean [15] showed that the relationcr(G) = cr(G) holds
more generally whenevercr(G) ≤ 3. On the other hand, they also exhibited
an infinite family of graphs whose crossing number is 4 but whose rectilinear
crossing number is arbitrarily large. Thus, ifcr(G) ≥ 4, thencr(G) cannot
even be bounded in terms ofcr(G).

Another example that matters become more complicated once we leave the
realm of planar graphs behind is the following: While planarity of a graph can
be tested in linear time (see Hopcroft and Tarjan [45]), it isNP-complete to
decide whethercr(G) ≤ k for a given graphG and integerk (see Garey and
Johnson [40]). The hardness part of the proof carries over to the rectilinear
crossing number, but it appears to be still unknown whether the problem of
determining the latter is inNP.



These computational hardness results give some indication that the crossing
number and its rectilinear variant are intricate and subtle graph paramters. A
striking symptom of just how much so is that neither of them is fullyunder-
stood even for specific and very basic classes of examples, such as complete
graphs or complete bipartite graphs, which we will discuss below.

We refrain from attempting to survey the numerous applications which cross-
ing numbers have found in discrete and computational geometry. Instead,as
good starting points for exploring, we recommend the survey articles by Pach
[61] and by Pach and T́oth [62], Chapter 4 in Matoǔsek’s book [51], and the
online bibliography by Vrt’o [81].

Tur án’s Brick Factory Problem. The question of determining the cross-
ing number of complete bipartite graphs, posed by Turán, actually marks the
appearance of the notion of crossing numbers on the mathematical stage. In
a letter dated February, 1968, Turán wrote about his experience in a labour
camp during the Second World War (quoted after Guy [42]):

“In 1944 our labour combattation had the extreme luck to work—
thanks to some very rich comrades—in a brick factory near Bud-
apest. Our work was to bring out bricks from the ovens where
they were made and carry them on small vehicles which run on
rails in some of several open stores which happened to be empty.
Since one could never be sure which store will be available, each
oven was connected by rail with each store. Since we had to settle
a fixed amount of loaded cars daily it was in our interest to finish
it as soon as possible. After being loaded in the (rather warm)
ovens the vehicles run smoothly with not much effort; the only
trouble arose at the crossing of two rails. Here the cars jumped
out, the bricks fell down; a lot of extra work and loss of time
arose. Having this experience a number of times it occurred to
me why on earth did they build the rail system so uneconomic-
ally; minimizing the number of crossings the production could be
made much more economical.”

Thus, the problem of determining the crossing number of the completebipart-
ite graphKn,m (the minimum number of crossings needed to connectn ovens
to m stores) became known asTurán’s Brick Factory Problem.



Solutions were submitted by Zarankiewicz [89, 90] and Urbanik [79].Both
asserted that

(?) cr(Kn,m) = bm

2
cbm − 1

2
cbn

2
cbn − 1

2
c. (5.2)

For a while, this was called Zarankiewicz’s Theorem, but then it was found
that the proof of the lower bound contained a fatal fallacy, and (5.2) is now
referred to asZarankiewicz’s Conjecture; see Guy’s survey [42] for a detailed
account. We note that the conjecture has been verified formin{m, n} ≤ 6 by
Kleitman [48] and form = 7, n ≤ 10 by Woodall [88].

Figure 5.2: The upper bound construction forcr(Kn,m) andcr(Kn,m).

While the lower bound part of (5.2) remains unresolved, the construction that
establishes the upper bound is very simple and produces even a rectilinear
drawing, see Figure 5.2: Placem points on thex-axis,bm/2c of them to the
left anddm/2e of them to the right of the origin, andn points on they-axis,
bn/2c below anddn/2e above the origin. Connect every point on thex-axis
to every point on they-axis by a straight segment.

Cylindrical Drawings. The crossing number of complete bipartite graphs
is also relevant for the crossing number of complete graphs, the second class
of examples mentioned above. We begin the discussion of this connection
with the description of so-calledcylindrical drawingsof Kn,m: These are
drawings where them vertices of one vertex class are placed on a circleC0,
then vertices of the other class lie on a circleC1 properly enclosingC0, and
each vertex from the inner circleC0 is joined to every vertex on the outer circle
by an arc whose relative interior lies in the open annulus bounded byC0 and



C1. We can interpret this as a drawing ofKn,m on the surface of a cylinderZ,
with m vertices on the bottom “rim”C0 andn vertices on the top “rim”C1.
Alternatively, we can pictureZ as the stripR× [0, 1] modulo the equivalence
relation(x, y) ∼ (x + k, y) for all k ∈ Z, with C0 = [0, 1] × {0}/ ∼ and
C1 = [0, 1] × {1}/ ∼.

We describe a particular construction of that kind, due to Anthony Hill and
reproduced in Guy, Jenkyns, and Schaer [44]: Assume for simplicity thatm =
n. For 0 ≤ i, j ≤ n − 1, let pi := (0, i/n) ∈ C0 andqi := (1, i/n) ∈ C1,
and letγi,j be the arc{pi + t · (1, j

n ) : 0 ≤ t ≤ 1}/ ∼ on Z, which joinspi

andqi+j mod n, see Figure 5.3.
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Figure 5.3: Two ways of picturing Hill’s construction.

Let us callj the “slope” ofγi,j . Two arcs with the same slope do not cross,
so we can blame each crossing in the drawing on the line with larger slope.
Thus,γi,j will be blamed precisely for the crossings with the arcsγa,b with
i < a ≤ a+ b < i+ j. There arej−1 of these withb = 0, and

(
j−1
2

)
of them

with b > 0. Thus, we obtain a total of

n

n−1∑

j=1

((
i − 1

2

)

+ i − 1

)

=
1

6
n2(n − 1)(n − 2) (5.3)

crossings. A similar construction forKn,n+1 results in1
6 (n + 1)n(n − 1)2

crossings, see [44]. We note that (5.3) is optimal for for cylindrical drawings
of Kn,n, as proved by Richter and Thomassen [64].

Complete Graphs. Given a cylindrical drawing ofKn,m, we can complete
it to a drawing ofKn+m by inserting the missing edges in the disks bounded



by C0 andC1, at the cost of
(
m
4

)
+

(
n
4

)
additional crossings. (The drawing on

the cylinder can be transformed into a drawing in the plane by first projecting
centrally on a circumscribed sphere, and then using stereographic projection.)

If this is applied toKn
2 , n

2
, n even, with the cylindrical drawings described

above, then the resulting drawing contains1
64n(n− 2)2(n− 4) crossings. For

oddn, we first drawKn+1 in the above fashion and then remove an arbitrary
vertex and all incident edges. The bounds obtained for both parity cases can
be summarized as

cr(Kn) ≤ 1

4
bn

2
cbn − 1

2
cbn − 2

2
cbn − 3

2
c. (5.4)

This construction was described by Blažek and Koman [20] (who also gave
another construction with the same number of crossings) and independently
by Guy [42]. Moon [57] gave another very simple construction for drawings
of complete graphs, which gives the same asymptotic upper bound forcr(Kn)
as (5.4): He showed that if we choosen points independently and uniformly at
random from the unit sphere and join any two of them by a minor great circle
arc, then the expected number of crossings in the resulting drawing is3

8

(
n
4

)
.

It is conjectured that this is optimal, and that moreover, (5.4) gives thetrue
value ofcr(Kn).

In asymptotic form, this would actually follow from Zarankiewicz’s conjec-
ture (5.2), as first pointed out by Kainen [46]. The reasoning is a typical ex-
ample of a basic double counting argument about crossing numbers: Consider
an optimal drawing ofK2n. There are

(
2n
n

)
ordered partitions of the vertex

set into two color classes of equal size, and each of these partitions induces
an ordered copy ofKn,n, drawn in the plane. Each of these copies contains at
leastcr(Kn,n) crossings.

How often do we count a given crossing? By our assumption that any two
edges cross at most once, once the drawing is prescribed, we can identify
a crossing with the set of 4 endpoints of the crossing edges. Given these 4
endpoints, there are 4 possibilities of assigning two of them to onecolor class
and two to the other such that the crossing survives: for each edge, we haveto
choose one endpoint in the first color class. For the remaining vertices,there
are

(
2n−4
n−2

)
ways to distribute them into the two color classes. Altogether, there

are4
(
2n−4
n−2

)
copies ofKn,n that contain the given crossing. Hence,

cr(K2n) ≥
(
2n
n

)

4
(
2n−4
n−2

) cr(Kn,n),



and by dividing both sides by
(
2n
4

)
, we obtain

cr(K2n)
(
2n
4

) ≥ 3

2

cr(Kn,n)
(
n
2

)2 . (5.5)

Similar arguments show that

cr(Kn+1)
(
n+1

4

) ≥ cr(Kn)
(
n
4

) (5.6)

and
cr(Kn+1,n+1)

(
n+1

2

)2 ≥ cr(Kn,n)
(
n
2

)2 . (5.7)

Thus, the sequences in (5.6) and (5.7) are nondecreasing, and obviously bounded
from above by 1. Hence, they converge to certain limitscr∗ and cr∗,∗, re-
spectively, which determine the respective crossing numbers up to lower-order
terms. Moreover, by (5.5),

cr∗ ≥ 3

2
cr∗,∗

If Zarankiewicz’s conjecture is correct, it implies thatcr∗,∗ = 1/4, and hence
cr∗ = 3/8. In particular, this would mean that the above-mentioned construc-
tions give asymptotically optimal drawings ofKn.

Note, however, that neither of these constructions produces rectilinear draw-
ings. The above double-counting arguments carry over verbatim to rectilinear
drawings, so the analogues of (5.5), (5.6), and (5.7) for the rectilinear crossing
number hold as well. We denote the corresponding limits of the renormalized
rectilinear crossing number of complete graphs and complete bipartite graphs
by cr∗ andcr∗,∗, respectively. As we will see below,cr∗ = ¤∗, and we will
show in Section 5.3 that is strictly larger than3/8 = 0.375. There appears
to be no manifest conjecture as to what the true value ofcr∗ might be, or
what might an optimal straight-edge drawing ofKn might look like. The best
construction to date is due to Aichholzer, Aurenhammer, and Krasser [3] and
yields(¤∗ =)cr∗ < 0.38074.

Observe that a rectilinear drawing ofKn is completely determined by the
placement of its vertices, and that the third condition for drawings (that two
arcs share at most a finite number of points) implies that the resultingpoint set
is in general position. Moreover, among the 6 edges spanned by any 4-element
subset of the vertices, there is precisely one crossing (between the diagonals) if
the corresponding 4 points are in convex position, and no crossing otherwise,
see Figure 5.4.



Figure 5.4: One crossing or no crossing.

Thus, with the notation introduced at the beginning of this chapter,we have
cr(Kn) equals the minimum number¤(n) of convex 4-element subsets in any
set ofn points in general position in the plane.

The Connection to the Four Point Problem. As Scheinerman and Wilf ob-
served, the limitcr∗ = limn→∞ cr(Kn)/

(
n
4

)
= limn→∞ ¤(n)/

(
n
4

)
coincides

with the infimum for Sylvester’s Four-Point Problem,

¤∗ = inf
µ

¤(µ) = lim
n→∞

¤(n)
(
n
4

) . (5.8)

To see why this is, consider first an arbitrary continuous probabilitydistribu-
tion µ, andn pointsP1, . . . , Pn i.i.d. ∼ µ. Clearly,

¤(µ)

(
n

4

)

= E[¤({P1, . . . , Pn})] ≥ ¤(n),

and therefore,¤(µ) ≥ ¤(n)/
(
n
4

)
for all n, which shows the “≥” part of (5.8).

For the other direction, consider ann-point setS which achieves¤(n) =
¤(S). For each pointp ∈ S, letB(p) be a small disk of radiusε > 0 centered
atp, and letµn be the uniform distribution on the union of these disks. If we
take four random pointsP1, P2, P3, P4 i.i.d. ∼ µ, then the probability that
some two of them lie in the same diskB(p) is at most6/n. On the other hand,
if the Pi’s lie in pairwise distinct disks, sayPi ∈ B(pi), 1 ≤ i ≤ 4, and ifε is
chosen sufficiently small, then thePi’s are in convex position if and only if the
pi’s are. For every ordered 4-element subset{p1, p2, p3, p4} ⊆ S, we have
Pr[Pi ∈ B(pi) for 1 ≤ i ≤ 4] = 1/n4, and there are4!·¤(S) = 24¤(n) such
ordered 4-element subsets in convex position. Hence we obtain a sequence of
probability distributionsµn with

¤(µn) ≤ 24¤(n)

n4
+

6

n



for all n, and lettingn → ∞, we obtain the “≤” part of (5.8).

Small Cases, and Constructions of Rectilinear Drawings. Table 5.1 sum-
marizes what is known aboutcr(Kn) and¤(n) = cr(Kn) for small values of
n (see [43, 71, 22, 3]).

n ≤ 4 5 6 7 8 9 10 11 12
cr(Kn) 0 1 3 9 18 36 60 ≤ 102 ≤ 153
¤(n) 0 1 3 9 19 36 62 102 153

Table 5.1: Crossing numbers for complete graphs on few vertices.

By monotonicity of the sequence¤(n)/
(
n
4

)
, every lower bound for¤(n0)

(respectively,cr(Kn0
)) for some small integern0 yields a lower bound for¤∗

(respectively,cr∗). The best estimate obtained in this fashion is (confer [3])

¤∗ > 0.31151.

As mentioned above, the best upper bound to date is due to Aichholzer, Aure-
nhammer, and Krasser [3]. The construction is based on a computer-generated
rectilinear drawing ofK36 with few crossings. In this drawing, every vertex
of K36 is replaced by a tiny cloud of points arranged along a convex curve
very close to a halving line. Upon doing the calculations, this yields

¤∗ < 0.38074.

We conclude this section by mentioning a construction due to Singer [71].
While it gives a worse upper bound for¤∗ than the construction of Aich-
holzer, Aurenhammer, and Krasser, Singer’s construction is somewhat more
“conceptual”. Essentially the same construction was independently found by
Edelsbrunner and Welzl [36] to give a lower bound ofΩ(n log n) for the max-
imum number of halving edges of a set ofn points in the plane.

Example 5.1 (The Tripod Construction). Suppose we are given a rectilinear
drawing ofKn with few crossings, i.e., a setS ⊂ R2 in general position with
few convex quadrilaterals. By applying a suitable affine transformation, we
may assume thatS is very “flat”, i.e., that the slopes of all lines spanned by
S are less than some smallε > 0 in absolute value. Now take three copies
S1, S2, andS3 of S, the second and the third copy rotated by120 and240
degrees, respectively, and place them on three rays emanating from the origin



↓

↓

Figure 5.5: Singer’s construction.

such that every line spanned bySi has one of the other two copies on either
side, see Figure 5.5



This yields a setS′ of 3n points in general position, and systematic counting
shows that

¤(S′) = 3 · ¤(S) + 3n

(
n

3

)

+ 3

(
n

2

)2

.

By applying this recursively, one obtains¤∗ ≤ 5/13 ≈ 0.38462.

For further refinements of this construction, which yield¤∗ ≤ 6467/16848 ≈
0.38384, see Brodsky, Durocher, and Gethner [23].

5.2 Staircases of Encounters

In this section, we develop a new approach towards a lower bound for¤∗.
It is based on the method ofh-vectors described in Chapter 4, with suitable
refinements. The aim is to show the following:

Theorem 5.2.
¤∗ ≥ (53 + 5

√
13)/216 > 0.3288

A Warm-up. We first outline how to obtain a lower bound of

¤∗ ≥ 1/4

by a straightforward application of the Upper Bound Theorem 4.15.

We recall the conclusions of the theorem in the special context we are consid-
ering. LetS be a set ofn points in general position inR2. For a pointp ∈ S,
the number

f0(S \ p, p) = {X ⊆ S \ p : |X| = 3, p ∈ conv X}
(where “S\p” is short for “S\{p}”) can be expressed in terms of theh-vector
of p relative toS \ p,

f0(S \ p) =
n−4∑

j=0

hj(S \ p, p). (5.9)

The Upper Bound Theorem tells us that the entries of theh-vector can be
bounded in terms of the depth ofp in S \ p: if there is a linè throughp such
that one of the open halfplanes defined by` contains onlya ≤ bn/2c − 2
points fromS \ p, then for0 ≤ j ≤ bn/2c − 2,

hj(S \ p, p) ≤
(

j + 2

2

)

−
(

j − a + 2

2

)

. (5.10)



Furthermore, the Dehn-Sommerville Equations read

hj(S \ p, p) = hn−4−j(S \ p, p). (5.11)

Combining (5.9), (5.10), and (5.11), we obtain

f0(S \ p, p) ≤
bn/2c−2∑

j=0

((
j+2
2

)
−

(
j−a+2

2

))

+
dn/2e−3∑

j=0

((
j+2
2

)
−

(
j−a+2

2

))

=
(bn/2c+1

3

)
−

(bn/2c+1−a
3

)
+

(dn/2e
3

)
−

(dn/2e−a
3

)
.

Observe that this last expression is monotonically increasing ina. Thus, in
order to boundf0(S \ p, p), it suffices to bounda.

Up to a suitable rotation, we may assume that no two points ofS have the same
x-coordinate. Thus, if we order the points inS asp0, p1, . . . ,pn−1 according
to theirx-coordinate, the vertical line throughpa hasa points on one side and
n − 1 − a points on the other.

Now we use this to estimate the number of concave (i.e., non-convex) 4-
element subsets ofS, which we can write as

·4(S) =
∑

p∈S

f0(S \ p, p)

≤ n
((bn/2c+1

3

)
+

(dn/2e
3

))

−
bn−1

2 c
∑

a=0

((bn/2c+1−a
3

)
+

(dn/2e−a
3

))

−
dn−3

2 e
∑

a=0

((bn/2c+1−a
3

)
+

(dn/2e−a
3

))

= n
((bn/2c+1

3

)
+

(dn/2e
3

))

− 2
((bn/2c+2

4

)
+

(dn/2e+1
4

))

= 3
4

(
n
4

)
+ O(n3).

Since this holds for everyn-point setS, we obtain¤(n) ≥ 1
4

(
n
4

)
− O(n3),

i.e.,¤∗ ≥ 1/4, as advertised.

We note that both steps in the above reasoning are essentially tight. Onthe
one hand, givena, it is not difficult (details omitted) to construct a setS of n
points in general position and a pointp ∈ S such that

1. there is a line throughp that containsa points on one side, and

2. hj(S \ p, p) attains the upper bound (5.10) for allj ≤ n/2 − 2.



On the other hand, here is a recursive construction of a setSk of 2k +3 points
in general position that contains 3 points of depth 0 and 2 points of deptha, for
1 ≤ a ≤ k: Let S0 be the vertex set of an arbitrary triangle which contains the
origin 0 in its interior. Assume now that we have constructedPk, that0 does
not lie on any line spanned by two points ofSk and that any line through0
contains at leastk + 1 points fromSk on either side. Choose any line through
0 which avoidsSk. This line determines two open halfplanes, one of which
contains exactlyk + 1 points ofSk. For a suitably chosenε > 0, let p, p′

be two new points in that halfplane such thatp0p′ is an isosceles triangle of
heightε2 whose basepp′ is parallel to the chosen line and of lengthε. It is
easy to see that for sufficiently smallε, Sk+1 := Sk ∪ {p, p′} has again the
desired properties.

We remark that it is not hard to show that these “shallow” sets ofn = 2k + 3
points contain1

2

(
n
4

)
+ O(n3) convex quadrilaterals.

“Global” versus “local”. We now refine our analysis. The basic idea is to
exploit a certain trade-off, to be made precise below, between the “global”
number of all crossings on the one hand and the “local” number of crossings
involving a specific point on the other hand. The main technical tool will be
a slightly different encoding of theg-vector of a point by means of so-called
“staircases of encounters.”

Let P be a set ofn points in general position in the plane. Forp ∈ P , we
define

¤(p, P \ p) := |{T ∈
(
P\p

3

)
: T ∪ p is in convex position}|. (5.12)

As a first step, observe that we can express¤(P ) as the sum

¤(P ) =
1

4

∑

p∈P

¤(p, P \ p). (5.13)

We now introduce the key ingredient of our proof of Theorem 5.2, which
combines “global” and “local” considerations:

Definition 5.3. Let S be a set ofn + 1 points in general position in the Euc-
lidean plane, and letq ∈ S We define

Λ(q, S \ q) := max

{

¤(S \ q)
(
n
4

) ,
¤(q, S \ q)

(
n
3

)

}

. (5.14)



Moreover, let
Λ(n) := min

S
max
q∈S

Λ(q, S \ q),

where the minimum is taken over all setsS of n+1 points in general position
and the maximum over allq ∈ S. Similarly,

Λx (n) := min
S

max
v

Λ(v, S \ v),

with the minimum taken over all setsS of n + 1 points in general position,
and the maximum over allverticesv of conv S (“x” for “extreme point”).

Lemma 5.4.
¤∗ = lim inf

n→∞
Λx (n) = lim inf

n→∞
Λ(n).

Proof. Observe that for alln,

¤(n) ≤ Λx (n) ≤ Λ(n).

It follows that ¤∗ ≤ lim inf Λx (n) ≤ lim inf Λ(n) =: c, and it suffices to
show that conversely,c ≤ ¤∗. To this end, fixε > 0, and choosen0 ∈ N
such thatΛ(n) ≥ c − ε for all n ≥ n0.

Claim A.Suppose|S| = n + 1 > n0. Then there exists a pointp ∈ S such
that¤(p, S \ p) ≥ (c − ε)

(
n−1

3

)
.

To see this, letq ∈ S such thatΛ(q, S\q) ≥ c−ε. If ¤(q, S\q) ≥ (c−ε)
(
n
3

)
,

thenq is the point we are looking for. Otherwise,¤(S \ q) ≥ (c − ε)
(
n
4

)
, by

definition ofΛ(q, S \ q). Thus, by applying (5.13) to the setP = S \ q, we
see that there is somep ∈ S \ q for which

¤(p, S \ {p, q}) ≥ 4

n
¤(S \ q) ≥ (c − ε)

(
n − 1

3

)

.

Since¤(p, S \ p) ≥ ¤(p, S \ {p, q}), this proves Claim A.

Claim B.For alln ≥ n0,

¤(n) ≥ (c − ε)

(
n − 1 − n0

4

)

We proceed by induction onn. The claim is clearly true forn = n0. Moreover,
if n > n0, let P be a set ofn points achieving¤(P ) = ¤(n). By Claim A,
there is some pointp ∈ P with ¤(p, P \ p) ≥ (c − ε)

(
n−2

3

)
. By induction,



¤(P \ p) ≥ (c − ε)
(
n−2−n0

4

)
. Together with the quadrilaterals in whichp

participates, this yields

¤(P ) ≥ (c − ε)

((
n − 2

3

)

+

(
n − 2 − n0

4

))

≥ (c − ε)

(
n − 1 − n0

4

)

quadrilaterals inP , which proves Claim B.

Finally, sincelimn→∞
(
n−1−n0

4

)
/
(
n
4

)
= 1, it follows that¤∗ ≥ c − ε, and

because this holds for allε > 0, the proof is complete.

Staircases of Encounters. In view of Lemma 5.4, our goal is to estimate
Λ(n) or Λx (n). We focus on the latter, and now develop the necessary tools.

Let S be a set ofn + 1 points in general position in the plane. Fix a vertexv

of the convex hull ofS, and setP = S \ v.

Consider a pointp ∈ P , and let` be the line throughp andv, oriented from
p towardsv. Let L be the set of points ofP that lie to the left of̀ , andR the
set of those that lie to the right.

Fork := |L|, the grid

β(p) := β(v, P,p) := {0 . . . k − 1} × {0 . . . n − 2 − k}

will be referred to as theboxof p. We “fill” this box, i.e. we define a subset
λ(p) ⊆ β(p), in the following fashion: Enumerate the points inL in the
orderq0, q1, . . . , qk−1 in which they are first encountered when we rotate`
clockwise, and set

λ(p) := λ(v, P,p) := {(a, b) ∈ β(v, P,p) : b < |H−(qa, p)∩R|}. (5.15)

Here, H−(q, p) denotes the open halfspace to the right of the oriented line
from q throughp. See also Figure 5.6. We callλ(p) thestaircase of encoun-
tersof p.

We proceed to relate these staircases of encounters to the object of our invest-
igation,Λx (v, P ). Forp ∈ P and0 ≤ i ≤ n − 2, let δi(p) be the number of
entries ofλ(p) on theith diagonal, i.e.

δi(p) = δi(v, P,p) := |{(a, b) ∈ λ(v, P,p) : a + b = i}|. (5.16)

The upcoming Lemma 5.5 and Corollary 5.7 expressΛx (v, P ) in terms of the
numbersδi(p). The first describes the connection of theδi(p)’s with ¤(v, P ).
Note that forp ∈ P , the sum

∑

i δi(p) counts the number of pairs{q, r} ⊂
P \ p such thatp ∈ conv{q, r, v}. Therefore:
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Figure 5.6: Staircase of Encounters.

Lemma 5.5. The number of triplesT ⊆ P that form a convex quadrilateral
with v is

¤(v, P ) =

(
n

3

)

−
∑

p∈P

∑

i

δi(p). (5.17)

In order to relate theδi(p)’s to ¤(P ), we have to work a little more. Recall
that forp ∈ P , f0(p, P \ p) denotes the number of triplesT ⊆ P \ p that
containp in their convex hull. Observe that

¤(P ) =

(
n

4

)

−
∑

p∈P

f0(p, P \ p). (5.18)

Lemma 5.6. For p ∈ P , we can express theg-vector (see Definition 4.24) of
p relative toP \ p as

gi(P \ p) = δi(v, P,p) − δn−3−i(v, P,p). (5.19)



Corollary 5.7. Lemma 5.6 implies

f0(p, P \ p) =
∑

i

(n − 3 − 2i)δi(p).

Thus, by (5.18), we get

¤(P ) =

(
n

4

)

−
∑

p∈P

n−3∑

i=0

(n − 3 − 2i)δi(p). (5.20)

Proof of Lemma 5.6.Let ` be the line throughp andv, oriented fromp to-
wardsv, and let`L and`R be two parallel translates of` to the left and right
of `, respectively. As in the definition ofδi(p), we writeL for the set of points
from P \ p that lie to the left of̀ , andR for the set of those to the right.

The δi(p)’s only depend on the circular ordering of the rays that emanate
from p and pass through the points ofP \ p. The same holds for the numbers
fk(P \ p) = {X ⊆ P \ p : |X| = k + 3, p ∈ conv X}, which we know
determine theg-vector ofp relative toP \p. Thus, by sliding the points along
these rays if necessary, we may assume that all the points inL lie on `L and
all points fromR lie on `R, see Figure 5.7.

v

p

q0

q1

q2

q3

q4

r0

r1

r2

r3

``L `R

Figure 5.7: Numberings ofL andR.

Consider the points inL andR in the order in which they appear along the
lines`L and`R, respectively,L = {q0, . . . , qk−1} andR = {r0, . . . , rn−k−1}.
For the points inL, this agrees with the ordering in the definition ofλ(p).)
Then each pair(a, b) ∈ B(p) corresponds to the pair(qa, rb) ∈ L × R.



The crucial observation is that since we assume thatP \ p is concentrated on
the two lines̀ L and`R, the oriented edge[qa, rb] is a(a + b)-edge ofP \ p

that is entered bỳ. Moreover, it is entered beforep (see Definition 4.10)
iff (a, b) ∈ λ(p). Therefore,δi(v, P,p) counts the the number ofi-edges of
P \ p that are entered bỳbeforep. In other words,

δi(v, P,p) = h∗(P \ p, `,p),

from which the lemma follows immediately.

Let us rewrite these conclusions as follows: Define

Γ(v, P ) := min{Γ1(v, P ), Γ2(v, P )},
where

Γ1(v, P ) :=

∑n−3
i=0 (n − 3 − 2i)

∑

p∈P δi(v, P,p)
(
n
4

)

and

Γ2(v, P ) :=

∑n−3
i=0

∑

p∈P δi(v, P,p)
(
n
3

) .

With this notation, (5.17) and (5.20) just state that

Λ(v, P ) = 1 − Γ(v, P ). (5.21)

A Lower Bound for General Staircases. A staircaseis a setλ ⊆ N0×N0

of pairs of nonnegative integers such that(a, b) ∈ λ and0 ≤ a′ ≤ a and
0 ≤ b′ ≤ b imply (a′, b′) ∈ λ.

Let us look back at what we did so far: In order to analyzeΛ(v, P ), we
associated a certain staircaseλ(p) = λ(v, P,p) with every pointp ∈ P .
Then we counted the number of entries on theith diagonal of each of these
staircases, and, in (5.21), expressedΛ(v, P ) in terms of the resulting numbers
δi(p).

Let us now forget about the geometric context. For a staircaseλ and integeri,
let

δi(λ) := {(a, b) ∈ λ : a + b = i}.
For 1 ≤ k ≤ n − 3, let βk := {0 . . . k} × {0 . . . n − 3 − k}, and consider
a sequenceλ = (λ1, . . . , λn−3) of staircasesλk ⊆ βk. Taking (5.21) as a
starting point, we define

Γ1(λ) :=

∑

i(n − 3 − 2i)
∑

k δi(λk)
(
n
4

) , (5.22)



Γ2(λ) :=

∑

i

∑

k δi(λk)
(
n
3

) , (5.23)

and
Γ(λ) := min {Γ1(λ), Γ2(λ)} . (5.24)

(Observe that
(
n
3

)
Γ2(λ) =

∑

k |λk|.) We proceed to prove an upper bound
for Γ(λ), which, by (5.21) and by Lemma 5.4, yields a lower bound for¤∗.

Observe that there is a certain trade-off betweenΓ1 andΓ2: On the one hand,
Γ2 is maximized ifλk = βk for all k (“all boxes are full”). On the other hand,
it is not hard to see (but we need not worry about that) thatΓ1 is maximized
if λk = {(a, b) ∈ βk : a + b ≤ (n − 3)/2} (“all boxes are filled up to the
middle diagonal”). Roughly speaking, we obtain the upper bound forΓ(λ) by
finding the “equilibrium” ofΓ1 andΓ2.

As a first step, we observe that we can restrict our attention to staircases ofa
special shape. Let us say thatλk results fromfilling the boxβk up to thejth
diagonalif, for all (a, b) ∈ βk,

a + b < j ⇒ (a, b) ∈ λk, and a + b > j ⇒ (a, b) 6∈ λk.

(Observe that we do not say anything about the elements ofλk on the jth
diagonal.)

Lemma 5.8. Suppose thatM =
(
n
3

)
Γ2(λ) =

∑

i

∑

k δi(λk) is prescribed.
Under this constraint,Γ1(λ) is maximized iff eachλk is obtained by fillingβk

up to thejth diagonal, for a certainj = j(M).

Proof. Let j be maximal with the property that
∑

k

∑

i<j δi(βk) ≤ M . Sup-
pose that(a, b) ∈ βk\λk and(a′, b′) ∈ λk′ , for somek, k′, such thata+b < j
anda′ + b′ > j. Then by removing(a′, b′) from λk′ and by adding(a, b) to
λ, we increaseΓ1 while leavingΓ2 invariant. The remaining elements of the
staircases are distributed in an arbitrary fashion on thejth diagonals.

Thus, we may assume that allλk ’s are of this kind. The question remains, up
to which diagonal theβk ’s are filled.

Lemma 5.9. Let j = bα(n − 3)c, for α ∈ [0, 1], and suppose that eachλk is
obtained by fillingβk up to thejth diagonal. Then,

Γ1(λ) = 12α2(1 − 2α + α2)
︸ ︷︷ ︸

=: F1(α)

+ O(1/n) (5.25)



and
Γ2(λ) = α2(3 − 2α)

︸ ︷︷ ︸

=: F2(α)

+ O(1/n). (5.26)

The proof of Lemma 5.9 consists of straightforward calculations, which we
defer to the end of this section.

Having the preceding lemma at our disposal, it is now easy to prove the desired
estimate forΓ(λ): Forλ as in Lemma 5.9, we have

Γ(λ) = min{F1(α), F2(α)} + o(1).

Moreover, since we are interested in the limit behavior asn → ∞, we can
ignore theo(1) error term. Thus, since we want to prove an upper bound for
Γ, the question remains whichα maximizesmin{F1(α), F2(α)}.

Let us first consider the interval[ 12 , 1]: Here,F1 is a monotonically decreasing
function whileF2 is increasing. Moreover,F1(1/2) = 3/4 > 1/2 = F2(1/2)
andF1(1) = 0 < 1 = F2(1), somaxα∈[1/2,1] min{F1(α), F2(α)} is attained
at someα for which F1(α) = F2(α). The roots ofF1(α) − F2(α) = 9α2 −
22α3 + 12α4 are

0, 0,
1

12
(11 +

√
13),

1

12
(11 −

√
13).

Thus, the root we are looking for isα∗ = (11 −
√

13)/12. Moreover, by
considering first and second derivatives at0, we see thatF1 ≥ F2 on the
interval[0, α∗]. Therefore, sinceF2 is increasing,α∗ maximizesmin{F1, F2}
over the whole interval[0, 1], andF1(α

∗) = F2(α
∗) = (163−5

√
13)/216) <

0.6712. We have proved:

Theorem 5.10. For every sequenceλ = (λ1, . . . , λn−3 of staircasesλk ⊆
{0 . . . k} × {0 . . . n − 3 − k}, we have

Γ(λ) ≤ (163 − 5
√

13)/216) + O(1/n).

Corollary 5.11. In particular, for every setS of n + 1 points in general posi-
tion and for any vertexv of conv(S),

Λ(v, S \ v) ≥ (53 + 5
√

13)/216 + O(1/n).

By Lemma 5.4, this also establishes Theorem 5.2.



Proof of Lemma 5.9.By symmetry, we haveδi(βk) = δi(βn−3−k) for all i, k.
Furthermore, fork ≤ (n − 3)/2,

δi(βk) =







i + 1 if 0 ≤ i ≤ k,

k + 1 if k < i < n − 3 − k,

n − 2 − i if n − 3 − k ≤ i ≤ n − 3.

By assumption,δi(λk) = δi(βk) for i < j andδi(λk) = 0 for i > j. There-
fore, for0 ≤ i ≤ min{j, (n − 3)/2},

n−3∑

k=0

δi(λk) = 2

(n−3)/2
∑

k=0

δi(λk) + O(n)

= 2
( ∑

k<i

(k + 1) +

b(n−3)/2c
∑

k=i

(i + 1)
)

+ O(n)

= (n − 3)(i + 1) − 2

(
i + 1

2

)

+ O(n).

(Here, theO(n) error term covers the fact that whenn− 3 is even, the middle
term δi(λ(n−3)/2) appears once too often. This error term also takes care
of the difference betweenb(n − 3)/2c(i + 1) and (n − 3)(i + 1)/2 in the
third step. Similar simplifications will be made in what follows.) Thus, for
j = bαnc ≤ (n − 3)/2,

∑

i<j

∑

k

δi(λk) = (n − 3)

(
j + 1

2

)

− 2

(
j + 1

3

)

+ O(n2)

=
(
3α2 − 2α3

)

︸ ︷︷ ︸

= F2(α)

(
n

3

)

+ O(n2)

Furthermore, again by symmetry,δi(βk) = δn−3−i(βk) for o ≤ i, k ≤ n − 3.



Hence, forj > (n − 3)/2, we get again

∑

i<j

∑

k

δi(λk) = 2

(n−3)/2
∑

i=0

∑

k

δi(λk) −
n−3−j
∑

i=0

∑

k

δi(λk) + O(n2)

= (2F2(1/2) − F2(1 − α))

(
n

3

)

+ O(n2)

= F2(α)

(
n

3

)

+ O(n2).

Here, the second to last step follows from the casej ≤ (n − 3)/2, while the
last one reflects the propertyF2(α) = 2F2(1/2)−F2(1−α), which is easily
verified. Thus, we have proved (5.26).

For (5.25), we observe that, forj ≤ (n − 3)/2,

∑

i<j

∑

k

iδi(λk) =
∑

i<j

i

(

(n − 3)(i + 1) − 2

(
i + 1

2

)

+ O(n)

)

= 2(n − 3)

(
j + 1

3

)

− 6

(
j + 1

4

)

+ O(n3)

=
(
8α3 − 6α4

)
(

n

4

)

+ O(n3).

Therefore, forj ≤ (n − 3)/2,
∑

i<j

∑

k

(n − 3 − 2i)δi(λk)

= (n − 3)
(
3α2 − 2α3

)
(

n

3

)

− 2
(
8α3 − 6α4

)
(

n

4

)

+ O(n3)

=
(
12α2 − 24α3 + 12α4

)

︸ ︷︷ ︸

= F1(α)

(
n

4

)

+ O(n3).

This proves (5.25) for the case thatj ≤ (n − 3)/2. Finally, to establish it
for j > (n − 3)/2, we observe that for everyk, we can rewrite

∑

i(n − 3 −
2i)δi(p) =

∑

i(n−2−i)(δi(λk)−δn−3−i(λk)). Thus, ifj > (n−3)/2, then
for i between(n−3)/2 andj, δi(λk)−δn−3−i(λk) = 0, so these terms cancel
each other out. Therefore, up to ano(1) error term,Γ1 is the same whether



the boxesβk are filled up to thej-th or up to the(n− 3− j)-th diagonal. This
completes the proof becauseF1 is also symmetric about12 .

5.3 Convex Quadrilaterals andk-Sets

We now describe yet another approach to find a lower bound for the number
¤(S) of convex quadrilaterals of a finite point setS in general position in the
plane. Our goal is to prove the following

Theorem 5.12. Let S be a set ofn points in the plane in general position.
Then the number of convex quadrilaterals determined byS is at least

(3/8 + ε)

(
n

4

)

+ O(n3) > 0.37501

(
n

4

)

,

whereε ≈ 1.0887 · 10−5.

We note that a lower bound of3/8
(
n
4

)
has been established independently by

Ábrego and Ferńandez-Merchant [1], using methods similar to ours.

The smallε is significant because as noted in Section 5.1, the ordinary crossing
number ofKn is at most3/8

(
n
4

)
+ O(n3). Thus, while it is well-known that

the ordinary crossing number and the rectilinear crossing number of complete
graphs differ (the smallestn for which they differ is 8, see Table 5.1), our
lower bound shows that the difference lies in the asymptotically relevant term.

The first ingredient for the proof of Theorem 5.12 is a lemma that expresses
¤(S) as a positive linear combination of the numbersej(S) of j-facets ofS
(one might say, as the “second moment” of the distribution ofj-facets).

Lemma 5.13. For every setS of n points in the plane in general position,

¤(S) =
∑

j< n−2
2

ej(S)

(
n − 2

2
− j

)2

− 3

4

(
n

3

)

.

The proof of this lemma is based on the following observation, whichsays,
roughly speaking, that the “kth moment” of the distribution ofj-facets of a
finite set in general position in dimensiond gives, up to appropriate renormal-
ization, the expected number of facets of the polytope spanned by a random
(d + k)-element subset:



Observation 5.14.LetS be a set ofn points in general position inRd. Then,
for all k,

∑

j

(
j

k

)

ej(S) =
∑

X∈( S

d+k)

fd−1(conv(X)).

Proof. By general position, we havefd−1(conv X) = e0(X) = ek(X) for
all X ∈

(
S

d+k

)
. Thus, the right hand side of the above equation counts the

number of pairs(X, σ), whereX ∈
(

S
d+k

)
andσ is ak-facet ofX.

The left-hand side is just a different way of counting these pairs. Foreach
j-facetσ of S, there are

(
j
k

)
possibilities to complete thed points spanningσ

to a (d + k)-element subset which hasσ as ak-facet: we have to choose the
remainingk points from the positive side ofσ.

Proof of Lemma 5.13.Specializing the previous observation tod = k = 2,
we obtain

n−2∑

j=0

(
j

2

)

ej(S) =
∑

X∈(S

4)

f1(conv X) = 3 ·4(S) + 4¤(S).

Moreover, we have

¤(S) + ·4(S) =

(
n

4

)

.

Thus, we can substitute·4(S) =
(
n
4

)
−¤(S) into the first equation and obtain

n−2∑

j=0

(
j

2

)

ej(S) = ¤(S) + 3

(
n

4

)

.

Next, we use that
n−2∑

j=0

ej(S) = 2

(
n

2

)

, (5.27)

which implies that we can write

3

(
n

4

)

=
n−2∑

j=0

ej(S)
(n − 2)(n − 3)

8



to get

¤(S) =
n−2∑

j=0

((
j

2

)

− (n − 2)(n − 3)

8

)

ej(S)

=

n−2∑

j=0

((
j

2

)

− (n − 2)(n − 4)

8

)

︸ ︷︷ ︸

=0 for j=(n−2)/2

ej(S) − n − 2

8

n−2∑

j=0

ej(S)

=
∑

j< n−2
2

(
n − 2

2
− j

)2

ej(S) +
3

4

(
n

3

)

,

where we use (5.27) and the fact thatej(S) = en−2−j(S).

Having expressed¤(S) as a positive linear combination of theej(S)’s (up to
a lower-order error term), we can substitute any lower bound for the numbers
ej(S) to obtain a lower bound for¤(S).

It is not difficult to derive a sharp lower bound for each individualej :

Proposition 5.15. If S is a set ofn points in general position in the plane,
then for allj < n−2

2 ,
ej(S) ≥ 2j + 3.

For everyj ≥ 0 andn ≥ 2j + 3, there is a point set for which this bound is
attained.

Proof. Take an arbitraryj-edge[p, q] of S. Let ` be an oriented line parallel
and very close to the right of[p, q] such that̀ is disjoint fromS. Thus, there
arej + 2 points fromS to the left of` andn − 2 − j ≥ j to the right. By the
Upper Bound Theorem 4.15, the number ofj-edges ofS that are intersected
by ` is preciselyhj(S, `) + hn−2−j(S, `) = 2j + 2 (this fact aboutj-edges
in the plane was already noted in [37]), and there is at least one additional
j-edge, namely[p, q].

The following construction shows that the bound is sharp.

Example 5.16. Let S0 be the vertex set of a regular(2j + 3)-gon centered at
the origin0, and letS1 be any set ofn − 2j − 3 points very close to0 such
that the whole setS := S0 ∪̇S1 is in general position.

Every line through any point inS1 has at leastj+1 points ofS0 on both sides,
so thej-edges ofS are the longest diagonals ofS0, of which there are2j + 3.



Using the bound from Proposition 5.15 in the formula of Lemma 5.13, we get

¤ ≥
∑

j< n−2
2

(2j + 3)

(
n − 2

2
− j

)2

− 3

4

(
n

3

)

=
1

4

(
n

4

)

+ O(n3).

This lower bound for¤ is weaker than than the estimate derived in the pre-
vious section. Its weakness rests mainly in the fact that the point set in Ex-
ample 5.16 is highly attuned to the specificj at hand.

To obtain the stronger lower bound stated in Theorem 5.12, we do “integration
by parts”, i.e., we pass fromj-facets to(≤ j)-facets. We substituteej =

Ej − Ej−1 in Lemma 5.13 (with the notationEj =
∑j

i=0 ei introduced in
Chapter 2) and rearrange to get the following:

Lemma 5.17. For every setS of n points in the plane in general position,

¤(S) =
∑

j< n−2
2

(n − 2j − 3)Ej(S) − 3

4

(
n

3

)

+ rn(S),

where

rn(S) =

{
1
4En−3

2
(S), if n is odd, and

0, if n is even.

Note that the last two terms in the above formula areO(n3).

To arrive at the conclusion of Theorem 5.12, we use the following twotheor-
ems. We will prove the first one Chapter 6:

Theorem 6.1.LetS be a set ofn points in general position in the plane. Then,
for every0 ≤ j < n−2

2 , the number of(≤ j)-edges ofS satisfies

Ej(S) ≥ 3

(
j + 2

2

)

.

This bound is tight forj < n/3.

Plugging this into the formula in Lemma 5.17 yields

¤(S) ≥ 3/8

(
n

4

)

+ O(n3).

In order to obtain the tiny improvement over3/8, we will exploit the fact that
while the lower boundEj ≥ 3

(
j+2
2

)
is sharp forj < n/3, it is no longer tight

for j close ton/2 (in particular, observe that for oddn, E(n−3)/2 =
(
n
2

)
∼

4
(
(n−3)/2

2

)
). Specifically, we will use the following result of Welzl [85]:



Theorem 5.18.LetS be a set ofn points in the plane, and consider a (not ne-
cessarily contiguous) index setK ⊆ {1, 2, . . . , bn/2c}. Then the total number
of k-sets withk ∈ K satisfies

∑

k∈K

ak(S) ≤ 2n
√

2
∑

k∈K k.

In particular, letm = bn/2c, and apply this theorem to the intervals of the
form {j + 2, j + 3, . . . , m}. Observing thatei is precisely the number of
(i + 1)-sets, we obtain that for allj ≤ m − 1,

Em−1 − Ej ≤ 2n
√

2
∑m

i=j+2 i = 2n
√

m2 + m − j2 − 3j − 2,

and sinceEm−1 ≥
(
n
2

)
,

Ej ≥
(

n

2

)

− 2n
√

m2 + m − j2 − 3j − 2.

For j ≥ n/6, we can simplify this to

Ej(S) ≥
(

n

2

)

− n2
√

1 − 4(j/n)2 + O(n). (5.28)

(The only reason for the assumptionj ≥ n/6 is that for smallerj, we would
need the more cumbersome error termO(n3/2), and we are only going to use
(5.28) forj close ton/2, anyway.)

Combining the the estimate from Theorem 6.1 with (5.28), we see that

Ej ≥ 3

(
j + 2

2

)

+ n2 max

(

0,
1 − 3(j/n)2

2
−

√

1 − 4(j/n)2
)

+ O(n).

The “max” term is positive forj/n ≥ t0 =
√

(2
√

13 − 5)/9 ≈ 0.4956, so



we do gain whenj is very nearn/2. Substituting into Lemma 5.17, we get

¤(S) =
∑

j< n−2
2

(n − 2j − 3)Ej(S) + O(n3)

≥
∑

j< n−2
2

3(n − 2j − 3)

(
j + 2

2

)

+ O(n3)

+ n3
∑

t0n≤j< n−2
2

(1 − 2(j/n))

(
1 − 3(j/n)2

2
−

√

1 − 4(j/n)2
)

=
3

8

(
n

4

)

+ n4

∫ 1/2

t0

(1 − 2t)

(
1 − 3t2

2
−

√

1 − 4t2
)

dt + O(n3).

Thus,

¤ ≥ (3/8 + ε)

(
n

4

)

+ O(n3),

with

ε = 24

∫ 1/2

t0

(1 − 2t)

(
1 − 3t2

2
−

√

1 − 4t2
)

dt ≈ 1.0887 · 10−5.

This completes the proof of Theorem 5.12. We remark that in the set-up of

Theorem 5.18, an asymptotically stronger bound ofO(n
(
|K|∑k∈K k

)1/3
)

can be proved [6, 32]. This, in turn, can be used for a further tiny improvement
in theε. We omit the details.

5.4 Generalizations

For the Four-Point Problem, it does not matter whether we consider theprob-
ability ¤(µ) that four random pointsP1, P2, P3, P4 i.i.d. ∼ µ are in convex
position, or the complementary probability·4(µ) = 1 − ¤(µ), or

1

4
·4(µ) = Pr[P4 ∈ conv{P1, P2, P3}, (5.29)

since any one of these three quantities determines the other two.

Depending on which viewpoint we take, however, different generalizationsof
the original problem suggest themselves.



If we focus on (5.29), then the following is a natural generalization ofthe prob-
lem to a larger number of random points: IfP1, . . . , Pn, are i.i.d. according to
a continuous probability distributionµ in the plane, what is

Pr[Pn ∈ conv{P1, . . . , Pn−1}]?

Equivalently, we can ask, what is

Pr[Pn 6∈ conv{P1, . . . , Pn−1}]?

In other words, to formulate the problem in more symmetric terms, what is the
expected number of vertices ofconv{P1, . . . , Pn}?

In the plane, this is the same as the expected number ofedgesof the polygon
conv{P1, . . . , Pn}. This seems to lead the “right” formulation of the question
for generalizations to higher dimensions: What is the expected number of
facets of the polytope spanned byn independentµ-random points? Here,
“right” just means that this variant of the problem lends itself to the approach
developed in Section 5.3. Again, the question can be equivalently recast in
terms of finite point sets, and we can apply Observation 5.14 to any number
of points in any dimension. The bounds obtained in the general case are much
weaker, though, since we have less precise knowledge about the distribution
of j-facets in higher dimensions. We will discuss this in Chapter 6.

Another way of generalizing the problem to a larger number of random points
P1, . . . , Pn i.i.d.∼ µ is to ask: What is the probabilityp(n, µ) thatP1, . . . , Pn

are in convex position?

Unfortunately, it is not clear how to extend thej-facet approach to this prob-
lem. The question can still be equivalently reformulated in terms of finite
points sets, but trouble is that for a finite setS ⊆ R2 andn ≥ 5, the numbers
ej(S) apparently no longer determine the number ofn-element subsets ofS
that are in convex position: Let us denote byt = (S), q = q(S) andp = p(S)
the number of 5-element subsets ofS whose convex hull is a triangle, a quad-
rilateral, and a pentagon, respectively. For|S| = n, we we only get the two
equations

t + q + p =

(
n

5

)

and
n−2∑

j=0

(
j

3

)

ej = 3t + 4q + 5p,

which are insufficient to expressp in terms of theej ’s.



The probabilitiesp(n, µ) have been studied for uniform distributions on a con-
vex bodyK, in which case we just denote them byp(n, K). We conclude this
chapter with a few notes on that topic.

Valtr [80] determined the exact probabilities for the case of triangles,

p(n, triangle) =
2n(3n − 3)!

(n − 1)!3(2n)!
,

Observe that this is asymptotically equivalent to(27/2e2n−2)n (where “e”,
for once, denotes the base of the natural logarithm). Moreover, every convex
body K can be sandwiched between two trianglesT1 andT2 such that the
ratio area(T2)/ area(T1) is bounded by a constant (this is a consequence of
John’s Lemma, see [51], Section 13.4). Thus, there are universal constants
0 < c1 < c2 < ∞ such that for every convex bodyK ⊆ R2,

c1 ≤ n2 n
√

p(n, K) ≤ c2.

Báŕany [11] showed that for everyK, the limit limn→∞ n2 n
√

p(n, K) exists.
Furthermore, he proved a “limit shape” result: if we condition upon the event
thatP1, . . . , Pn are in convex position, then with high probability, their convex
hull is very close (in the sense of the Hausdorff distance) to certain convex
bodyK0 ⊆ K.

For further information about the probabilitiesp(n, K) and a number of re-
lated questions, we refer to the survey article by Schneider [68].





Chapter 6

Lower Bounds for (≤k)-Sets

In the previous chapter, we considered the number of convex quadrilaterals in
a finite point set in the plane. As we saw, this is just Sylvester’s Four-Point
Problem in a discrete guise.

As our main result, we derived Theorem 5.12, which gives a lower bound for
the minimum number¤(n) of convex quadrilaterals in any set ofn points in
general position in the plane.

The objective of this chapter will be to provide the missing ingredient for
the proof of Theorem 5.12, namely the following estimate for the number
Ej =

∑j
i=0 ei of (≤ j)-edges of a point set:

Theorem 6.1. LetS be a set ofn points in general position in the plane. For
every0 ≤ j < n−2

2 ,

Ej(S) ≥ 3

(
j + 2

2

)

.

This bound is tight forj < n/3.

Since in the plane, the numberej of j-edges equals the numberaj+1 of (j+1)-
sets, Theorem 6.1 can be equivalently stated as a bound for the numberAk =
∑k

i=1 ai of (≤ k)-sets:

Theorem 6.1’. For every setS of n points in general position in the plane
and every1 ≤ k < n/2,

Ak(S) ≥ 3

(
k + 1

2

)
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This bound is tight fork ≤ n/3, as is shown by the “Tripod Construction”
which we already encountered in Chapter 5 (Example 5.1).

Recall that the point setS produced by that construction was partitioned into
three partsS1, S2, S3 consisting ofn/3 points each that were arranged very
close to three rays through the origin. Before, we also cared about the internal
structure of the partsSi, but now we only need the property that every line
spanned by two points from the same partSi separates the remaining two
parts.

It follows that for1 ≤ k ≤ n/3, everyk-set ofS contains thel points farthest
from 0 in oneSi, for some1 ≤ l ≤ k, and the(k − l) points farthest from0
in anotherSj . Hence the number ofk-sets is3k and the number of(≤ k)-sets
equals3

(
k+1
2

)
.

The lower bound in Theorem 6.1’ was first formulated by Edelsbrunner, Hasan,
Seidel, and Chen [34]. Unfortunately, their proof contains a gap that seems to
be fatal, as their method of estimatingAk would in fact lead to a linear upper
bound for the number ofk-sets.

Our proof will, however, follow the same basic approach via so-calledcircular
orallowable sequences, which were introduced by Goodman and Pollack [41].
We review this notion in Section 6.1 and then prove a slightly moregeneral
estimate which implies Theorem 6.1.

In Section 6.2, we will discuss extensions of Theorem 6.1 to higher dimen-
sions.

6.1 The Lower Bound in the Plane

We now proceed to prove the lower bound stated in Theorem 6.1.

Let Π be (a halfperiod of) acircular sequenceof {1 . . . n}. That is,Π =
(Π0, . . . ,Π(n

2)
) is a sequence of permutations of{1 . . . n} such thatΠ0 is the

identity permutation(1, 2, . . . , n), Π(n

2)
is the reverse permutation(n, n −

1, . . . , 1), and any two consecutive permutations differ by exactly one trans-
position of two elements in adjacent positions.

Circular sequences, which were introduced by Goodman and Pollack [41],
can be used to encode any planar point set. For our purposes and for sim-
plicity, however, we only consider the case of a point setS in general posi-
tion. Moreover, we will make the additional assumption that no two segments
spanned by points fromS are parallel (we can assume this without loss of gen-
erality, since it can be ensured by sufficiently small perturbations of thepoints,



and this will not affect the number of convex quadrilaterals or the numberof
k-sets).

Let ` be a directed line which is not orthogonal to any of the lines spanned
by points fromS, and assume thatS = {p1, . . . ,pn}, where the points are
labeled according to the order in which their orthogonal projections appear
along the line. Now suppose that we start rotating` counterclockwise. Then
the ordering of the projections changes whenever` passes through a position
where it is orthogonal to a segmentuv, with u, v ∈ S. When such a change
occurs,u andv are adjacent in the ordering, and the ordering changes byu

andv being transposed. Thus, if we keep track of all permutations of the
projections as the linè is rotated by180◦, we obtain a circular sequence
Π = Π(S). (The sequence also depends on the initial choice of`, which for
sake of definiteness, we can assume to be vertical and directed upwards).

Observe that if a circular sequence arises in this fashion from a point set,
then the(i − 1)-edges (and hence thei-sets) of the point set correspond to
transpositions between elements in positionsi andi + 1, or in positionsn − i
andn − i + 1. These will be referred to asi-critical transpositions of the
circular sequence.

For k ≤ n/2, we consider the number of(≤ k)-critical transpositions, i.e.,
the number of transpositions that arei-critical for somei ≤ k.

Theorem 6.2. For any circular sequenceΠ onn elements and anyk < n/2,
the number of(≤ k)-critical transpositions is at least3

(
k+1
2

)
.

If the sequence arises from a setS of n points in general position in the plane
as the list of the combinatorially different orthogonal projections of S onto a
rotating directed line, then thei-critical swaps are in one-to-one correspond-
ence with thei-sets ofS, and hence with the(i − 1)-edges ofS. Thus, the
numberEj =

∑j
i=0 ei of (≤ j)-edges ofS is at least3

(
j+2
2

)
, which will

prove Theorem 6.1.

Proof. Fix k and letm := n − 2k. It will be convenient to label the points so
that the starting permutation is

Π0 = (ak, ak−1, . . . , a1, b1, b2, . . . , bm, c1, c2, . . . , ck).

We introduce some terminology. For1 ≤ i ≤ k, we say that an elementx exits
(respectively,enters) through theith A-gateif it moves from positionk−i+1
to positionk− i+2 (respectively, from positionk− i+2 to positionk− i+1)
during a transposition with another element. Similarly,x exits(respectively,
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enters) through theith C-gateif it moves from positionm + k + i to position
m + k + i − 1 (respectively, fromm + k + i − 1 to m + k + i) during a
transposition. Observe that for1 ≤ i ≤ j ≤ k, aj has to exit through theith
A-gate and to enter through thei-th C-gate at least once, and analogously for
cj .

Further, we say thata ∈ {a1, . . . , ak} (respectively,c ∈ {c1, . . . , ck}) is
confineduntil the first time it exits through the1st A-gate (respectively,C-
gate); then it becomesfree. Elementsb ∈ {b1, . . . , bm} are always free.

Simplifying Observation.For every circular sequenceΠ′, there is another
sequenceΠ with the same number of(≤ k)-critical transpositions and without
transpositions between confined elements. Thus, we may restrict our attention
to sequences without suchconfined transpositions.

Proof of the observation.To see why this is so, consider the first confined
transposition inΠ′ (if there isn’t any, we are done). Clearly, this first trans-
position must be either between twoa’s or between twoc’s. But beforeai and
aj , say, can be transposed, everyas with i < s < j has to be transposed with
eitherai or aj . And as long asaj is confined, every elementas, s < j which
has not yet been transposed withaj is also confined.

Therefore, the first confined transposition has to happen between twoa’s (or
between twoc’s) that are adjacent in the starting permutationΠ′

0, say between
ai andai+1. Now we can modifyΠ′ as follows: Instead of transposingai and
ai+1 when it happens inΠ′, let ai+1 follow the “path” of ai in Π′ and vice
versa, and only transposeai andai+1 in the end. (Observe that for this to be
feasible, it is crucial thatai andai+1 are adjacent inΠ′

0.) This does not affect
the number of(≤ k)-critical transpositions and deletes one confined transpos-
ition without generating any new ones, which (by induction, say) proves the
observation.

So we may assume that the circular sequenceΠ does not contain any confined
transpositions. Now, let us write down theliberation sequenceσ of all a’s and
c’s in the the order in which they become free. SinceΠ does not contain
any confined transpositions, thea’s appear inσ in increasing order (i.e.,ai

precedesaj in σ if i < j) and the same holds for thec’s.

We are now ready to estimate the number of(≤ k)-critical transpositions. As
observed above, for1 ≤ i ≤ j ≤ k, aj has to exit through theith A-gate and
to enter through thei-th C-gate at least once, andcj has to exit through the
ith C-gate and to enter through theith A-gate at least once. For each of these
events, we count the first time it happens. This gives a total count of4

(
k+1
2

)

transpositions, all of which are(≤ k)-critical.



The transpositions that are counted twice are precisely the transpositions between
someaj and somecl during which, for somei ≤ min{j, l},

1. eitheraj enters andcl exits through theith C-gate (both for the first
time),

2. oraj exits andcl enters through theith A-gate (both for the first time).

In order to estimate the number of such transpositions, we “credit” each trans-
position to the entering element. More precisely, we define asavings digraph
D with vertex set{a1, . . . , ak} ∪ {c1, . . . , ck} and the following edges: In
Case 1, we put in a directed edge fromcl to aj , and in Case 2 a directed edge
from aj to cl.

Thus, the number of(≤ k)-critical transpositions is at least4
(
k+1
2

)
minus the

number of edges inD, and it suffices to show that the latter is at most
(
k+1
2

)
.

For this, we estimate the in-degree of each vertex. On the one hand, observe
that the in-degree ofaj is at mostj (there is at most one incoming edge for
eachith C-gate,1 ≤ i ≤ j, since we only count the first time thataj enters
through a gate). On the other hand, we observe that if there is a directed edge
from cl to aj , thenaj precedescl in the liberation sequenceσ (observe that
aj must have become free before entering through anyC-gates, whilecl is
still confined when it exits through aC-gate for the first time. Note that the
first A-gate and the firstC-gate do not coincide since we assumek < n/2.
Thus, since any two elements are transposed at most (in fact, exactly) once,
the in-degree ofaj is also at most the number ofc’s that come after it in the
sequenceσ. Hence, the in-degree ofaj is at most the minimumµσ(aj) of j
and the number ofc’s that come afteraj in the sequenceσ. Similarly, the in-
degree ofcl is at most the minimumµσ(cl) of l and the number ofa’s which
come aftercl in the sequenceσ.

The proof is concluded by the following observation: For allσ (subject to the
constraint that thea’s and thec’s appear in increasing order),

k∑

j=1

(
µσ(aj) + µσ(cj)

)
=

(
k + 1

2

)

. (6.1)

To prove this, first note that it obviously holds true for the sequence〈a1, a2, . . . ,
ak, c1, c2, . . . , ck〉. So it suffices to show that the sum is invariant under swaps
of adjacenta’s andc’s. Suppose thatσ = ρ∗〈aj , cl〉∗τ andσ′ = ρ∗〈cl, aj〉∗τ
(where “∗” denotes concatenation of sequences). First observe thatµσ(x) =
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µσ′(x) for all x 6= aj , cl. Moreover,

µσ(aj) = min{j, k − l + 1}, µσ(cl) = min{l, k − j},
µσ′(aj) = min{j, k − l}, µσ′(cl) = min{l, k − j + 1}.

We distinguish two cases: On the one hand, ifj + l ≤ k, thenµσ(aj) = j =
µσ′(aj) andµσ(cl) = l = µσ′(cl), i.e. nothing changes. On the other hand, if
j + l > k, thenµσ(aj) = k − l + 1 = µσ′(aj) + 1 andµσ(cl) = k − j =
µσ′(cl) − 1, so the sum remains unaffected. This proves (6.1) and hence the
theorem.

6.2 Higher Dimensions

The number ofj-facets of a point setS ⊆ Rd is certainly not less than the
number ofj-facets that are intersected by a given line` which is in general
position w.r.t.S. Thus, for either orientation of̀,

ej(S) ≥ hj(S, `) + hn−d−j(S, `).

If we combine this with the existence of centerpoints, we can prove thefol-
lowing:

Theorem 6.3. For a setS of n points in general position inRd,

ej(S) ≥ 2 min

{(
j + d − 1

d − 1

)

,

(
n − 1 − j

d − 1

)

,

(dn
d e − 1

d − 1

)}

.

Proof. W.l.o.g., the orthogonal projectionS of S onto the hyperplane{x ∈
Rd : xd = 0} ∼= Rd−1 is a set ofn points in general position. By Observa-
tion 4.34, there exists a pointo ∈ Rd−1 which is almost a centerpoint forS,
i.e., which has depth at leastdn/de − d + 1 in S. Thus, by Lemma 4.33, we
get for the linè := o × R ⊆ Rd that

hj(S, `) = hj(S, o) ≥







(
j+d−1

d−1

)
if 0 ≤ j ≤ dn/de − d,

(dn/de−1
d−1

)
if dn/de − d < j ≤ (n − d)/2,

from which the theorem follows.

In particularly, we get as a corollary that for0 ≤ j ≤ dn/de − d,

Ej(S) ≥ 2

(
j + d

d

)

.



On the other hand, consider the obvious generalization of Example 5.1 to
higher dimensions: Letr1, . . . , rd+1 be rays emanating from the origin0 ∈
Rd through te vertices of a regular simplex centered at0. If we assume thatn
is divisible byd + 1 and if for each of these raysri, we place n

d+1 points very
close tori and at distance at least 1 from the origin and each other, then we
obtain ann-point setS such thatEj(S) = (d + 1)

(
j+d

d

)
for 0 ≤ j < n

d+1 .

It is tempting to conjecture that this is the lower-bound example, butI have so
far been unable to prove this.

Conjecture 6.4. For every setS of n points in general position and every
0 ≤ j < b n

d+1c, we have

Ej(S) ≥ (d + 1)

(
j + d

d

)

.
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