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Abstract

Linear Programming is the problem of maximizing a linear function in d vari-
ables subject to n linear constraints. Its relevance arises from the huge number
of optimization problems that can be described as linear programs. An algo-
rithm that solves any linear program has been known almost as long as linear
programming: it is the so-called Simplex Method.

This method performs extremely well in practice, but a satisfactory explana-
tion why has eluded researchers.

In this thesis, we address the special class of linear programs where n, the
number of the linear constraints, is less or equal d + 3. The set of feasible
solutions is then a d-polyhedron with at most d + 3 facets.

Essentially two different approaches can be pursued: we distinguish between
the geometric and the combinatorial view. While the first considers actual
linear programs, the latter concentrates on determining and using purely com-
binatorial properties.

In the first part, we analyse the RANDOM-EDGE simplex algorithm by taking
the geometric view. The crucial prerequisite for this is that we can apply the
extended Gale transform that maps a linear program with d variables and d+k
constraints to a k-dimensional configuration of one line and d + k points. The
main results are a tight upper bound for the case of d variables and d + 2
constraints, and a lower bound if the number of constraints is d + 3.

In the second part, we take the combinatorial view and study the orientations
of the vertex-edge graph of d-polytopes with d + 2 facets that are defined by
Holt-Klee functions. (The orientations induced by Holt-Klee functions satisfy
all currently known conditions necessary to be induced by a linear function;
we show that these conditions are not sufficient.)

Again, we analyse the RANDOM-EDGE simplex algorithm, this time viewing
it as a random walk on oriented graphs that satisfy the Holt-Klee axioms.

Finally, we prove that each such orientation determines a partial chirotope
that is completable. For general partial chirotopes we show that to decide
their completability is NP-complete.
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Zusammenfassung

Der Simplex-Algorithmus zur Lösung linearer Programme ist ein klassisches
Beispiel für einen Algorithmus, der zwar in der Praxis sehr effizient ist, sich
einer theoretischen Erklärung seines Verhaltens bisher jedoch hartnäckig ver-
schliesst.

In dieser Arbeit untersuchen wir spezielle lineare Programme, bei denen die
Anzahl der linearen Nebenbedingungen nur wenig mehr als die Anzahl der
Variablen beträgt. Die Menge zulässiger Lösungen solcher linearen Programme
definiert ein Polytop mit wenigen Facetten.

Unser Hauptergebnis ist die Analyse des Simplex-Algorithmus unter der Ver-
wendung der Pivot-Regel RANDOM EDGE auf solch speziellen linearen Pro-
grammen. Hierbei folgen wir zwei unterschiedlichen Ansätzen, einem geo-
metrischen und einem kombinatorischen. Während wir bei ersterem kon-
krete lineare Programme betrachten, abstrahieren wir bei letzterem und be-
schränken uns auf rein kombinatorische Eigenschaften.

Der geometrische Ansatz wird durch die Anwendung der erweiterten Gale-
Transformation möglich gemacht. Diese bildet ein lineares Programm mit
wenigen Nebenbedingungen auf eine niedrig-dimensionale Konfiguration ab,
bestehend aus einer Geraden und n Punkten. Für solche Konfigurationen
können wir einen Algorithmus definieren und analysieren, der das Verhalten
von RANDOM EDGE auf dem ursprünglichen linearen Programm simuliert.

Der zweite Teil der Arbeit ist dem kombinatorischen Ansatz gewidmet. Hier
konzentrieren wir uns auf lineare Programme, deren zulässige Lösungsmenge
einem d-Polytop mit d+2 Facetten entspricht. Die orientierten Ecken-Kanten-
Graphen dieser Polytope haben spezielle kombinatorische Eigenschaften: Sie
gehören zur Klasse der ‘zulässigen Gitterorientierungen’. Für solche linearen
Programme können wir RANDOM EDGE direkt analysieren: als Random Walk
auf einer zulässigen Gitterorientierung.

Den Schlusspunkt dieser Arbeit bilden Betrachtungen zur Erweiterbarkeit par-
tieller Chirotope. Wir beweisen, dass jede zulässige Gitterorientierung ein
erweiterbares partielles Chirotop definiert. Wir können jedoch auch zeigen,
dass das Problem NP-vollständig ist, für ein beliebiges partielles Chirotop zu
entscheiden, ob es erweiterbar ist.
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Chapter 1

Introduction

Even though convex polytopes are surely among the oldest subjects of math-
ematical research, it is only since the middle of the last century that they re-
established themselves as being at the heart of many fundamental mathemat-
ical problems. Their renaissance is closely (but, of course, not exclusively)
connected to the advent of Linear Programming (LP).

Generally speaking, linear programming is the problem to maximize a linear
function in d variables subject to n linear constraints. Systems of linear equal-
ities have been studied as early as in the middle of the 19th century. But even
so, the birth of linear programming as a mathematical discipline is widely con-
sidered to be in 1947, when G. B. Dantzig was the first to develop an algorithm
to solve linear programs efficiently, the Simplex method [Dan63]. To be pre-
cise, we refer to a whole family of algorithms, each of which is characterized
by its pivot rule.

We may look at linear programming as a geometric problem: under certain
assumptions (which we might make) the solution space of LP defines a poly-
tope; the objective function induces an orientation on the vertex-edge graph
of this polytope; the Simplex method follows a path on this oriented graph,
by choosing among all neighbours of the current vertex one that improves the
objective function value by a given rule, the pivot rule.

Two other algorithms for linear programming that have been invented deserve
mention: Khachiyan [Kha80] applied the ellipsoid method to linear program-
ming and proved that it always converges in polynomial time. Four years later,
the fact that LP belongs to the complexity class P could be re-established by
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2 Chapter 1. Introduction

Karmarkar [Kar84] who introduced an interior point method with that prop-
erty. Unlike Khachiyan’s algorithm, it also performed well in practice.

In spite of these efforts, the Simplex method remains the most widely used
algorithm. Several approaches have been followed to find a satisfactory theo-
retical explanation for its excellent performance.

Borgwardt studied a deterministic pivot rule, SHADOW VERTEX, and showed
that on polytopes whose constraints are drawn independently from spherically
symmetric distributions (e.g. Gaussian distribution centered at the origin), the
Simplex algorithm runs in expected polynomial time [Bor87]. However, such
randomly generated matrices have, in fact, quite special properties.

This was the motivation for Spielman and Teng [ST01] to introduce the
smoothed analysis. Here, the coefficients of an arbitrary polytope are per-
turbed by adding independently chosen Gaussian random variables. If the in-
stances that cause the bad worst case behaviour of the Simplex method are iso-
lated, then perturbing the coefficients will suffice to speed up the performance.
And, indeed, (also) using the SHADOW VERTEX pivot rule, they proved that
the Simplex Method has polynomial smoothed complexity.

However, in this thesis, we take the ‘classic’ point of view, confining random-
ness to the pivot rule.

A captivating approach is very closely linked to the Hirsch conjecture. It states
that any two vertices of a d-polytope with n facets are connected by a path of
length at most n− d. Fritzsche, Holt and Klee [HK98a], [FH99] constructed
‘many’ polytopes which meet this bound. On the other hand, the best known
upper bound is nlog d+2 and is due to Kalai and Kleitman [KK92]. Of course,
the existence of a short path alone would tell us nothing about whether the
Simplex method would find it.

As the Simplex method is a discrete method — unlike the ellipsoid and the
interior point method — the natural measure of complexity for the Simplex
Method is the number of pivots taken (while using a certain pivot rule). More
formally, one wants to determine the combinatorial complexity in the unit
cost (RAM) model, where one assumes that all arithmetic operations incur
unit cost.

For a selection of possible pivot-rules see, for instance, [AZ99], we make do
with just two:

GREATEST INCREASE: Choose the vertex v′ that gives the greatest increase
in the objective function, that is, such that cT v′ − cT v is maximal.

RANDOM EDGE: Among all neighbouring vertices v′ of v for which
cT v′ > cT v choose one uniformly at random.
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An algorithm based on a deterministic pivot rule (like GREATEST INCREASE)
will, when repeatedly started at a given vertex, always give us the same se-
quence of vertices leading us to the optimum. This property was used to
construct for almost all known deterministic rules specific LPs for which the
number of steps taken by the Simplex method is exponential in the dimension
or in the number of constraints.

The research in this field was initiated by Klee and Minty [KM72] — who
used their famous construction, the so-called “Klee-Minty cubes”, to prove
that the pivot rule originally proposed by Dantzig [Dan63] leads to an expo-
nential number of steps. In the subsequent years, similar constructions were
developed for all sorts of deterministic pivot rules. These efforts finally cul-
minated in the work by Amenta and Ziegler [AZ99]. They realized, that all
previous constructions were just special cases of deformed products of poly-
topes.

On the other hand, RANDOM EDGE is a classic example for the class of ran-
domized pivot rules, that have become fashionable only recently. Using coin
flips to decide the next move, such algorithms cannot so easily be fooled into
taking a long detour.

However, despite its virtual simplicity, RANDOM EDGE is notoriously difficult
to analyse. A more complicated pivot rule that works in a recursive fashion
has turned out to be more accessible: RANDOM FACET.

By analysing RANDOM FACET, a major breakthrough was achieved, inde-
pendently, by Kalai [Kal92] and by Matoušek, Sharir and Welzl [MSW92] as
both could prove subexponential bounds, that is, the logarithm of the expected
number of pivots is sublinear. These bounds are still the best known when no
further assumptions on the linear programs are taken.

Interestingly, this research focused on the combinatorial properties of linear
programs, defining generalizations of linear programming to more abstract
settings. Kalai introduced abstract objective function, Matoušek, Sharir and
Welzl LP-type problems. Later it turned out that both approaches were essen-
tially dual to each other.

In his thesis [Gär95], Gärtner studied abstract optimization problems which
are a further generalization of LP-type problems. He realized that even for
this more general setting, subexponential bounds can be proven.

The discussion, so far, has already indicated that it makes sense to distinguish
between two points of view. On the one hand, one hopes to understand the
Simplex method on actual polytopes. This is what we call the geometric view.
On the other hand, we have seen that substantial progress could be made by
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abstracting from linear programs to more general settings – on which one can
still run the Simplex method. We say that the research falling in this category
is taking the combinatorial view.

1.1 The Combinatorial View

Kalai proved the subexponential bound for RANDOM FACET mentioned above
for what he called abstract objective functions (AOF):

Definition 1.1 Consider an edge orientation of the vertex-edge graph of the
polytope P with vertex set V with the following properties:

1. Every nonempty face F of P has a unique sink.

2. The orientation is acyclic.

Furthermore, consider a function φ : V → �
with the property that φ(v) >

φ(v′) whenever the edge {v, v′} is oriented from v to v′. Then we call φ an
abstract objective function on P .

Most interestingly, under this general framework, the subexponential analy-
sis is tight. Matoušek [Mat94] described a class of AOFs on which Kalai’s
algorithm RANDOM FACET is subexponentially slow. Restricted to the LP-
instances of the class however, the algorithm becomes polynomial, as proven
by Gärtner [Gär02]. What makes the algorithm on LP-instances provably
faster?

This question is closely connected to another question: given an AOF on a
particular polytope, can one decide whether there exists a linear function in-
ducing the AOF?

Holt and Klee [HK98a] showed that abstract objective functions are missing a
crucial combinatorial feature implied by linear functions: whenever the graph
of a simple d-polytope is oriented by a generic linear function, there will be
d vertex-disjoint directed paths from the unique source to the unique sink.
Imposing this path condition in addition to the axioms of abstract objective
functions, we arrive at the class of Holt-Klee functions.

In the 3-dimensional case, Holt-Klee functions are exactly the linearly in-
ducible functions, as proven by Mihalisin and Klee [MK00]. In fact, they
gave a full characterization of 3-polytopal digraphs: a digraph G is the vertex-
edge graph of some 3-polytope oriented by means of a linear function if and
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only if it has a unique sink, there are 3 vertex-disjoint paths from source to
sink, and the underlying graph is simple, planar and 3-connected.

In general, though, linearly inducible functions form a proper subset of Holt-
Klee functions, as first shown by Gärtner et al. [GST+01], [GT03]. Their func-
tion is defined on a 7-dimensional polytope with 9 facets. But already Holt-
Klee functions on 4-dimensional polytopes are not necessarily linearly in-
ducible, as Morris showed by defining such a function on a 4-cube [Mor02a].
His approach via P-cubes is arguably the most promising candidate to lead to
further conditions, necessary for a Holt-Klee function to be linearly inducible.
And finally, an asymptotic result is due to Develin [Dev02]: as the dimen-
sion d grows, the percentage of realizable d-cubes among those satisfying the
axioms of abstract objective functions and the path condition tends to 0.

A further generalization are the unique sink orientations (USOs) [SW01], we
get them by dropping condition 2 in the definition of the AOFs. They have
mostly been studied on cubes. As these orientations can have cycles, they may
fool even randomized pivot rules: Morris analysed a class of cubes, on which
the expected number of pivot steps of RANDOM EDGE is bounded below by
d−1
2 !, [Mor02b]. Nonetheless, USOs are important, as they arise when study-

ing linear complementary problems and some quadratic optimization prob-
lems.

1.2 The Geometric View

Because of the exponential worst case behaviour of deterministic pivot rules,
the hopes lie on randomized pivot rules. They have received an increasing
amount of attention ([BDF+95], [Kal97], [MR95, Section 9.10]), but their
analysis turned out to be intrinsically difficult. Only very recently could some
progress be made. Initially, the focus was put on the special class of Klee-
Minty cubes, the prime example of linear programs for which the performance
of deterministic pivot rules is exponential. As Gärtner et al. [GHZ98] showed,
on Klee-Minty cubes the pivot rules RANDOM EDGE and RANDOM FACET

are both essentially quadratic in the dimension. Joswig and Kaibel [JK99]
proposed and analysed two new rules, RECURSIVE RANDOM EDGE (which
also is quadratic in the dimension) and RANDOM MAJORITY (which turned
out to be optimal, as it finds the shortest path).

For fixed dimension, Megiddo [Meg84] demonstrated that the linear program-
ming problem can be solved in linear time. Nonetheless, in the light of the re-
marks above, the analysis of RANDOM EDGE in dimension 3 by Kaibel et al.
[KMSZ02] was, therefore, well worth the considerable effort.
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1.3 Our Results and Outline of this Thesis

In this thesis, we focus exclusively on LP-related properties of polytopes with
few facets.

Our geometric point of view relies crucially on the extended Gale trans-
form as introduced by Welzl [Wel01]. Let us first recall the standard Gale
transform. (For a proper exposition of the Gale transform (that was devel-
oped by Perles after ideas by Gale [Gal56]) see Grünbaum [Grü67].) It maps
a sequence of the d + k vertices of some d-polytope to a dual sequence of
d + k points in dimension

�
k−1. The properties of the original polytope are

preserved and can be read off from the dual. This allowed the detailed study
of all d-polytopes with only few vertices as they could be described in terms
of lower dimensional point configurations, [Grü67, Chapter 6] and [Zie94,
Section 6.5].

In comparison, this is the extended Gale transform in a nutshell: it maps a
d-polytope with d + k facets which is given together with a linear function
f : x 7→ cT x to a k-dimensional configuration of one line (`, say) and d + k
points. We call a (k−1)-simplex spanned by k of these points and intersected
by the line an `-stabbed simplex. Then there is a 1-1 correspondence between
the vertices of P and the `-stabbed simplices. Furthermore, the order on the
vertices of P induced by f is equal to the order in which the line ` intersects
the `-stabbed simplices.

In fact, we can model the behaviour of the algorithm RANDOM EDGE on d
polytopes with d + k vertices by a randomized process involving one line and
d + k points in dimension k.

Chapter 2 is an introductory chapter, introducing and explaining in detail all
the concepts used later. In particular, we would like to point the reader to
Section 2.3 where we give a detailed account of the extended Gale transform.

Throughout Chapter 3 we then use this method. First, we prove a tight bound
of Θ(log2 d) for the number of pivot steps needed by RANDOM EDGE on a d-
polytope with d + 2 facets (Section 3.2). This is an exponential improvement
over the previously best bound.

Remarkably, we prove the lower bound on an instance for which there exists
a sequence of pivots visiting all vertices. This is Section 3.4.

Also, in Section 3.5 we examine a lower bound construction for the case of
k = 3. Here, RANDOM EDGE admits the lower bound Ω(log3 d).
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The combinatorial point of view is taken in Chapter 4, where we study
the graphs of simple d polytopes with d + 2 facets. For orientations satisfying
the Holt-Klee axioms, we proof a tight bound of O(log2 d) for the Simplex
method under the pivot rule RANDOM EDGE, where the analysis crucially
depends on the path condition (Section 4.3).

One may ask how close Holt-Klee functions are to linear functions. At least
for the case of simple (d, d + 2)-polytopes, we give a complete answer in
Section 4.4. On the one hand, we show that not all Holt-Klee functions are
linear, on the other hand we prove that every Holt-Klee function induces a
partial chirotope of rank 3 which is completable. (Note that we get back to
partial chirotopes in Chapter 5.) This means that the combinatorial essence of
linear objective functions captured by the Holt-Klee functions is at par with
the combinatorial essence of point configurations captured by chirotopes.

In Section 4.2, we exhibit another striking property of Holt-Klee functions
which abstract objective functions do not share: consider the graph of a simple
(d, d + 2)-polytope, oriented by means of a Holt-Klee function. It is what we
call an admissible grid orientation. Whenever two vertices are connected by
a directed path, they are connected by a directed path of length at most three.
In contrast, for abstract objective functions, there is no constant bound on the
path length.

The thesis is rounded off with a chapter on partial chirotopes: in Chapter 5
we provide proof that, in general, it is NP-complete to test whether a partial
chirotope is completable.

Acknowledgments: As mentioned above, the extended Gale transform is
due to Emo Welzl. Section 3.2 appeared first in [GST+01]. Some of the
other results are joint work with Bernd Gärtner. Section 3.5 was inspired by
discussions with Bernd Gärtner and József Solymosi.

To avoid the conflict of conscience as far as the spelling is concerned the
author put himself under the authority of the Oxford English Dictionary1.2

1http://www.oed.com.
2That is, we use the British spelling and suffix -ize.





Chapter 2

The Basic Concepts

This chapter comprises the definitions and concepts fundamental to our sub-
sequent discussion.

We first recall the well-known linear programming problem (Section 2.1) and
introduce special configurations that we usually refer to as ‘One line and n
points’ (Section 2.2). There, we also specify an algorithm, the so-called Fast
Process, that models the behaviour of the Simplex method using the pivot
rule RANDOM EDGE on certain linear programs. The magic behind this is
the extended Gale transform, defined in Section 2.3. The fact that each con-
figuration of one line and n points actually describes a linear program whose
feasible solution space is a polytope is derived in Section 2.4.

In the final two sections we lay the foundations for the combinatorial view. In
Section 2.5 we introduce the class of admissible grid orientations. Essentially,
they comprise all orientations that satisfy the known necessary conditions to
be isomorphic to the vertex-edge digraph of a d-polytope with d + 2 facets
whose orientation is induced by a linear function.

These necessary conditions are not sufficient. To prove this and to study ad-
missible grid orientations in more detail, we need the concept of partial chi-
rotopes which we define in Section 2.6.

9
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2.1 Linear Programming & RANDOM EDGE

A linear program in d variables and n constraints can be written as

(LP) maximize cT x
subject to Ax ≤ b.

(2.1)

where

x = (x1, . . . , xd)
T ,

c = (c1, . . . , cd)
T , c, x ∈ �

d,

b = (b1, . . . , bn)T , b ∈ �
n,

A =







a11 a12 . . . a1d

a21 a22 . . . a2d

. . . . . . . . . . . . . . . . . . . .
an1 an2 · · · and







, A ∈ �
n,d.

Examine the set of the so-called feasible solutions of the LP,

{x ∈ �
d | Ax ≤ b}.

We make the following assumptions:

1. The set of feasible solutions is bounded and non-empty,

so it can be considered as a polytope P that is defined as the intersection of
n ≥ d + 1 halfspaces ([Zie94]),

P =
⋂

j

{x ∈ �
d |

d∑

i=1

ajixi ≤ bj}.

2. The affine span of P is the whole space
�

d.

3. P is simple.

Each polytope given as the bounded intersection of halfspaces can also be
described as the convex hull of a finite point set ([Zie94]).

Observe that the maximum of the (linear) function fc : x 7→ cT x is achieved
on a face of P . In particular, there is a vertex v ∈ P such that cT v is maximal.
This gives us an idea how to solve this problem: starting from an arbitrary
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vertex v, we apply some clever rule that takes us to a neighbouring vertex v ′

with cT v′ > cT v. Repeating the process, we will eventually reach a vertex
achieving the optimum. The decisive rule is called pivot rule. Moreover,
all algorithms proceeding this way are collectively referred to as the Simplex
Method.

We distinguish between deterministic and randomized pivot rules. The latter
may use the outcome of a random experiment, like a coin flip, to determine
the vertex we pivot to.

In this thesis, we focus our attention on the prime example for randomized
pivot rules, RANDOM EDGE. No other is as easy to describe: among all
neighbouring vertices v′ of v for which fc(v

′) > fc(v) choose one uniformly
at random. See Algorithm 2.1 for a formal description.1

With every pivot we move to a vertex with bigger objective function value.
Hence, we do not visit a vertex twice and the algorithm terminates in a finite
number of steps.

Algorithm 2.1 RANDOM EDGE {P , fc, v}

1 V ← {v′ ∈ N(v) | fc(v
′) > fc(v)};

2 while V 6= ∅
3 do
4 v ←random V ;
5 V ← {v′ ∈ N(v) | fc(v

′) > fc(v)};
6 return v.

Before we move on to the next section, we first take a closer look at some
properties which the polytopeP (that is, the matrix A and the vector b defining
it) either has or can be assumed to have.

Lemma 2.2 If {x | Ax ≤ b} is bounded and feasible, then there exists a
strictly positive n-vector ỹ such that ỹT A = 0.

Proof Consider the linear program

(LP’) maximize µ1 + · · ·+ µn

subject to Ax ≤ b−






µ1

...
µn






µi ≥ 0, i = 1, . . . , n.

(2.2)

1N(v) denotes the set of neighbouring vertices of v. “v′ ←random V ;” means v′ is chosen
uniformly at random from the set V .
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Writing the linear constraints as Ax+ Iµ ≤ b (where I is the identity matrix),
it is easy to see that the dual problem is of the form

(LP’∆) minimize bT y
subject to AT y = 0,

yi ≥ 1, i = 1, . . . , n.
(2.3)

From the fact that {Ax ≤ b} is bounded, it follows that (LP’) is bounded;
because it is also feasible (set µi = 0, i = 1, . . . , n), it has an optimal solution.

Then, by the LP duality theorem (cf. [Chv83, Chapter 9]), the dual (LP’∆) has
an optimal solution, too, in particular a feasible solution. Any such feasible
solution ỹ is a vector with the required properties.

Assumption 2.3 For A, b in (2.1) such that {x | Ax ≤ b} is simple, bounded
and contains an interior point, we can assume the following without loss of
generality (which for our purposes means, without changing the behaviour of
RANDOM EDGE or RANDOM FACET on (2.1)):

(i) Any column of A sums up to 0, i.e.
∑n

i=1 aij = 0 for all j.
This is achieved via Lemma 2.2, by a suitable scaling of the constraints
in (2.1) by positive multiples.2

(ii) Any set of d rows of A is linearly independent.
For this, we apply a slight perturbation to A.

(iii) b > 0.
This is obtained by translating P in such a way that 0 is an interior
point.

2.2 One Line and n Points

Let S be a set of n ≥ d+1 points in general position in
�

d (i.e. no d+1 on a
common hyperplane), and let ` be a vertical line which is disjoint from S and
from all intersections of hyperplanes spanned by points of S. Moreover, we
assume that ` intersects the convex hull of S. We refer to such a configuration
in general position whenever we use the phrase One line and n points. In short
form, we write (S, `).

The convex hull of a i-tuple s ∈
(
S
i

)
defines a (i − 1)-simplex; in a slight

abuse of notation we will denote it also by s. If i = d, below(s) denotes the

2Lemma 2.2 even specifies suitable scaling factors: we may multiply the ith constraint by ỹi.
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set of points from S that lie below the hyperplane spanned by s. As we are
mostly concerned with the d- or (d − 1)-simplices intersected by `, we give
them a special name and call them `-stabbed simplices.

Our goal is to find the unique `-stabbed (d − 1)-simplex that has no points
below.

Each `-stabbed d-simplex has two facets which are in turn `-stabbed simplices
but of dimension d− 1. They differ by exactly one vertex. Given an `-stabbed
(d − 1)-simplex s and some point s′ ∈ below(s) there is, therefore, a unique
point s ∈ s such that s \ {s}∪{s′} =: s′ is the facet of the d-simplex s∪{s′}
through which ` is leaving. We say that we may pivot from s to s

′ and write
s
′ := pivot(s, s′). Obviously, the point of intersection of s

′ and ` is below s.
Pivoting from one `-stabbed (d − 1)-simplex to the next we will, eventually,
reach our goal.

`

s

s
′

s
′

s

s

Figure 2.1: s and s
′ are `-stabbed 2-simplices with s

′ = pivot(s, s′).

The method invoked to decide which point below the current simplex is chosen
is called the pivot rule. (It is no coincidence that we use the same terminology
as above when we were discussing the Simplex method. We will find this
justified in Section 2.3 below.)

The pivot rule we will (exclusively) deal with is arguably also the one that
is easiest to describe: among all points below the current `-stabbed simplex
s choose one uniformly at random, s′ say, and move to the unique `-stabbed
simplex s

′ := pivot(s, s′).

For reasons which become clear later, we call the associated randomized pro-
cess Fast Process. (For a formal definition see Algorithm 2.4). Given some
initial `-stabbed simplex s = {s1, . . . , sd} it finds the unique `-stabbed sim-
plex s̃ with below(s̃) = ∅.
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Algorithm 2.4 Fast Process on {S, `, s}

1 while below(s) 6= ∅
2 do s′ ←random below(s);
3 s ← pivot(s, s′);
4 return s.

Frequently, we will not specify the dimension of an `-stabbed simplex, when-
ever it is clear from the context.

We will be particularly interested in the 2-dimensional case. Here, the location
of the points with respect to ` partitions S naturally into two subsets: the set
SL of all the points left of `, and SR := S \ SL. Accordingly, let L = |SL|
be the number of points left of ` and R := n−L. To indicate that a particular
point lies left (right, respectively) of ` we denote it by p (q, respectively)
instead of s. An `-stabbed 2-simplex is then a pair of points {p, q} = e ∈

(
S
2

)
;

to simplify matters we will call it `-edge. Given an `-edge e and a point
s′ ∈ below(e), pivot(e, s′) denotes, as before, the unique `-edge {se, s

′},
se ∈ e (see Figure 2.2(a)).

(a)

p

q

s′
pivot(e, s′)

`

e

(b)

p
q

`

Figure 2.2: The setup (a) and a pivoting sequence (b) in
� 2.

The 2-dimensional variant of Algorithm 2.4 is Algorithm 2.5:

Algorithm 2.5 Fast Process on {S, `, e} in
� 2

1 while below(e) 6= ∅
2 do s′ ←random below(e);
3 e ← pivot(e, s′);
4 return e.



2.3. The Extended Gale Transform 15

The significance of these processes becomes apparent once we have estab-
lished the link between Linear Programming and One line and n points. This
is the topic of the next section, Section 2.3.

There, we derive a correspondence under which for each vertex v of P there
is a corresponding `-stabbed simplex s(v). Even more, the expected runtime
(number of pivot steps) of RANDOM EDGE, starting at some vertex ṽ, will
equal the expected length (number of pivot steps) of the Fast Process, starting
from the `-stabbed simplex s(ṽ).

In this context it becomes clear why we will be mainly interested in computing
(or estimating) the expected number of while-loops the Fast Process enters.
If the goal would be to implement these algorithms, we would need to specify
how to sample from below(s). At least for the 2-dimensional case we can
(and will) address this issue, cf. Section 3.3, where we study a modification of
the Fast Process, called the Slow Process. Here, each round chooses a point
among all points and only performs a pivot step if the chosen point is below
the current edge.

Algorithm 2.6 Slow Process on {S, `, e} in
� 2

1 while below(e) 6= ∅
2 do s′ ←random S;
3 if s′ ∈ below(e)
4 then e ← pivot(e, s′);
5 return e.

2.3 The Extended Gale Transform

We want to show that there is a one-to-one correspondence between the ver-
tices of a simple d-polytope with d + k facets and the `-stabbed (k − 1)-
simplices of a suitable configuration of one line and n := d + k points in

�
k,

with the properties that

1. the order of the vertices (according to a given generic linear function3)
matches the order of the corresponding `-stabbed simplices along `.

2. any pair of adjacent vertices corresponds to a pair of `-stabbed simplices
that share d− 1 points.

3We call a linear function generic if it is not constant on edges.
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The extended Gale transform, as defined in Definition 2.7 below, establishes
such a correspondence. Theorem 2.8 tells us that it always exists; its construc-
tive proof also points out a method to compute it.

Under this correspondence, a RANDOM EDGE pivot step on the polytope be-
comes a pivot step in the fast process applied to the point configuration corre-
sponding to the polytope, and vice versa. Consequently, the expected runtime
(number of pivot steps) of RANDOM EDGE, starting at some vertex v, equals
the expected length of the fast process, starting from the `-stabbed simplex
corresponding to v.

As before, cf. Section 2.1, we suppose that a simple (d, d + k)-polytope P is
given by P = {x ∈ �

d | Ax ≤ b}, where A ∈ �
d+k,d and b ∈ �

d+k. And
we have a generic linear function f(x) = cT x, c, x ∈ �

d, that induces an
orientation on the vertex-edge graph of P .

On the other hand, let (S, `) be a k-dimensional configuration of one line and
n points as introduced in Section 2.2, with n = d + k.

To define the transform we need some terminology.
For an index set I ⊂ [d+k], let Ī := [d+k]\ I . Given a matrix M with d+k
rows, we write MI to denote the submatrix consisting of all rows of M with
indices in I . Analogously, given an d + k-dimensional vector m, mI denotes
the subvector consisting of all entries of m with indices in I . Finally, given a
set S = {s1, . . . , sd+k}, let ΠI := {si | i ∈ I}.

Definition 2.7 We call (S, `) the extended Gale transform of (P , f) (and
(P , f) the extended Gale transform of (S, `)) whenever, for any index set I
of size d, the following two statements are equivalent:

(i) A−1
I bI =: ṽ ∈ �

d is a vertex of P with objective function value γ.4

(ii) ΠĪ determines an `-stabbed simplex that intersects the line ` (given
as ` = {ts` | t ∈

� } for some point s`) in a unique point, at value
t̃ = γ/

∑

i bi.5

Theorem 2.8 For any simple (d, d+k)-polytopeP and a generic linear func-
tion f :

� d 7→ �
there exists a k-dimensional configuration of one line ` and

d + k points S, such that (S, `) is the extended Gale transform of (P , f).

Providing us with the means to construct the extended Gale transform of a
given configuration, the lemma below lies at the heart of Theorem 2.8, whose
proof will follow subsequently.

4By Assumption 2.3.(ii) AI is of full rank and hence invertible.
5By Assumption 2.3.(iii)

∑

i bi > 0 and t̃ is well-defined.
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Lemma 2.9 Consider the (n + 1)× (d + 1)-matrix

H :=

(
A −b
cT 0

)

.

There exists an (n − d) × (n + 1)-matrix B of full row rank with BH = 0,
such that the columns of B are in general position when interpreted as points
in

�
n−d. (We will specify our general position requirements below.)

Proof The columns of H are vectors in
� n+1, spanning a subspace of di-

mension at most d + 1. The orthogonal dual of this subspace has therefore
dimension at least n − d. Choose n − d linearly independent vectors in the
orthogonal dual to obtain the rows of B. The prior perturbation of A (we may
even perturb H) also lets us choose B in such a way that it assumes any de-
sired general position. Lemma 2.9

Proof Theorem 2.8 For a configuration (P , f) the lemma above gives us a
configuration of one line and n points when we interpret the ith column of the
matrix B as the point si in

�
n−d: The set S is then given as the set of points

{s1, . . . , sn}, and ` is the line spanned by sn+1, i.e. ` := {tsn+1 | t ∈
� }.

Note, that the matrix B and hence (S, `) are determined uniquely up to lin-
ear isomorphisms. (We shall discuss this in more detail as Observation 2.10
below.)

To establish the theorem we need to show that for (P , f) and (S, `) as just
described the conditions (i) and (ii) in Definition 2.7 are indeed equivalent.

Let ṽ := A−1
I bI ∈

�
d. Using Lemma 2.9, we can argue that

0 = BH

(
ṽ
1

)

= BI (AI | − bI)

(
ṽ
1

)

︸ ︷︷ ︸

0

+ BĪ(AĪ | − bĪ)

(
ṽ
1

)

+ B{n+1}(cT |0)

(
ṽ
1

)

= BĪ(AĪ | − bĪ)

(
ṽ
1

)

+ cT ṽsn+1
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and, therefore,

cT ṽsn+1 = −BĪ(AĪ | − bĪ)

(
ṽ
1

)

. (2.4)

With

µ =






µ1

...
µn




 := −(A| − b)

(
ṽ
1

)

(2.5)

Equation (2.4) becomes

cT ṽsn+1 =
∑

i∈Ī

µisi. (2.6)

(Note that µi = 0 for i ∈ I by definition of ṽ.)

Using Assumptions 2.3(i) and 2.3(iii) we derive

∑

i∈Ī

µi =

n∑

i=1

µi
(2.5)
= (−1, . . . ,−1)(A| − b)

(
ṽ
1

)

(i)
= (0 |

∑

j

bj)

(
ṽ
1

)

=
∑

j

bj

(iii)
> 0.

So, we may use 1/
∑

j bj as a scaling factor in Equation 2.6.
Setting λi := µi/

∑

j bj , we obtain

cT ṽ
∑

i bi

sn+1 =
∑

i∈Ī

λisi,
∑

i∈Ī

λi = 1. (2.7)

If statement (i) of the theorem holds, i.e. ṽ is a vertex with cT ṽ = γ, then

(AĪ | − bĪ)

(
ṽ
1

)

< 0

by simplicity of P , which implies µi > 0 for i ∈ Ī in (2.5),(2.6) and λi > 0
in (2.7). Hence, the point

cT ṽ
∑

i bi

sn+1 =
γ

∑

i bi

sn+1
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is a convex combination of the points in ΠĪ . Statement (ii) follows when we
assume that sn+1 6= 0 and that the line {tsn+1} is disjoint from all affine
spaces spanned by less than n − d of the points in Π[n]. In fact, these are
requirements on the ‘general position’ in Lemma 2.9 and on configurations of
one line and n points, as introduced in Section 2.2.

Now assume that statement (ii) holds and that the set ΠĪ is affinely indepen-
dent (our final general position requirement). In this case, there are unique
values λi > 0 such that

γ
∑

i bi

sn+1 =
∑

i∈Ī

λisi,
∑

i∈Ī

λi = 1, for some value γ.

Because the line spanned by sn+1 intersects affΠĪ in a single point, there is no
other value of γ for which the previous equation can be satisfied. Therefore,
there are unique values γ, µi with

γsn+1 =
∑

i∈Ī

µisi,
∑

i∈Ī

µi =
∑

i

bi. (2.8)

On the other hand, by the above computations, the values

γ := cT ṽ,

µi := −(Ai| − bi)

(
ṽ
1

)

satisfy equation (2.8), so they are the desired unique values. Because {tsn+1}
intersects convΠĪ , it follows that

(AĪ | − bĪ)

(
ṽ
1

)

< 0,

and ṽ is a vertex with cT ṽ = γ, proving (i). Theorem 2.8

The reader who is familiar with the Gale transform6 will have noticed that
instead of invoking Lemma 2.9, we could have applied the well-known Gale
transform (cf. [Mat02], [Wel01]) to the vertices of the polar dual of the poly-
tope P adjoined by the vector c defining the objective function.

We will not elaborate on this further, but rather make a couple of important
observations:

6For an excellent introduction we recommend Matoušek [Mat02, Section 5].
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Observation 2.10 The extended Gale transform is determined up to linear
isomorphism.

The rows of the matrix B in Lemma 2.9 are an arbitrary basis of the orthog-
onal dual to the vector space spanned by the column vectors of H in

�
n+1.

Choosing a different basis corresponds to multiplying the matrix B from the
left by a non-singular (n− d)× (n− d)-matrix, and this means transforming
configuration (S, `) by a linear transformation of

� n−d.

In particular, this means that we can always find a representative of the ex-
tended Gale transform with ` being the vertical line through the origin.7

Observation 2.11 Each planar configuration (S, `) defines a directed graph
G(S, `): each `-edge defines a node in the graph, and we have a directed edge
from s to s

′ if one can pivot directly from s to s
′.

Consider (S, `) as the extended Gale transform of some (P , f). Then G(S, `)
is isomorphic to the vertex-edge graph of P oriented by means of the linear
function f .

This follows directly from the properties of the extended Gale transform and
comes as no surprise. Its usefulness will become clear as soon as we have
introduced admissible grid orientations. But before we move on to them, an
example shall demonstrate the extended Gale transform ‘in action’.

Example

Let P be the 3-polytope given as the set of feasible solutions of the LP

maximize 5x1 + 6x2 + 4x3

subject to 3x1 ≤ 3
3x2 ≤ 3

x3 ≤ 1
−2x1 − x2 + x3 ≤ 1
−x1 − 2x2 − 2x3 ≤ 2

P is a 3-dimensional polytope with 5 facets, a prism over a triangle. Figure 2.3
shows this configuration (P , f) where the orientation of the 1-skeleton as in-
duced by the linear function is visualized by arrows along the edges, pointing
to the vertex with higher objective value.

7In � d, we call a line vertical, whenever it contains the unique vector ed.
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x3

x1
x2

v1

v2

v3

v4

v5

v6

Figure 2.3: A configuration (P , f)...

Having formed the matrix H ,

H =

(
A −b
cT 0

)

=











3 0 0 −3
0 3 0 −3
0 0 1 −1
−2 −1 1 −1
−1 −2 −2 −2
5 6 4 0











,

we may compute the extended Gale dual of (P , f): a possible choice for the
matrix B would be

B =

(
1.1 0.1 −3.9 2.1 −0.9 0

5
6 0.5 2.5 −1.5 −1.5 −1

)

giving us the configuration (S, `) with the points

s1 =

(
1.1
5
6

)

, s2 =

(
0.1

0.5

)

, s3 =

(−3.9

2.5

)

, s4 =

(
2.1

−1.5

)

,

s5 =

(−0.9

−1.5

)

and s6 =

(
0

−1

)

,

` just being the y-axis (since s6 =
(

0
−1

)
), see Figure 2.3.

Each point in (S, `) represents a facet of the triangular prism P . The `-edge
connecting two points si, sj ∈ S represents the unique vertex v that is in
neither of the two facets represented by si and sj . Here is a list of the relations.
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0

`

s1

s2

s3

s4s5

s6

Figure 2.4: ... and its extended Gale dual (S, `).

Facets of P Points in S
v1v3v6v4 s1

v1v4v5v2 s2

v1v2v3 s3

v2v3v6v5 s4

v4v5v6 s5

Vertices of P `-edges in (S, `)
v1 s4s5

v2 s1s5

v3 s2s5

v4 s4s3

v5 s1s3

v6 s2s3

Using this example, we can now demonstrate that the extended Gale transform
has the wanted properties we formulated at the beginning of this section.

Consider, for instance, the vertices v2 and v6. The corresponding `-edges are
s1s5 and s2s3. In the oriented vertex-edge graph of P , there is a path from
v2 to v6 (via v3) — in the extended Gale transform (S, `) the line ` intersects
the `-edge s1s5 above its point of intersection with s2s3. Furthermore, we can
pivot from s1s5 to s2s3 via s2s5 which is the `-edge corresponding to v3.

2.4 Dantzig’s Column Geometry

We have seen that each bounded linear program on d variables and d + k
constraints that satisfies certain non-degeneracy conditions can be transformed
into a k-dimensional configuration of one line and n := d + k points, such
that the latter is the extended Gale transform of the linear program. Our proof



2.4. Dantzig’s Column Geometry 23

already strongly indicates that the converse is equally true, that is, for each
configuration (S, `) there is a polytope P and a linear function f such that
(P , f) is the extended Gale transform of (S, `).

For our purposes, it shall suffice to point out that we can describe each config-
uration of One line and n points as a linear program. Most interestingly, this
was already observed by the ‘father’ of Linear Programming Theory, George
B. Dantzig ([Dan63]). But let us start from the beginning.

Equation (2.1) is not the only ‘standard’ form for linear programs; Dantzig,
for instance, preferred to use the following version8:

minimize cT x
subject to Ax = b,

xi ≥ 0, i = 1, . . . , n,
where c, x ∈ �

n, b ∈ �
k and A ∈ �

k,n

(2.9)

We may assume that

(A |b) =

(
1 . . . 1 1

A′ b′

)

for some A′ ∈ �
k−1,n, b′ ∈ �

k−1.

Now, consider the matrix Ā =

(
A′

c

)

, Ā ∈ �
k,n. Each of the n columns

of Ā defines a point si = (a′
i1, a

′
i2, . . . , a

′
i,k−1, ci), i = 1, . . . , n, in

�
k.

Furthermore, let ` be the so-called requirement line, that is, the line given as
{
(
b′

µ

)
| µ ∈ � }. This configuration is sometimes referred to as the column

geometry, an interesting application can be found in [Lee97].

To solve the LP (2.9) means therefore, in geometric terms, to find the lowest
point on the requirement line that can be given as convex combination of the
points s1, . . . , sn — which is exactly the objective of the Fast and the Slow
Process (Algorithms 2.4 and 2.6).

In fact, the Fast Process is the geometric visualization of RANDOM EDGE

on a k-dimensional linear program as given in (2.9) since the basic feasible
solutions of the linear program correspond to the `-stabbed (k − 1)-simplices
in the configuration of one line and n points.

This geometric interpretation of the Simplex method was actually the motiva-
tion by Dantzig to give it that name.

We do not want to go into further details, but there is time for one small obser-
vation: the pivot rule originally suggested by Dantzig chooses the point below

8It is not difficult to see that each linear program given as in (2.1) can be written in the form
(2.9) and vice versa.
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the current `-stabbed simplex s which has the maximal vertical distance from
the hyperplane s.

Finally, we would like to point out that there is yet another way to describe
configurations of One line and n points as a linear program. Let the coordi-
nates of the n points be given as si = (x

(i)
1 , x

(i)
2 , . . . , x

(i)
k ), i = 1, . . . , n, let

the vertical line by given as {(r1, r2, . . . , rk−1, λ) | λ ∈ � }. Then the aim is
to find values µ̃j , j = 1, . . . , k such that the hyperplanexk =

∑k−1
j µ̃jxj+µ̃k

carries the lowest `-stabbed simplex:

maximize µk +
∑k−1

j=1 µjrj

subject to x
(i)
k ≥

∑k−1
j=1 µjx

(i)
j + µk, i = 1, . . . , n.

(2.10)

But note that this LP is just the dual of LP (2.9)!

2.5 Admissible Grid Orientations

All d-polytopes with d+1 facets are combinatorially equivalent to the standard
d-simplex ∆d, defined as

∆d = {x ∈ �
d+1 | x1 + x2 + · · ·+ xd+1 = 1, xi ≥ 0}.

Having just one extra facet compared to the simplices of the same dimension,
the (d, d + 2)-polytopes still have a simple, though non-trivial, structure:

Lemma 2.12 The d-polytopes with d + 2 facets are combinatorially equiv-
alent to the products of simplices P = ∆L−1 × ∆R−1, where L + R =
d + 2, L, R > 1.

Proof We use a well-known theorem by Grünbaum [Grü67, Result 5.1.1]:
Every d-polytope with f ≥ d+1 facets is the intersection of an (f−1)-simplex
with some flat. Applying it, we only need to show that if the intersection of a
(d + 1)-simplex with a hyperplane has d + 2 facets, then it is combinatorially
equivalent to the product of two simplices.

Consider the standard d + 1-simplex,

∆d+1 = {x ∈ �
d+2 | x1 + x2 + · · ·+ xd+2 = 1, xi ≥ 0}.

Let h be the intersecting hyperplane. As we only consider simple polytopes,
we may assume that none of the vertices of ∆d+1 lies in h. So, combinatori-
ally, h is given by the sets of vertices of ∆d+1 on its positive (and its negative)
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side, their cardinality shall be denoted by L (and R). Clearly, L + R = d + 2.
The combinatorial type of the intersection of ∆d+1 with h only depends on
the numbers L and R. So, we can write h (w.l.o.g.) as

h = {x ∈ �
d+2 | x1 +x2 + · · ·+xL−xL+1−xL+2−· · ·−xL+R = 0}.

This implies that

∆d+1∩h = {x ∈ � d+2 | x1 + · · ·+xL =
1

2
= xL+1 + · · ·+xR, xi ≥ 0}

— which is just ∆L−1 ×∆R−1.

An an immediate corollary, we can deduce that the vertex-edge-graph of a
(d, d + 2)-polytope is what we will call a grid graph with L rows and R
columns, see Figure 2.5(a). The vertices that belong to some subset of rows
and some subset of columns (plus the connecting edges) define a subgrid.
Each subgrid corresponds to a non-empty face of the polytope. (Again, we
refer to Lemma 2.12.)

(a) (b)

Figure 2.5: (a) A grid graph with 3 rows and 4 columns and (b) the forbid-
den subgraph.

Any generic linear function induces an orientation on the vertex-edge-graph
of the polytope and hence an orientation on the underlying grid graph.

We observe that if such a grid orientation is induced, it has the following three
properties, the first two being obvious:

1. The orientation is acyclic.

2. Every nonempty subgrid has a unique sink.

3. No subgrid is isomorphic to the ‘forbidden subgrid’ depicted in Fig-
ure 2.5(b).
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We call a grid orientation with these properties admissible.

In our specific scenario, Properties 1 and 2 boil down to the axioms of orienta-
tions induced by abstract objective functions (AOF)([Kal92], [Wil88]). They
imply that every nonempty subgrid also has a unique source you find the proof
at the end of this section.

Lemma 2.13 Consider a grid orientation. If every nonempty subgrid has a
unique sink, then the orientation also has a unique source.

As proven in Lemma 4.1, Property 3 can be obtained by observing that this
condition is equivalent to the so-called path condition found by Holt and Klee
[HK98b]: Source and sink of the 1-skeleton of a d-polytope oriented by a
generic linear function can be connected by d vertex-disjoint monotone paths.
This condition is necessary for an orientation to be induced by a linear ob-
jective function. We call all AOF that induce orientations satisfying Holt and
Klee’s path condition Holt-Klee functions.

It is a very interesting fact that, for unique sink orientations of (d, d + 2)-
polytopes i.e. orientations satisfying Property 2 the path condition is suffi-
cient for acyclicity. In other words, Properties 2 and 3, in the definition of
admissible grid orientations, already imply Property 1. This is Theorem 4.2.
For (d, d + 3)-polytopes, this statement is not true anymore. Consider, for in-
stance, the 3-dimensional cube orientation depicted in Figure 2.6. Obviously,
with respect to d, this is also the smallest possible example.

Figure 2.6: A cyclic orientation of a (3, 6)-polytope (a 3-cube) that satisfies
the path condition.

A natural question is whether any admissible grid orientation is actually in-
duced by some (d, d + 2)-polytope together with a linear function. (We call
these orientations realizable.)
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As we show in Section 4.5, this is not the case. This implies that Holt and
Klee’s path condition is not sufficient for an AOF to be induced by a linear
objective function.

For the proof we will recall Observation 2.11: If an admissible grid orien-
tation is induced by some configuration (P , f) then it is also the digraph of
its extended Gale transform (S, `). In fact, we will consider admissible grid
orientations as partial chirotopes and look at the question of realizability by
examining the completability of these partial chirotopes. These notions are
formally introduced in Section 2.6 below.

We finish this current section by giving the proof for what we have claimed
above: every acyclic grid orientation has a unique source whenever every
nonempty subgrid has a unique sink.

Proof of Lemma 2.13 We follow Kalai [Kal97]: Suppose we are given a grid
orientation G = GL×R. The underlying grid graph can be viewed as the 1-
skeleton of the (d, d + 2)-polytope P with d = L + R − 2, by Lemma 2.12.
Impose the given orientation onto the 1-skeleton. Define hk to be the number
of vertices of P with exactly k incoming edges. Since we have a unique sink
orientation, we already know hd = 1. In fact, what we claim is h0 = 1.

Consider some vertex v with r incoming edges. The number of k-faces with
v as their unique sink is

(
r
k

)
, as any k edges incident to v span a k-face. If fk

denotes the number of k-faces of P , we, therefore, get the equation:

fk =
d∑

r=0

hr

(
r

k

)

, k = 0, 1, . . . , d.

This equation can be inverted (we omit the proof) to

hk =

d∑

r=0

(−1)r−kfr

(
r

k

)

, k = 0, 1, . . . , d.

Therefore, the h-numbers hk are in fact linear combinations of the face num-
bers fk, in particular, they do not depend on the specific grid orientation.
So, since any orientation induced by some generic linear function will have
a unique source, all unique sink grid orientations satisfy the lemma.

As we may apply this lemma to any nonempty subgrid in its own right, we
may immediately deduce that, in fact, every nonempty subgrid has a unique
source in a unique sink orientation.
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To determine the h-vector depending on L and R, we choose the simplest
configuration (S, `) we can think of: Let ` be the y-axis, set pi = (−1, i),
i = 1, . . . , L and qj = (1, j), j = 1, . . . , R. Then it is not hard to see that

`

h = (1, 2, 3, . . . , min(L, R), . . . , min(L, R)
︸ ︷︷ ︸

|L−R|+1

, . . . , 3, 2, 1).

2.6 Partial Chirotopes

The final section of this chapter we use exclusively to introduce the notions
of chirotopes, partial chirotopes and completability. Their relevance in the
context of this thesis will become clear especially in Section 4.4 where we
will show that each admissible grid orientation defines a completable partial
chirotope.

Definition 2.14 Let En be the index set of a finite set of elements. A chirotope
of rank 3 on E is a map χ : E3 → {−1, 0, +1} that satisfies the axioms

1. χ is an alternating sign map, i.e. for any permutation σ ∈ S3 and
(α, β, γ) ∈ E3 we have χ(σ(α), σ(β), σ(γ)) = sgn(σ)χ(α, β, γ).

2. For pairwise different elements α, β, γ, δ, ε ∈ En the set {χ(α, β, γ) ·
χ(α, δ, ε),−χ(α, β, δ) ·χ(α, γ, ε), χ(α, β, ε) ·χ(α, γ, δ)} either equals
0 or contains {−1, +1}.
(These are the so-called Grassmann-Plücker-Relations.)

3. For each element α there is at least one pair β, γ ∈ En

with χ(α, β, γ) 6= 0.

If the alternating sign map χ : E3 → {−1, 0, +1} is only partially defined,
and condition 2. above holds whenever χ is defined on all six triples, then χ
is a partial chirotope of rank 3 on En.

We call χ uniform if 0 6∈ χ(
(
E
3

)
), i.e. χ(α, β, γ) 6= 0 for all pairwise different

elements α, β, γ ∈ En.
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Finally, we call a partial chirotope χ′ of rank 3 on a set E completable, if there
exists a chirotope χ of rank 3 on E and for any α, β, γ ∈ E, χ(α, β, γ) =
χ′(α, β, γ) holds whenever χ′(α, β, γ) is defined. We say that χ is a comple-
tion of χ′.

In Chapter 5 we will discuss the following problem:

COMPLETABILITY OF PARTIAL CHIROTOPES (CPC)

Given: A partial chirotope χ′ of rank 3 on a set E.
Question: Is there a chirotope χ on E such that χ is a completion of

χ′?





Chapter 3

Analysing the Fast Process

We analyse here the expected number of pivots taken by the Algorithms 2.4,
2.5 and 2.6 which we introduced in Section 2.2. We first take a brief look
at the trivial, 1-dimensional case (Section 3.1). It will not only serve as the
perfect warm-up, but also set the foundation for the higher dimensional lower
bound constructions.

High emphasis is placed on the planar case. Section 3.2 is reserved for the
proof of the upper bound. (Later, in Section 4.3, we will revisit this proof—
but translated into a strictly combinatorial framework.) The upper bound is
shown to be tight in Section 3.4, where we investigate several lower bound
constructions meeting it. Embedded into these two sections, there is Sec-
tion 3.3, dedicated to the interesting Algorithm 2.6, the Slow Process.

The final section is devoted to the 3-dimensional case. Here, we give a lower
bound construction (Section 3.5).

3.1 The Trivial Case and a Recurrence with In-
fluence

The 1-dimensional version of the Fast Process models the behaviour of RAN-
DOM EDGE on n-facet polytopes in dimension d = n−1, that is, on simplices.
The underlying vertex-edge-graph is the complete graph with d + 1 vertices.
All orderings on the vertices that are induced by some generic linear function
are isomorphic to each other. The outdegree of a vertex tells us the position

31
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of this vertex in the ordering: from any vertex, we can reach exactly those
vertices which have smaller outdegree.

So, for this very special case, it is not difficult to compute the expected number
of pivots directly. Let this number be denoted by tk if the starting vertex v has
outdegree k. Then

tk = 1 +
1

k

k−1∑

i=0

ti, k > 0, t0 = 0, (3.1)

implying

tk =

k∑

i=1

1

i
= Hk. (3.2)

To be able to use the extended Gale transform on a d-simplex and a linear
function we need to drop one of the non-degeneracy conditions for (S, `): all
n(= d + 1) points have to lie on a line. Each point represents a vertex of
the original simplex. The order in which the line passes through the points is
identical to the order imposed on the vertices by the linear function.

We can view S as a set of real numbers. Then the Fast Process becomes
Algorithm 3.1, called with an arbitrary element s of S:

Algorithm 3.1 The Fast Process on {S, s} in
�

1 while s 6= min S
2 do
3 s ←random {s′ ∈ S | s′ < s};
4 return s.

We will see later that the good lower bounds we can prove for certain 2- and 3-
dimensional instances rely on the repeated call of 1-dimensional subprocesses.
However, these differ in the sense that they are joined by ρ additional exit-
points, located below the vertex that used to be the lowest one, see Figure 3.1.

We want to know the expected number of steps that such an extended 1-
dimensional process takes until one of the ρ points is hit. Starting at the point
with k + ρ points below, this number shall be denoted by tk,ρ. Naturally, the
recurrence is a close relative of Equation (3.1):

tk,ρ = 1 +
1

k + ρ

k−1∑

i=0

ti,ρ, ρ > 0. (3.3)
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It is not hard to see that this implies

tk,ρ =
1

k + ρ
+

1

k − 1 + ρ
+ · · ·+ 1

ρ + 1
+ t0,ρ
︸︷︷︸

1

=

k+ρ
∑

i=ρ+1

1

i
+ 1

= Hk+ρ −Hρ + 1, ρ > 0 (3.4)

Defining tk,0 := tk, we will not need to consider the case ρ = 0 separately.

ρ exit-

s0

sn−1

points

Figure 3.1: Augmented one-dimensional process.

3.2 The Upper Bound for Dimension 2

The 1-dimensional scenario revisited. To get the spirit of the later analysis
we have yet another look at the 1-dimensional Fast Process as given with
Algorithm 3.1. This time, we only want to provide a rough estimate. Let Xi,
i ∈ � 0, be the random variable for the number of iterations of the while-loop
with

2i ≤ #{s ∈ S | s < s̃} < 2i+1 (3.5)

for s̃ the value of s at the beginning of the respective iteration of the while-
loop. For k ≥ 2, the random variable Z =

∑blog2(k−1)c
i=0 Xi gives the overall

number of executions of the while-loop. E(Xi) ≤ 2 for all i ∈ � 0, since,
whenever (3.5) holds, we have a chance of at least 1

2 to choose an element of
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rank 2i or smaller.
Hence,

E(Z) ≤ 2(1 + blog2(k − 1)c) = O(log k).

The obvious extension of that analysis to the 2-dimensional process fails, since
the number of points below edges appearing in the process oscillates. In fact,
the number of points below the current edge is no measure of progress at all.
This number may be 1, we pivot, and the number becomes as large as n − 3
(see Figure 3.2).

`

Figure 3.2: We thought we were so close!

One word to the notation used in this Section. We follow Section 2.2 with one
exception: p and q still denote points on opposite sides of ` but not necessarily
with p on the left.

k-Lines as Milestones. Here is the crucial definition that will allow us to
measure progress. Given k ∈ � 0, a non-vertical line λ is called a k-line of
S and ` if on both sides of ` there are exactly k points from S below λ. It is
easy to see that every point x ∈ ` is contained in a k-line for some k ∈ � 0, as
long as x is disjoint from all segments connecting two points in S. Start with
a line through x that has large slope so that all points on the right side of ` are
below, and all on the left side are above. Now rotate the line by decreasing its
slope. Eventually, we will reach the situation opposite to what we started with:
no points below to the right, all below to the left. All transitions in between
change the number of points below on exactly one side by ±1. Somewhere
in between we must have had a transition where the numbers of points below
were the same on both sides.

A k-line disjoint from S exists for all k, 0 ≤ k ≤ m := min{L, R}. This is
not difficult to see: each point x on ` lies on several k-lines but k = k(x) is
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unique. Traversing `, the current k changes by 1 whenever we cross an `-edge.
(Here we need our assumption of general position.)

For each i, 0 ≤ i ≤ blog2 mc, fix some 2i-line λi disjoint from S. Line λ0

has to be chosen, so that the only edge intersecting ` below λ0 is the edge ẽ
with below(ẽ) = ∅. Moreover, let λblog2 mc+1 be some m-line that intersects
` above all `-edges (and above1 λblog2 mc). The line λi intersects ` below λj

for 0 ≤ i < j ≤ blog2 mc+ 1.

λ2

λ0

λ1

λ3 `

Figure 3.3: Setting milestones.

We define the random variable Xi, i = 0, 1, . . . , blog2 mc, as the number
of executions of the while-loop (in Algorithm 2.5) where the current `-edge e
intersects ` below λi+1 but not below λi. The sequence of these executions we
call phase i of the process2. The careful choice of λ0 ensures that completion
of phase 0 entails completion of the whole process. Hence, Z =

∑blog2 mc
i=0 Xi

is the random variable whose expectation we want to analyse.

We will show that E(Xi) = O(log n) for all i and, hence,

E(Z) = O((log n)(1 + log m)) = O(log2 n).

Analysis of a Single Phase. Fix some i, 0 ≤ i ≤ blog2 mc, set k = 2i,
λ′ = λi and λ = λi+1. So λ′ is a k-line, and there are at most 4k points
below λ (actually exactly, unless i = blog2 mc). We have an edge intersecting
` not below λ′ but below λ, and the phase starts. The phase ends whenever we
reach an edge that intersects ` below λ′. Note that for every edge occurring in
the phase, one endpoint has to be below λ (since the edge intersects ` below
λ) and there is an endpoint above λ′ (since otherwise, we are already in a new
phase).

1This is automatically satisfied, unless m is a power of 2.
2Note that phases count down during the process.
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A few words on what we are heading for. We further split phase i into
strokes. A stroke starts after we have sampled a point in below(λ)∪below(λ′)
(or at the very beginning of the phase) and it finishes after another point in
below(λ) ∪ below(λ′) is chosen (this includes the event that the phase ends);
thus, any stroke in the phase terminates with a point in below(λ)∪below(λ′).
If N is the number of strokes, then we can write X := Xi as

X = Y1 + Y2 + · · ·+ YN

where Yj is the number of iterations of the jth stroke. Note that N itself is a
random variable. (For j > N we set Yj = 0.)

We will show that

(i) E(Yj |j ≤ N) = O(log n) for all j, and

(ii) E(N) = O(1).

It follows that E(X) = O(log n):

E(X) =

∞∑

j=1

O(log n)
︷ ︸︸ ︷

E(Yj |j ≤ N) Pr(j ≤ N)

= O(log n)

∞∑

j=1

Pr(j ≤ N)

= O(log n) E(N) . (3.6)

As for the points sampled from below(λ) ∪ below(λ′) we distinguish several
cases depending on where the respective new point pivoted into the current
edge lies. We will see that each of these situations is more or less promising
in our goal to escape this phase.

Here are the steps in our reasoning: at any time during the phase, the following
four claims hold.

Claim 1 The expected number of pivots until we sample a new point in
below(λ)

is at most 2 log2 n.

Proof At least one of the two endpoints of the current edge has to be below λ.
So in a contiguous subsequence where the new point is always chosen above
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λ, the other endpoint below stays the same throughout this sequence. We de-
note this point by q. If we order the points on the other side of ` according to
their visibility from q, we get almost the situation as in the one-dimensional
process described as Algorithm 3.1. In fact, there are two differences which
can only improve our expectations: we terminate not only in the lowest point
but also in k − 1 other points. In each step we may also sample on q’s side
of `, in which case we immediately terminate (we have surely sampled below
λ). Hence, the expected length of such a subsequence is at most3 2 log2 n.

Since any new point sampled in below(λ) starts a new stroke, this also estab-
lishes our claim (i) from above: the expected number of iterations during a
stroke is O(log n).

Claim 2 Conditioned on the event that we sample a point in

below(λ) ∪ below(λ′) ,
the point will be in

below(λ′)
with probability at least 1

5 .

Proof Since all edges in this phase intersect ` not below λ′ it follows: for
one side of `, all k points below λ′ must also lie below the line through the
current edge. That is, at least k points below λ′ are also below the line through
the current edge. On the other hand, at most 5k points are below λ or λ′. This
holds, since #below(λ) ≤ 4k, #below(λ′) = 2k, and on one side of `, all k
points below λ′ are also below λ.
Claims 1 and 2 combined assure that we reach a point below λ′ within an
expected number of at most 10 log2 n steps.

So what happens after we see such a point p below λ′? Two cases have to be
distinguished, depending on whether p is also below λ or not.

Claim 3 If an endpoint p of the current edge is in

below(λ′) \ below(λ) ,

then the next point sampled below λ or λ′ will be in

below(λ) ∩ below(λ′)

with probability at least 1
5 .

Proof Two relevant conclusions right away (see Figure 3.4): (i) Since p is
not below λ and below λ′, while λ′ intersects ` below λ, the lines λ and λ′

3Even Hn−m−1 is true.
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q

p

λ

λ′

Figure 3.4: p ∈ below(λ′) \ below(λ).

must intersect on p’s side. (ii) Since p is not below λ, the other endpoint q of
the current edge has to be below λ.

Before q can be substituted by a point not below λ, the other endpoint has to
be below λ. That is, when we first sample a point below λ or λ′, point q is still
in the edge. Therefore, the current edge connects q to a point below the edge
{p, q}, above λ′. So the line carrying this edge must intersect λ′ on p’s side.
But then, on q’s side, all k points below λ′ are also below the then current
edge.

Moreover, on q’s side, all points below λ′ are also below λ (since these lines
intersect on the other side). So, summing up, the k points below λ′ are both
below the current edge and below λ, and they are at disposal, when we sample
a point below λ or λ′. The claim follows.

Claim 4 If an endpoint p of the current edge is in

below(λ) ∩ below(λ′) ,

then the next point sampled below λ or λ′ will be in

below(λ′) on the side opposite to p

with probability at least 1
5 .

Proof If p is substituted in a pivot, it must be substituted by a point below λ
or λ′. This holds, since on p’s side of `, everything below the current edge has
to be below λ or λ′ (see Figure 3.5). As a consequence, until the first pivot
with a point below λ or λ′, point p is still an endpoint of the edge. But since p
is below λ′, on the opposite side everything below λ′ is also below the current
edge. So there are at least k good choices, and at most 5k choices of points
below λ or λ′.
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λ′

λ

`

p
λ′

λ

`

p
λ′

λ

`

p

Figure 3.5: p ∈ below(λ′) ∩ below(λ).

Claim 4 entails that once we have chosen a point below λ′ and λ, then – with
probability at least 1

5 – the next point chosen below λ or λ′ will terminate the
phase.

To complete the argument, we look at the sequence of points from below(λ)∪
below(λ′) that are pivoted into the current edge. Recall that these are exactly
the points that terminate the strokes of a phase (except for the last one). If we
can show claim (ii) from above, i.e. that the expected length of this sequence
is at most some constant c, then the expected length of the whole sequence is
at most 2c log2 n due to Equation 3.6. Each point in this sequence is classified
depending on whether it lies in

Class 0: below(λ) \ below(λ′)

Class 1: below(λ′) \ below(λ)

Class 2: below(λ′) ∩ below(λ)

Every point in the sequence considered is in Class 0, 1, or 2. If we have a
point in Class 0, the next will be in Class 1 or 2 with probability at least 1

5
(by Claim 2). If we have a point in Class 1, the next will be in Class 2 with
probability at least 1

5 (by Claim 3). (All of this of course conditioned on the
event that a next point exists at all, i.e. the phase hasn’t stopped already.)
Finally, if we are in Class 2, it is the last point in the sequence with probability
at least 1

5 (by Claim 4).

Now we estimate the expected length of the sequence by the Markov chain4

depicted in Figure 3.6, with four states

start = 0, 1, 2, and 3 = stop,

and the indicated transition probabilities. On one hand, it is easy to calculate

4It simulates a biased coin with success probability 1

5
and counts the number of experiments

until we have three consecutive successes.



40 Chapter 3. Analysing the Fast Process

1 2 3

4/5

4/5

1/51/51/5
4/5

stopstart

0

Figure 3.6: A pessimistic Markov chain.

that the expected number of steps from start to stop is 155. On the other
hand, the chain and our sequence can be coupled so that whenever the chain is
in state s ∈ {0, 1, 2, 3}, then the corresponding point in the sequence in Class
t ≥ s, or the sequence has ended already. Hence, we have shown that the
expected number of pivots in a single phase is bounded by 310 log2 n, and the
theorem follows.

Theorem 3.2 The expected number of pivots in the process defined as Algo-
rithm 2.5 is at most

O((log n)(1 + log m)) = O(log2 n),
where n is the number of points, and m is the smaller of the numbers of points
on the two sides of the line.

3.3 The Slow Process

If ` is the y-axis, both the Fast and the Slow Process find the lowest `-edge
determined by points si = (xi, yi), i = 1, . . . , n.

In fact, they find the solution of the following linear program (LP) in two
variables µ1, µ2, cf. 2.4:

maximize µ2

subject to yi ≥ µ1xi + µ2, i = 1 . . . n.
(3.7)

We have already mentioned that to implement and use the Fast Process (Algo-
rithm 2.4), we need to specify how to sample from below(s). If we can sample
efficiently (say in time logarithmic in n), then the process gives a polynomial
time algorithm even for exponential size sets. If we sample in the obvious way
in O(n) time, then this gives us an O(n(log n)2) algorithm.
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On that we can improve by looking at the alternative Slow Process (Algo-
rithm 2.6).5 The number of pivots has the same distribution as the Fast Pro-
cess. Again, we analyse the number of iterations of the while-loop. As before,
we split the process into phases that are formed by successive pivots. Recall
that in phase i, the current edge intersects ` not below the 2i-line λi.

Claim 5 For each i, the expected number of iterations in phase i is at most
O
(

n
2i

)
.

Proof Divide phase i into strokes as previously done. That is, a stroke is
ended, whenever we sample a point in

(below(λ′) ∪ below(λ)) ∩ below(ẽ),

(ẽ being the current `-edge), or when the phase ends.

In phase i, there are always at least 2i points from below(λ′) that lie below the
current edge (on some side of `, all points below λi are also below the current
edge). That is, at any point, we sample a point resulting in the termination
of the stroke with probability at least 2i

n
. Therefore, the expected number of

iterations in a stroke is at most n
2i . The number of strokes is, of course, the

same as in the Slow Process; its expectation is constant. The claim follows.

Theorem 3.3 The expected number of iterations of Algorithm 2.6 is
Θ(n)

where n is the number of points, unless the starting edge {p, q} is already the
lowest `-edge.

Proof
∑blog2 mc

i=0
n
2i < 2n and so the upper bound follows from Claim 5.

If {p, q} is disjoint from the lowest `-edge, a lower bound of 3
2n is obvious,

since on the average it takes that long until we have sampled both endpoints
of the lowest edge at least once. Even if {p, q} contains exactly one of the two
endpoints of the lowest `-edge, we still need n steps on the average before we
meet the other endpoint for the first time. The lower bound follows.

The coupon collector analysis (cf. [GS92, Exercise 3.13]) tells us that it takes
Θ(n log n) iterations until we expect to have sampled each point at least once.

5The ‘below(e) 6= ∅’-test can be made once in n rounds only, thus causing amortized constant
cost. Or, after every pivot, we can go through all points in random order (without replacement)
until we find the first point in below(e); if no such point is found, we are done. Compared to the
‘pure version’, this can only speed up the procedure.
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Thus, the Slow Process finds the lowest `-edge long before all points have
been seen at least once.

3.4 The Lower Bound for Dimension 2

We are presenting two instances of One line and n points, that share the
property that the expected number of pivots of the Fast Process on them is
Ω(log2 n). The instance we discuss first is already based on the ideas that
later motivate the 3-dimensional lower bound construction. The second in-
stance shines with a special property: there exists a sequence of pivots which
visits all possible `-edges.

Before we start, let us recall a useful fact as well as prove two easy lemmata
that will turn out to be useful for the actual analysis.

Lemma 3.4 ([GKP94, Equation 6.60])

ln n < Hn < ln n + 1, for n > 1, (3.8)

Lemma 3.5

k−1∑

i=1

Hi

i + 1
=

1

2

(

H2
k −

k∑

i=1

1

i2

)

. (3.9)

Proof

k−1∑

i=1

Hi

i + 1
=

k−1∑

i=1

Hi+1

i + 1
−

k−1∑

i=1

1

(i + 1)2
=

k∑

i=1

Hi

i
−

k∑

i=1

1

i2

=
∑

1≤j≤i≤k

1

i · j −
k∑

i=1

1

i2

=
1

2





(
k∑

i=1

1

i

)2

+
k∑

i=1

1

i2



−
k∑

i=1

1

i2

=
1

2

(

H2
k −

k∑

i=1

1

i2

)

. �



3.4. The Lower Bound for Dimension 2 43

Lemma 3.6

k−1∑

i=1

H2i

i + 1
≤ H2

2k−1

2
. (3.10)

Proof

k−1∑

i=1

H2i

i + 1
≤

k−1∑

i=1

(
H2i

2i
+

H2i+1

2i + 1

)

=

2k−1∑

i=1

Hi

i
− 1

=
1

2

(

H2
2k−1 +

2k−1∑

i=1

1

i2

)

− 1 ≤ H2
2k−1

2
. �

3.4.1 The Instance that prepares us for the Third Dimen-
sion

Suppose we have a configuration with n1 points left of ` and only one single
point, q say, on `’s right hand side. Then q must be an element of all `-edges.
The Fast Process on this 2-dimensional configuration is essentially just a fancy
version of the 1-dimensional Fast Process on n1 points and takes, therefore,
time Θ(log n1) (Equation (3.2)).

Suppose further that we add ρ points ({q0, . . . , qρ−1}) to our configuration
that lie below all existing `-edges and on the line parallel to ` through qρ := q.
Then we can run the 1-dimensional process augmented by j exit-points when
starting with an arbitrary `-edge incident to qj .

But we can also run the 2-dimensional Fast Process on this configuration. By
saying that we are in phase i as long as qi is in the current edge, we can view
it as a succession of 1-dimensional subprocesses with i exit-points.

Unfortunately, the size of the 1-dimensional subprocesses is getting smaller
with each new phase. Only if the number of exit points is in comparison also
sufficiently small (e.g. of order O(

√
m), where m is the number of points

currently available for the 1-dimensional subprocess), will the subprocess still
asymptotically take at least Ω(log m) number of pivots by Equation (3.4).

The crucial idea is to add auxiliary points such that whenever a new phase
starts the n1 points on the left of ` lie – with constant probability – below the
current edge. This will suffice to show that during the Fast Process sufficiently
many of the subphases take a sufficiently high expected number of pivot steps.
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`

qpn1−1

p0

p1

q1

q0

qρ−1

q1

q0

Figure 3.7: Running the 1-dimensional process with ρ exit points on a 2-di-
mensional configuration.

The actual configuration will have ρ + n1 points on the left and ρ + n2 points
on the right of `. (So, n = 2ρ + n1 + n2 — the exact values of n1, n2 and ρ
shall be determined later.) It is defined as follows, see also Figure 3.8:

` is the y-axis,

pi =

{ (−1
i

)
for i = 0, . . . , ρ− 1

(−2n
i

)
for i = ρ, . . . , ρ + n1 − 1

and

qi =

{ (
1
i

)
for i = 0, . . . , ρ− 1

(
2n
i

)
for i = ρ, . . . , ρ + n2 − 1

.

Finally, to get general position, we slightly perturb the points. This construc-
tion has the following properties:

Observation 3.7

(i) {p0, . . . , pi−1} ∪ {q0, . . . , qj−1} ⊆ below({pi, qj}).
(ii) {pρ, . . . , pρ+n1−1} ⊆ below({pi, qj}) whenever j < i < ρ

and {qρ, . . . , qρ+n2−1} ∩ below({pi, qj}) = ∅ whenever j ≤ i < ρ.

(iii) {qρ, . . . , qρ+n2−1} ⊆ below({pi, qj}) whenever i < j < ρ
and {pρ, . . . , pρ+n1−1} ∩ below({pi, qj}) = ∅ whenever i ≤ j < ρ.
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p2 q2

q = qρ

`

q0

pρ

pρ+1

pρ+2

pρ+n1−1

qρ

qρ+1

qρ+2

qρ+n2−1

Starting edge

Final edge

q1
p1

p0

pρ

Figure 3.8: Instance for the lower bound.

For this configuration of one line and n1 + n2 + 2ρ points we will now derive
a lower bound of the Fast Process when started from the edge {pρ−1, qρ−1}.
In a final step, we will determine those values for n1, n2 and ρ that give us the
best lower bound.

As we have already indicated our analysis is again based on the idea to divide
the sequence of pivots into distinct phases. We say we are in phase a as long as
min(i, j) = a, where i, j are the indices of the points defining the current edge
e. In other words, a new phase is entered whenever we choose a point whose
index sets a new minimum. This definition makes sense by Observation 3.7:
each phase entered is succeeded by a phase with smaller index. We say that the
phase is on the left (right, respectively) of ` whenever its defining minimum
point is on the left (right, respectively).

We define the random variables Xi, i = 0, . . . , ρ − 1 as the number of pivots
during phase i; Z denotes the total number of pivots under the assumption that
we start with the edge {pρ−1, qρ−1}. We aim to bound the expected value of Z

from below, but a direct approach E(Z) =
∑ρ−1

i=0 E(Xi) seems not suitable.

Conditioned on the event of choosing a point among
{p0, . . . , pi} ∪ {q0, . . . , qi},

pi and qi are equally likely chosen with probability 1
2(i+1) . This implies that

Pr(Phase i is entered) =

{
1

i+1 for all i, 0 ≤ i < n− 1

1 for i = n− 1.
(3.11)
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Thus, denoting the event that phase i is entered by Phi, we get

E(Z) =

ρ−1
∑

i=0

E(Xi) =

ρ−1
∑

i=0

E(Xi | Phi) Pr( Phi)

= E(Xρ−1 | Phρ−1) +

ρ−2
∑

i=0

E(Xi | Phi)

i + 1
. (3.12)

To estimate the expectations of the Xi conditioned on the event that phase i
is actually entered we distinguish two cases. If phase i is on the same side
as the previous phase, we have to assume the worst: possibly, it is over after
just one flip! But if the minimum switched to the other side with the begin-
ning of phase i then either the n1 points {pρ, . . . , pρ+n1−1} or the n2 points
{qρ, . . . , qρ+n2−1} are put back into the game.

Using the same argument as for Equation (3.11), we see that with probability
1
2 phase i does not lie on the same side with respect to ` as the previous phase.

Let r and s denote the number of points on the left and on the right of `
below the current edge; it is easy to see that we are in phase min(r, s). The
missing piece is to compute τr,s, the expected number of flips until we leave
this phase. Clearly, τr,s = τs,r, so w.l.o.g. assume s ≤ r. τr,s is monotone in
r. For s < r (i.e. in particular, at the beginning of a new phase), we have at
least s + n points below the current edge on the side of r.

The simple recursion

τ0,0 := 0 , τr,s = 1 +
1

r + s

r−1∑

r′=s

τr′,s (r + s > 0)

gives us

τr,s =

{
Hr whenever s = 0
Hr+s −H2s + 1 otherwise.

(3.13)
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Applying these observations to Equation (3.12) we can therefore deduce that

E(Z) ≥
ρ−2
∑

i=0

E(Xi | Phi)

i + 1

≥
ρ−2
∑

i=0

E

(

Xi | Phi ∧ side of minimum
changed

)

i + 1
Pr

(
side of minimum
changed

)

≥
ρ−2
∑

i=0

1
2 (minj≥0(τi+n1+j,i) + minj≥0(τi+n2+j,i))

2(i + 1)

=

ρ−2
∑

i=0

τi+n1,i

4(i + 1)
+

ρ−2
∑

i=0

τi+n2,i

4(i + 1)

since we are equally likely to encounter a left or a right phase.

Let us first estimate the expected number of steps of all the left phases:

ρ−2
∑

i=0

τi+n1,i

4(i + 1)

(3.13)
=

Hn1

4
+

ρ−2
∑

i=1

Hn1+i −H2i + 1

4(i + 1)

≥ 1

4
(Hn1

+ (Hρ−1 − 1)(Hn1
+ 1))− 1

4

ρ−2
∑

i=1

H2i

i + 1

(3.10)

≥ 1

4

(

Hρ−1Hn1
− 1

2
H2

2ρ−3

)

(3.8)

≥ ln ρ(ln n1 − ln ρ) + O(log n) . (3.14)

We may assume that ρ as well as n1 are multiples of powers of n, ρ = anα

and n1 = bnβ, say, a, b > 0, α, β ≤ 1. Then Equation (3.14) becomes

ρ−2
∑

i=0

τi+n1,i

4(i + 1)
≥ α

(

β − α

2

)

ln2 n + O(log n) (3.15)

Clearly, we achieve the best bound for α = β = 1.

As we may estimate the number of pivots during right phases analogously, we
may deduce that for the considered configuration we get the best lower bound
for the expected number of pivot steps by choosing n1 = n2 = ρ/2 = n/4;
then E(Z) ≥ 1

4 ln2 n + O(log n).
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Thus, we have proved:

Theorem 3.8 There exist instances of one line and n points in general po-
sition in the plane such that the expected number of pivot steps for the Fast
Process 2.4 satisfies the following bound:

E(Z) ≥ 1

4
ln2 n + O(log n).

If we set n1 = n − 2
√

n, n2 = 0 and ρ =
√

n, we get E(Z) ≥ 3
8 ln2 n +

O(log n). This instance will form the 2-dimensional building block of our
3-dimensional lower bound construction in Section 3.5.

3.4.2 An Instance with an Extraordinary Property

As before, let ` be the y-axis, and assume that the number of points in the
set S is a multiple of 4, n = 4k for some k ∈ � . We place the points
s0, s1, . . . , sn−1 onto the graph of the function y = f(x) = ln |x| by the
following procedure:

Let sn−1 =
(−1

0

)
, sn−2 =

(
1
0

)
and sn−3 =

( −1+ε
ln (1−ε)

)
. Now consider the line

spanned by the point sn−1 and sn−3. It intersects the graph of the function f
in a third point on the opposite side of `. Place the point sn−4 onto the graph
of f and just below this point of intersection, cf. Figure 3.9.

`

sn−1

sn−3

sn−2

sn−4

sn−5

Figure 3.9: Placing the first five points.
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For the remaining n − 4 points we repeat the procedure just described: Each
point si, for i = n− 5, . . . , 0 is placed just below the intersection point of the
graph of f with the line spanned by the points si+1 and si+3.

The configuration constructed according to these rules has the following prop-
erties, cf. Figure 3.10:

Observation 3.9

(i) xs2j+1
< xs2i+1

< 0 < xs2i
< xs2j

for any 0 ≤ i < j < n/2,

(ii) {si−j′ | 0 < j′ ≤ i}
⊆ below({si, si+1+2j}) for 0 ≤ i < n− 1 and 0 ≤ j < bn−i

2 c.

(iii) {si+1+2j | 0 < j < bn−i
2 c}

⊆ below({si−2j′ , si+1}) for 0 ≤ i < n− 1 and 0 ≤ 2j ′ < i.

Proof (i) and (ii) follow directly from the construction while (iii) is less
obvious. Recall, that we place si below the line spanned by si+1 and si+3.
This implies that si+3 lies below the `-edge {si, si+1}. By concavity of the
function f(x) = ln |x|, the points si+3+2j (j > 0) also lie below {si, si+1}.
In fact, these points lie below any `-edge {si−2j′ , si+1}, 0 ≤ 2j′ ≤ i. The
observation follows.

`

sn−1

sn−3

sn−2

sn−4

sn−5
sn−6

Figure 3.10: There exists a sequence of pivots which visits all possible
`-edges.
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Corollary 3.10 In the configuration (S, `) as constructed above and shown in
Figure 3.10, there exists a sequence of pivots which visits all possible `-edges.

Proof We can rewrite Observation 3.9.(iii) as

{si+1+2(j+j′) | 0 < 2j < n− 2j′ − i− 1} ⊆ below({si, si+1+2j′})

for 0 ≤ i < n− 1 and 0 ≤ j ′ < bn−i
2 c. This implies that starting from some

`-edge {si, si+1} we can pivot through all `-edges {si, si+1+2j′}, 0 ≤ j′ <
bn−i

2 c, until we reach {si, sn−1} (if i is even) or {si, sn−2} (otherwise).

From there, we pivot to {si, si−1}— this is possible by Observation 3.9.(ii) —
and repeat the procedure. Having started from the top-most `-edge
{sn−1, sn−2}, we will, eventually, have pivoted through all possible `-edges
to the bottom-most `-edge: {sn−1, s0}.

This implies that there are simple (n − 2)-polytopes with n facets where we
can pivot through all vertices in a monotone fashion (w.r.t. some linear func-
tion).

The analysis is based on the same principles that proved successful for the
previous instance in Section 3.4.

Again, we divide the process into distinct phases, using the following criteria:
phase a comprises all visited `-edges e = {si, sj} for which min(i, j) = a.
More specifically, a new phase is entered whenever we choose a point whose
index sets a new minimum. We refer to this points as phase-point; clearly, sa

is the phase-point of phase a. Observe, that the phase-point is endpoint of all
edges belonging to that phase.

We use the notation we are already familiar with from Section 3.4.1: the ran-
dom variables Xi, i = 0, . . . , 2k−1 denote the number of pivots during phase
i; Z is the total number of pivots under the assumption that we start with the
edge {s2k−1, s2k}; Phi denotes the event that phase i is entered.

We aim to bound the expected value of Z from below.

Conditioned on the event of choosing the first point in
{p0, . . . , pi}

pi is chosen with probability 1
2(i+1) . This implies that

Pr(Phase i is entered) =

{
1

i+1 for all i, 0 ≤ i < 2k − 1

1 for i = 2k − 1.
(3.16)
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and

E(Z) = E(X2k−1 | Ph2k−1) +

2k−2∑

i=0

E(Xi | Phi)

i + 1
. (3.17)

We can get a good estimate for the expectations of the Xi (conditioned on the
event that phase i is actually entered) if si and the phase-point preceding it lie
on different sides of `. If that is the case, we say that phase i is special. Then
at least k points (either s2k, s2k+2, . . . , s4k−2 or s2k+1, s2k+3, . . . , s4k−1) are
once again below the current `-edge by Observation 3.9.

During phase i, there are exactly i points below the current edge which – when
chosen – would start a new phase. b i

2c of these points are on the same side of
` as sj , d i

2e are on the other side. So, the probability, that the phase-points of
two successively entered phases are separated by ` is ≥ 1

2 .

Let τi denote the expected length of phase i (that is, the expected number of
steps until a new phase starts), under the assumption that i is special, i.e. that
the previous phase was on the other side of `.

A special phase i can be considered as an extended 1-dimensional process on
k points and i exit-points, cf. Section 3.1. Using Equations (3.4), we get

τi ≥ tk,i =

{
Hk+i −Hi + 1 whenever i > 0,
Hk whenever i = 0.

(3.18)

To derive the lower bound we shall use this in Equation (3.17):

E(Z) ≥
2k−2∑

i=0

E(Xi | Phi)

i + 1

≥
2k−2∑

i=0

E

(

Xi | Phi ∧ side of minimum
changed

)

i + 1
Pr

(
side of minimum
changed

)

(3.18)

≥
2k−2∑

i=0

τi

2(i + 1)
=

Hk

2
+

2k−2∑

i=1

Hk+i −Hi + 1

2(i + 1)

≥ 1

2

(
2k−2∑

i=0

Hk

i + 1
−

2k−2∑

i=1

Hi

i + 1

)

,



52 Chapter 3. Analysing the Fast Process

giving us

E(Z)
(3.9)

≥ 1

2

(

HkH2k−1 −
1

2
H2

2k−1

)

(3.8)

≥ 1

2

(

ln k ln(2k − 1)− 1

2
ln2(2k − 1)

)

+ O(1)

≥ 1

4
ln2 n + O(log n),

recalling that n = 4k.

Thus, we have proven:

Theorem 3.11 There exist simple (n − 2, n)-polytopes where we can pivot
through all vertices in a monotone fashion (w.r.t. some linear function) and
the expected number of pivot steps for RANDOM EDGE satisfies the following
bound:

E(Z) ≥ 1

4
ln2 n + O(log n).

3.5 A Lower Bound for Dimension 3

As already indicated in Section 3.4 above, we view the 3-dimensional pro-
cess as the succession of 2-dimensional subprocesses; this will be the key to
analyse RANDOM EDGE on (d, d + 3)-polytopes.

In fact, we can partition the set of points S into three pairwise disjoint sets:
the set Π1, consisting of the points that form the 1-dimensional subgame, Π2,
the additional points that (together with Π1) form the 2d-subgame, and Π3,
the remaining ones.

We will commence with placing the points forming the set Π3. These will
induce several conditions on the location of the other points. Having identified
them, we can allocate their coordinates accordingly. Finally, having done all
the prerequisites, we may do the analysis.

3.5.1 Placing some Points

Suppose we have n = m+2
√

m+3 4
√

m points at our disposal.6 For our con-
venience, we group them into six point sets P , Q, R, U , V and W , pairwise

6We choose m such that m = (2m̃)4 for some m̃ ∈ � .
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disjoint, such that |P | = |Q| = |R| = 4
√

m, |U | = |V | = √m and |W | = m.
Using the classification from above, we let Π1 := W , Π2 := U ∪ V and
Π3 := P ∪Q∪R. As before, we will use the small, indexed letter s to denote
points. We denote points by the same letter as the set they belong to, if we
need to indicate this property. For example, we may write pi for some point
in P , vj for a point in V .

Let ` be the z-axis. We place the points p0, . . . , p 4
√

m−1 (i.e. the set P ) onto
the line {(x, y, z)T ∈ � 3 | x = −1, y = 0}, we place q0, . . . , q 4

√
m−1 (i.e.

the set Q) onto {(x, y, z)T ∈ � 3 | x = 1, y = −1}, and r0, . . . , r 4
√

m−1 (i.e.
R) onto the line {(x, y, z)T ∈ � 3 | x = 1, y = 1} such that pi, qi, ri lie
on the plane {(x, y, z) ∈ � 3 | z = i}. To keep the size of the indices on a
manageable level, we set m′ :=

√
m − 1, m′′ := 4

√
m − 1, and write, for

instance, pm′′ when referring to p 4
√

m−1.

Consider now some plane e given by the equation x = C, where C � 1 is a
large constant, depending on n. This plane is parallel to `. The intersection
of e with the plane spanned by P and ` shall be denoted by `′. Running the
2-dimensional process of k points and the line `′ on the plane e is then identical
to running the 3-dimensional process of k + 1 points and the line ` where the
additional point is some fixed p ∈ P , and vice versa.

This motivates placing the remaining point sets onto e as depicted in Fig-
ures 3.12 and 3.11, cf. our 2-dimensional construction of Section 3.4.1 in Fig-
ure 3.7: U and V ∪W are separated by `′, U lying in the halfspace y < 0.

`

V

W

Q

P

U

R

x

y

`′

e : x = C

Figure 3.11: Outlook where we hope to place the points – from above.

Before we can allocate specific coordinates to each point, however, we first
need to understand some properties that turn out to be crucial for the successful
analysis.
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Recall, that we call any triple of points in {s1, s2, s3} ∈ S an `-stabbed sim-
plex, if the line ` intersects their convex hull. We will write (s1, s2, s3) when-
ever we refer to the plane spanned by the simplex {s1, s2, s3}. Furthermore,
(s1, s2) will denote the line through the points s1 and s2.

The following Lemma is easily observed, as illustrated by Figure 3.11:

Lemma 3.12 The vertex set of any `-stabbed simplex must contain a point in
P , a point in Q ∪ U and a point of the set R ∪ V ∪W .

`

q0

q1

pm”

p1

p0

qm”

r0

r1

rm”

`′

V

U

W

x

z

y

Figure 3.12: Outlook where we hope to place the points.
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3.5.2 Finding the Place for the Remaining Points

We want to analyse the number of pivots given that the starting `-stabbed
simplex is {pm′′ , qm′′ , rm′′}. If we denote this number by G then we are
interested in a lower bound for the value of E(G).

We divide the process into distinct phases. Let I be the index set of those
vertices of the current `-stabbed simplex which are in Π3 = {P ∪ Q ∪ R}.
Then we say that we are in phase i as long as min I = i. We will ensure that

(i) min I can only decrease during the entire process.

By Lemma 3.12, I is nonempty. Any point whose index sets a new minimum
starts a new phase. We call such a point a phase-point. Consequently, we call
a phase p-phase whenever its phase-point belongs to the set P . Similarly, we
may refer to q- and r-phases.

As we will see later, we may estimate the length of a p-phase if two further
conditions are met:

(ii) The vertex set of the first `-stabbed simplex of the p-phase consists of
points in Π3 only, and

(iii) the entire 2-dimensional subgame is below the first `-stabbed simplex
of the p-phase.

Our goal is, therefore, to ensure that these requirements are met for any p-
phase with some positive probability.

This can be achieved by imposing the following conditions:

Condition 1 The phase-point of a given phase is part of all `-simplices be-
longing to that phase. This follows if,

• U is above any plane

{
(pi, qj , rk), j ≤ i, k,
(pi, qj , sk), j ≤ i, sk ∈ V ∪W,

(that is, above any plane encountered during a q-phase),

• V ∪W is above any plane

{
(pi, qj , rk), k ≤ i, j,
(pi, sj , rk), k ≤ i, sj ∈ U.

(that is, above any plane encountered during an r-phase).
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Condition 2 Given that the vertex set of the first `-stabbed simplex of the cur-
rent p-phase is a subset of Π3, the entire 2-dimensional subgame lies below
the plane spanned by this simplex. This follows if,

• U ∪ V ∪W is below any plane (pi, qj , rk), i < j, k.

While Condition 2 just repeats prerequisite (iii) from above, the link between
Condition 1 and (i) is not as obvious. Here, we ensure that the phase-point
does not leave the phase it has initiated. Therefore, this phase-point still has
to be present at the beginning of the succeeding phase — unless both phase-
points belong to the same set (P , Q or R). In any case, the value of min I
always goes down.

As we will see later, requirement (ii) cannot always be met. But we shall
prove the following implication of Condition 1: the first `-stabbed simplex of
some p-phase which succeeds consecutive q- and r-phases will, with positive,
constant probability, be spanned solely by points of the set Π3.

But first let us impose the conditions intrinsic to the 2-dimensional subprocess:

Condition 3 The set W lies below the plane (pi, uj , vk) whenever j < k. If
j ≥ k then W lies above (pi, uj , vk).

As we hope to place all the points of the 2-dimensional subgame onto the plane
e we translate these 3-dimensional conditions into 2-dimensional relationships
valid on e.

To determine the line of intersection of the plane e with some `-stabbed sim-
plex (pi, qj , rk) we may consider the two points of intersection of the line
(pi, qj) with e and of (pi, rk) with e, denoted by piqj and pirk, respectively.
(piqj , pirk) is then the line we were looking for.

By construction, the points of the sets P , Q and R lie on three parallel, ver-
tical lines. Therefore, P ∪ Q and P ∪ R both affinely span a plane whose
intersection with the plane e is again a vertical line. More precisely, the points
of intersections of e with some line (pi, qj) (and (pi, rk), respectively) lie on
the line {(x, y, z)T ∈ � 3 | x = C, y = − 1

2 (C + 1)} (and {(x, y, z)T ∈
� 3 | x = C, y = 1

2 (C + 1)}, respectively). The potential location of these
points of intersection can be narrowed down even more. Choosing C suffi-
ciently large (C � n), the points piqj have a z-coordinate that has its extrema
at pm”q0 and p0qm”, the points pirk lie on a line segment bounded by pm”r0

and p0rm”. This fact can be easily deduced from the actual coordinates of the
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points of intersection:

piqj =





C
−C+1

2
C
2 (j − i) + 1

2 (j + i)





and

pirk =





C
C+1

2
C
2 (k − i) + 1

2 (k + i)



 .

Let us consider the constraints for U . By Condition 1, U has to be above any
plane (pi, qj , rk) with j ≤ i, k. On the plane e, therefore, all points in U
need to be above any line given by two points of intersection piqj and pirk

with j ≤ i, k. This is certainly the case if we enforce U to be above any line
through points piqj and pi′rk, where i ≥ j and without further constraints on
i′, k. Thus, it is sufficient to ensure that U lies above the two ‘extremal’ lines
(pm”qm”, pm”r0) and (pm”qm”, p0rm”).

On the other hand, Condition 2 says that U is below any plane (pi, qj , rk),
i < j, k. This is the case, if on the plane e, all elements of the set U lie
below any line (piqj , pi′rk) with i < j, i′ < k. Again, there are essentially
only two lines we need to consider: if U lies below (p0q1, p0r1) and below
(p0q1, p0rm”) then U satisfies Condition 2.

By symmetry, the conditions for V ∪ W can be derived similarly. We call
potential regions to place the remaining points ‘good’. In Figure 3.13 they are
shaded accordingly.

Having determined the potential regions for the elements of U , V and W
we realize that the part of Condition 1 that we have not considered so far is
automatically fulfilled: U is above any plane (pi, qj , sk), j ≤ i, sk ∈ V ∪W ,
V ∪W is above any plane (pi, sj , rk), k ≤ i, sj ∈ U . Our next step is to find
the exact location of the points in U , V and W .

The vertical line segments (p0r1, pm”rm”) and (p0q1, pm”qm”) (with the ex-
ception of their endpoints) are ‘good’. So, they are the natural location to
place the points of U and V . After placing these points equidistantly, i.e. such
that ||ui − ui+1|| = c1 and ||vi − vi+1|| = c2 for two constants c1 > c2,
and any i, 0 ≤ i <

√
m− 1, we may apply the theorem of intersecting lines:

the lines (ui, vi), i = 0, . . . , m′ intersect in one point (we call it A), as do
the lines (ui, vi+1), i = 0, . . . , m′ − 1 (we call it B). Furthermore, the line
through A and B is vertical, too.
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`′

z

y

pm′′r0 pm′′q0

p0r0

pm′′rm′′

p0r1

p0rm′′

p0q0

pm′′qm′′

p0q1

p0qm′′

UV ∪ W

piqj

i < j

piqj

i ≥ j

pirk

i ≥ k

pirk

i < k

Figure 3.13: The sets U and V ∪W need to be located in the shaded areas.

Recall Condition 3: the points in the set W are required to lie above all lines
(uj , vk) (whenever j ≥ k) and below the lines (uj , vk) with j < k. Placing
W onto the segment (A, B), this condition will be fulfilled.

Finally, by choosing suitable constants c1 and c2, we may move the points A
and B arbitrarily close to V ’s line segment, cf. Figure 3.14. In particular, A
and B and hence the point set W may lie in the ‘good’ region while Condi-
tions 1—3 are fulfilled.

We finish this subsection by giving specific coordinates as promised. Setting
C := 2m2 − 1, c1 = 1 and c2 = 1√

m
, we let:

ui :=





2m2 − 1
−m2

m−√m + i



 , vi :=





2m2 − 1
m2

m− 1 + i√
m





for i = 0, . . . ,
√

m− 1,

and wj :=





2m2 − 1
m2(1 + 2√

m−1
)

m + j+1
m2



 for j = 0, . . . , m− 1.
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W

V

U

`′

A

B

u0

u1

um′vm′

vm′
−1

v1

v0

um′
−1

Figure 3.14: W can be placed arbitrarily close to V .

Lemma 3.13 The given construction satisfies the Conditions 1—3.

3.5.3 The Analysis

We define the random variables Zi, i = 0, . . . , 4
√

m− 1 as the length of phase
i, that is, the number of pivots leading to `-simplices belonging to the phase
i.7

During phase i, let J be the index set of those vertices of the current `-stabbed
simplex which are in Π2 = U ∪V . We say we are in subphase j(i) if min J =

j. Phase i has a subphase
√

m
(i) if J is empty and the plane spanned by s is

above the points in Π2. We do not count any other pivots of the current phase
where J = ∅.
By Condition 1, the point starting a new subphase will remain as a vertex in
all `-stabbed simplices belonging to that subphase. We call it the subphase-
point, and refer to a subphase initiated by some point in U (or V ) as u- (or
v-)subphase.

7Note that this definition implies that the phase 4
√

m − 1 has length 0. Therefore, we can
safely ignore this phase in all our considerations below. The first phase will be the phase we enter
with the first pivot.
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The random variables Y
(i)
j , j = 0, . . . ,

√
m shall denote the number of pivots

during the subphase j in phase i.

Finally, let us even divide the subphases. The subsubphase k(i,j) consists just
of the single pivot which puts wk into the current `-stabbed simplex. This pivot
is succeeded by either a new subsubphase k′(i,j) (if wk′ is the next point) or
the beginning of a new (sub)phase. So defining the random variables X

(i,j)
k as

the length of subsubphase k of subphase j in phase i, we have

E
(

X
(i,j)
k | subsubphase k(i,j) is entered

)

= 1. (3.19)

This was easy, but we also need to know how likely it is to actually enter k(i,j),
j(i) or i, and need to estimate their expected duration. We shall first determine
candidates for ‘long’ phases and estimate the probability of their occurrence.
Then we do the same for subphases. With these results, the actual analysis is
reduced to a technical computation.

Definition 3.14 We call a p-phase special whenever its initial `-stabbed sim-
plex s contains only points in Π3, and the entire 2-dimensional subgame, i.e.
Π1 ∪ Π2, lies below the plane spanned by s.

We make the following observation that helps us to estimate the likelihood of
a p-phase to be special:

Observation 3.15 A p-phase i is special if it directly succeeds a q- and an r-
phase (both appearing in any order) and the phase-points of these two phases
are still in the `-stabbed simplex initiating i.

So, our requirement (ii) from above is met whenever we encounter a special
p-phase.

Lemma 3.16 Suppose that we are in phase i1, let i2 denote the index of the
succeeding phase. Then Pr(i2 ≥ α) = 1− bαc

i1
for any α, 0 ≤ α < i1.

Proof Conditioned on the event of choosing a point with index smaller than
i1 for the first time, all such points are equally likely chosen, with probability
1
i1

. i1 − bαc of these points have index bigger or equal than α.
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We also recall the following lemma:

Lemma 3.17 For any events A, B, C,

Pr(A) = Pr(A |B) Pr(B) + Pr(A |Bc) Pr(Bc)

≥ Pr(A |B) Pr(B),

and

Pr(A |C) = Pr(A |C ∩B) Pr(B) + Pr(A |C ∩Bc) Pr(Bc)

≥ Pr(A |C ∩B) Pr(B),

where Bc denotes the complement of B.

Proof A = (A ∩ B) ∪ (A ∩ Bc). This is a disjoint union and so

Pr(A) = Pr(A ∩ B) + Pr(A ∩ Bc)

= Pr(A |B) Pr(B) + Pr(A |Bc) Pr(Bc).

Replacing A by (A |C), the second (in)equality follows as well.

Thus armed, we can provide proof of the following lemma:

Lemma 3.18 The probability that some entered phase i is a special p-phase
is at least 1

45 .

Proof We want to estimate the probability, that the initial `-stabbed simplex
of phase i is of the form {pi, qj , rk} with i < j, k. By Observation 3.15, this
can be bounded from below by the probability of the following event: phase
i is a p-phase that was preceded by a q- and an r-phase, where the respective
phase-points qj and rk are still in the simplex. (Note that the very first or the
second phase will be special whenever they are p-phases. The general estimate
will also be valid for these early phases.)

The probability that a p-phase is preceded by a q- and an r-phase (successively,
but not necessarily in this order) is at least 2

3 · 1
3 = 2

9 , where no assumptions
are made about the fate of the phase-point of the first phase. By the symmetry
of the Conditions 1 and 2, we may assume (without loss of generality) that the
q-phase succeeds an r-phase. Then by Condition 1 the first phase-point, rk, is
still in the current `-stabbed simplex when the q-phase starts. At this moment
our simplex is of the form {pi′ , qj , rk} with i′ ≥ k > j. It is crucial to begin
the p-phase before a point in V ∪W may replace rk – which may happen as
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soon as some pi′′ , k > i′′ > j has entered the `-stabbed simplex (during the
q-phase).8

We now consider the event that conditioned on the event of choosing a point
in {p0, . . . , pk−1} ∪ {q0, . . . , qj−1} ∪ {r0, . . . , rk−1} the next point will be
in {p0, . . . , pj−1}. Calling this event F , we need to show that the probability
of F is greater or equal some positive constant. The situation is illustrated in
Figure 3.15 below.

pi′

qj

rk

bad points

good points

≥
1
5

bad points

Figure 3.15: The new p-phase preceded by a q- and an r-phase is special with
probability≥ 1

2 · 1
5 = 1

10 .

Using Lemma 3.17 we can bound Pr(F ) from below:

Pr(F ) ≥ Pr(F |j ≥ α) Pr(j ≥ α).

By Lemma 3.16 we know Pr(j ≥ α) = 1− bαc
k

. On the other hand, it is not

hard to see that Pr(F |j ≥ α) ≥ bαc
bαc+2k

.

A convenient choice for α is k
2 , giving us

Pr(F |j ≥ α) ≥ 1
5 and Pr(j ≥ α) ≥ 1

2 .

8Our conditions are not strong enough to prevent this possibility. In fact, one can show that
imposing an additional condition (the set V ∪W lies above any plane (pi, qj , rk), k > i > j)
would reduce the potential region where we can place the points in V and W to zero.
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(Note that bαc = k−1
2 if k is odd.) Hence,

Pr(F ) ≥ 1

5
· 1
2

=
1

10
.

Putting everything together (again using Lemma 3.17) we have

Pr(i is special p-phase | Phi) ≥
2

9
· 1
2
· 1
5

=
1

45
. (3.20)

We commence with the discussion of subphases:

Definition 3.19 We call a u-subphase special if (i) it belongs to a special p-
phase, and (ii) the entire 1-dimensional subgame, i.e. Π1, lies below the plane
spanned by su, where su is the first `-stabbed simplex of the subphase.

Observation 3.20 A u-subphase j is special if it is part of a special p-phase
and succeeds a v-subphase.

Lemma 3.21 The probability that some subphase j of a special p-phase is a
special u-subphase (under the condition that it is entered) is at least 1

4 .

Proof Each subphase is equally likely a u- or a v-subphase. Since by the
observation above, a u-subphase is special if it was preceded by a v-subphase,
the result follows. (Note that the very first u-subphase of some special phase
is always special. But the lower bound holds in this case as well.)

Let us introduce some terminology. We denote the event that phase i is entered
by Phi, that i is special under the condition that it is entered by sPhi. sPh

(i)
j

(ssPh
(i)
j ) will denote that during phase i subphase j is entered (and special)

under the assumption that i is special. Analogously, ssPh
(i,j)
k is the event that

subsubphase k is entered while the game is in the special subphase j of the
special phase i.

Conditioned on the event of choosing a point in {p0, . . . , pi} ∪ {q0, . . . , qi} ∪
{r0, . . . , ri} for the first time, pi, qi and ri are equally likely chosen with
probability 1

3(i+1) . This implies that

Pr(Phase i is entered) = Pr( Phi)

=

{
1

i+1 for all i, 0 ≤ i < 4
√

m− 1

1 for i = 4
√

m− 1.
(3.21)
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Assume that we are currently in the special phase i. Conditioned on the event
of choosing the first point in {u0, . . . , uj} ∪ {v0, . . . , vj} ∪ {p0, . . . , pi−1} ∪
{q0, . . . , qi−1} ∪ {r0, . . . , ri−1}, uj and vj are equally likely chosen with
probability 1/(2(j + 1) + 3i). (Note that a replacement of rk by some wl

during the special phase keeps the set {u0, . . . , uj} ∪ {v0, . . . , vj} below the
plane spanned by the current simplex, cf. Figure 3.13.) This implies that

Pr
(

sPh
(i)
j

)

=
2

2(j + 1) + 3i
≥ 2

2(j + 1) + 3 4
√

m
. (3.22)

Analogously, being in the special subphase j of the special phase i, wk is cho-
sen with probability 1/((k +1)+2j+3i) as the first point in {w0, . . . , wk}∪
{u0, . . . , uj−1} ∪ {v0, . . . , vj−1} ∪ {p0, . . . , pi−1} ∪ {q0, . . . , qi−1}∪
{r0, . . . , ri−1}. We have

Pr
(

ssPh
(i,j)
k

)

=
1

(k + 1) + 2j + 3i

≥ 1

(k + 1) + 2
√

m + 3 4
√

m
. (3.23)

We also recall the Lemmas 3.18 and 3.21 that gave us a lower bound for the
probability that some phase i is a special p-phase under the condition that it is
entered and that some subphase j is a special u-subphase under the condition
that it is entered and belongs to a special i-phase.

A sibling of Lemma 3.17 is the following lemma, whose proof is very similar
and will, therefore, be omitted:

Lemma 3.22 For any events A, B, C,

E(A) = E(A |B) Pr(B) + E(A |Bc) Pr(Bc)

≥ E(A |B) Pr(B),

and

E(A |C) = E(A |C ∩B) Pr(B) + E(A |C ∩Bc) Pr(Bc)

≥ E(A |C ∩B) Pr(B).

We are now ready to find a lower bound estimate for the expected number of
pivots given that the starting `-stabbed simplex is {pm′′ , qm′′ , rm′′}, E(G).
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Recall that we chose m such that m = (2m̃)4 for some m̃ ∈ � , and that we
denoted the number of pivots during phase i by Zi.

E(G) =

4
√

m−2
∑

i=0

E(Zi) ≥
4
√

m−2
∑

i=0

E(Zi | sPhi) Pr(sPhi)

≥
4
√

m−2
∑

i=0

E(Zi | sPhi)

≥ 1
45

︷ ︸︸ ︷

Pr(i is special | Phi) Pr( Phi)

(3.21)
=

1

45

4
√

m−2
∑

i=0

E(Zi | sPhi)

i + 1
.

We bound the length of each special phase by the length of some of its (long)
subphases:

E(G) ≥ 1

45

4
√

m−2
∑

i=0

1

i + 1

√
m
∑

j=0

E
(

Y
(i)
j | ssPh

(i)
j

)

Pr
(

ssPh
(i)
j

)

≥ 1

45

4
√

m−2
∑

i=0

1

i + 1

√
m
∑

j=0

(

E
(

Y
(i)
j | ssPh

(i)
j

)

·

≥ 1
4

︷ ︸︸ ︷

Pr
(

j is special |sPh
(i)
j

)

Pr
(

sPh
(i)
j

)








(3.22)

≥ 1

180

4
√

m−2
∑

i=0

1

i + 1

√
m−1
∑

j=0




E
(

Y
(i)
j | ssPh

(i)
j

)

(j + 1) + 3
2

4
√

m



 .

The final step involves the splitting of the subphases into subsubphases. Their
length of just one step is known, so, we can do the adding-up:

E(G) ≥ 1

180

4
√

m−2
∑

i=0

1

i + 1

√
m−1
∑

j=0

(
1

(j + 1) + 3
2

4
√

m

·
m−1∑

k=0

E
(

X
(i,j)
k | ssPh

(i,j)
k

)

Pr
(

ssPh
(i,j)
k

)
)
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E(G)
(3.23,3.19)

≥ 1

180

4
√

m−2
∑

i=0

1

i + 1

√
m−1
∑

j=0

(
1

(j + 1) + 3
2

4
√

m

·
m−1∑

k=0

1

(k + 1) + 2
√

m + 3 4
√

m

)

≥ 1

180
H 4

√
m−1 · (H√

m+ 3
2

4
√

m −H 3
2

4
√

m)

· (Hm+2
√

m+3 4
√

m −H2
√

m+3 4
√

m).

Using Equation (3.8) (lnn < Hn < ln n + 1, for n > 1), this gives us

E(G) ≥ 1

180
ln
(

4
√

m− 1
)
·
(

ln

(√
m +

3

2
4
√

m

)

− ln

(
3

2
4
√

m

)

− 1

)

·
(
ln
(
m + 2

√
m + 3 4

√
m
)
− ln

(
2
√

m + 3 4
√

m
)
− 1
)

≥ 1

180
ln
(

4
√

m− 1
)
·
(

ln

(
2

3
4
√

m + 1

)

− 1

)

·
(

ln

(
1

2

√
m− 3

4
4
√

m +
17

8
+

75
8

4
√

m

2
√

m + 3 4
√

m

)

− 1

)

≥ 1

180
ln

(

4
√

m

(

1− 1
4
√

m

))

·
(

1

4
ln m + ln 2− ln 3− 1

)

·
(

ln

(√
m

(
1

2
− 3

4 4
√

m

))

− 1

)

≥ 1

5760
ln3 m + O(ln2 m).

Recalling that n = m + 2
√

m + 3 4
√

m we get our theorem:

Theorem 3.23 There exist instances of one line and n points in general posi-
tion in

� 3 such that the expected number G of pivot steps for the Fast Process
described as Algorithm 2.4 satisfies the following bound:

E(G) ≥ 1

5760
ln3 n + O(log2 n).



Chapter 4

Admissible Grid
Orientations

4.1 Notation and Terminology

Talking about oriented graphs is bound to be a technical affair. To clarify the
discussion, we therefore introduce several notions which will help us to iden-
tify and use properties of the graph.

Let G be an admissible grid orientation with L rows and R columns, w.l.o.g.
L ≥ R, say. We use capital letters to denote the nodes. Each node can
be further identified by its coordinates, that is a pair (u, v), 0 ≤ u < L,
0 ≤ v < R, where u is the number of the row and v is the number of the
column the node P = (u, v) belongs to.

Two nodes P, Q in the same row or column are connected by an edge. We
write P~Q to indicate that this edge is oriented from P to Q. We say that there
is a path (of length k − 1) from P to Q, (P → Q), if there is a sequence of k
vertices P = P1, P2, . . . , Pk = Q, such that Pi~Pi+1 for all i = 1, . . . , k− 1.
The length of the shortest path between P and Q is called the distance of P
and Q, denoted by |P → Q|. Note that not all pairs of points are actually
linked by a path.

67
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We define the set

reach(P ) = {Q | P → Q}

which comprises all nodes Q that are accessible from P by some path. To
indicate that some node Q 6∈ reach(P ), we write P 6→ Q. Note that there
might be nodes P, Q such that P 6→ Q and Q 6→ P . Clearly, P~Q =⇒
P → Q and, for P and Q in the same row or column, P → Q =⇒ P~Q.

Furthermore, let 〈P, Q〉 denote the smallest subgrid spanned by P and Q. (So,
with P = (u, v) and Q = (r, s), 〈P, Q〉 consists of the nodes (u, v), (u, s),
(r, v) and (r, s), and their connecting edges.) Analogously, let 〈P, Q, R〉 de-
note the smallest subgrid spanned by P , Q and R.

The remaining terminology we need for Section 4.3 exclusively.

For each node P = (u, v) we define the set of rows

R-below(P ) := {u′ | (u, v)~ (u′, v)}.

Analogously, we define the set

C-below(P ) := {v′ | (u, v)~ (u, v′)},

comprising of all columns accessible directly from the node P . Finally, we
call a node Q below P , if there is an edge from P taking us into the same row
or in the same column as Q. We define the set below(P ) accordingly:

below(P ) := {(u′, v′) | (u′ ∈ R-below(P )) ∨ (v′ ∈ C-below(P ))}.

Note that a node below P is not necessarily in the reach of P !

By this definition, each node Q ∈ below(P ) has a row in R-below(P ) or
a column in C-below(P ), possibly both. Accordingly, we call Q’s row or
column witness for being below P .

P Q

S

Figure 4.1: P, Q ∈ below(S): with P = (u, v) and Q = (r, s), we have
u ∈ R-below(S) and s ∈ C-below(S), respectively. u is P ’s witness, s is Q’s
witness for being below S.
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4.2 The Path Condition

Lemma 4.1 Given some grid orientation G of size L×R, there are L+R−2
vertex-disjoint paths from source to sink if no subgrid is isomorphic to the
‘forbidden subgrid’ depicted in Figure 2.5(b).

Proof Let P be the source and Q be the sink of the oriented graph G. If P
and Q share the same column then, just by the unique sink property, there are
R + L − 2 vertex-disjoint paths from P to Q: R − 1 along the column of P
and Q, and exactly one path along each of the L− 1 remaining columns, see
Figure 4.2(a). Of course, the same is true if P and Q lie in the same row.

So, suppose that P and Q do not share the same row or column of G and there
are less than L + R− 2 vertex-disjoint paths from source P to sink Q.

Then P and Q span a 2× 2-grid PP ′QQ′. As we assumed that the path con-
dition is not fulfilled, there must be vertices A and B such that P~A and B~Q
but B~A, cf. Figure 4.2(b). W.l.o.g. we may assume that A (B, respectively)
shares the row with P and P ′ (Q and Q′, respectively). The unique sink prop-
erty forces A~P ′ and Q′~B, hence the presence of the forbidden subgraph.

P

Q

. . .

...

(a)

. . .

P

Q

. . .

...

(b)

. . .

A

B
. . .

...

P ′

Q′

Figure 4.2: In a unique sink grid orientation, the path condition is equivalent
to the nonexistence of the forbidden subgrid.

Theorem 4.2 A grid orientation satisfying the unique sink condition is acyclic
whenever it satisfies the path condition.

The proof of the theorem is easy once we have established the Claims 1–3:

Claim 1 A unique sink grid orientation cannot contain a cycle as in Fig-
ure 4.3 below.
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P1

P5

A

B

C

P2

P3P4

P6

Figure 4.3: No unique sink grid orientation contains this cycle.

Proof Claim 1 To have a unique sink in the face A, P4, P5, we need the edge
P4~A. But this leaves no way to orient the edge connecting A with P2. Either
the unique sink property is violated in face A, P1, P2 or in A, P2, P3, P4.

Claim 2 A unique sink grid orientation cannot contain a cycle as in Fig-
ure 4.4 below.

P1

P5

A

B

C

P2

P3P4

P6

Figure 4.4: No unique sink grid orientation contains this cycle.

Proof Claim 2 This one is a little bit trickier.

Suppose P5~C. By the unique sink property of the various suborientations,
this implies P3~C, P2~C, P6~C, which means that C is, in this case, the
unique sink. Assuming P3~B gives a contradiction as it implies P1~B leaving
no choice for B~P6. (Either there would be no sink on the face P1, P6, B or
two sinks on C, B, P3, P6.) So, we must have B~P3, leading to B~P4, B~P6

and B~P1; see Figure 4.5 for the current state of affairs.

We still have all options for the edges incident to A. But P1~A implies P5~A,
hence P4~A and P2~A, a contradiction to having the unique sink at C already.
So, we must have A~P1. This, in turn, implies P4~A. No matter how we
now orient the edge connecting A and P2, we will always get a subgraph not
satisfying the unique sink property.
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P1

P5

A

B

C

P2

P3P4

P6

Figure 4.5: Assuming P5~C.

So P5~C leads to a contradiction.

Therefore, suppose C~P5. Then, we must have C~P6, C~P2 and C~P3.
Since B~P3 makes it impossible to orient the edge between B and P6, we
may assume P3~B. Therefore, P1~B, P6~B and P4~B, leading us to an ori-
entation as in Figure 4.6: C is the source, B the unique sink.

P1

P5
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B

C

P2

P3P4

P6

Figure 4.6: Assuming C~P5.

Now, P5~A will lead to P4~A, P2~A and P1~A, making A another sink which
is impossible. Hence, we must have A~P5. But this would imply P2~A, leav-
ing no way to orient the edge connecting A with P1 without causing a violation
of the unique sink condition – giving us the contradiction which establishes
the claim.

Claim 3 Given a grid orientation satisfying the unique sink property1 as well
as the path condition. For any pair of vertices P , Q, connected by some path
P → Q, we have |P → Q| ≤ 3.

Proof Claim 3 Suppose we have found two vertices P and Q with |P → Q| ≥
4, we may assume |P → Q| = 4. As we could replace two consecutive edges

1By Lemma 2.13, such an orientation has also a unique source.
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along the same row/column by one edge, the shortest path will be zig-zagging
and of the form as in Figure 4.7 below; there we only consider the 3 × 3-
subgraph spanned by this path. Denote this subgraph by GPQ. Note that by
Claims 1 and 2 there cannot be a path Q→ P in GPQ. (Of course, these two
claims do not cover all possible options. But the others are easily observed.)

P

Q

Figure 4.7: A shortest connecting path P → Q of length 4.

Neither P nor Q can be the source or the sink of GPQ as otherwise we would
either have a shorter path P → Q or some path Q→ P , something we have
already ruled out.

So, for the 3×3 subgraph induced by P and Q we have essentially two options,
as drawn in Figure 4.8 below. We see that A has to be either the unique sink
or the unique source.

P

Q

A

B

C

P2

P3P4

D

P

Q

A

B

C

P2

P3P4

D

Figure 4.8: A shortest connecting path P → Q of length 4.

Case 1: A is unique source. C~Q would imply P2~C leading to a path of
length 3 connecting P and Q, in contradiction to our assumption. So, we
have Q~C , which implies P3~C and hence P2~C, nonetheless. But now we
have a violation of the path condition, as it creates the forbidden subgraph of
Figure 2.5(b).

Case 2: A is unique sink. P~B would imply B~P4 leading again to a path
of length 3, this time connecting P and Q, in contradiction to our assumption.
But B~P implies B~P3 and B~P4, creating the forbidden subgraph of Fig-
ure 2.5(b), thus, violating the path condition.



4.2. The Path Condition 73

Proof Theorem 4.2 Claim 3 above tells us that the maximal length of the
shortest cycle is 4 as there is an obvious path from each point to any other
point on the same cycle. So, this cycle must form a 2× 2-subgrid, which is a
contradiction.

Claim 3 established the fact, that the maximal length of the shortest path be-
tween two vertices P, Q in an admissible grid orientation is at most 3. For the
proof, the validity of the path condition was crucial. In fact, dropping the path
condition, we may construct a unique sink orientation of size L × R with a
shortest path as long as 2(m− 1), m := min{L + R}, see Figure 4.9.

P

Q

p1

p2

p3

p4

q2 q1q3q4

Figure 4.9: A shortest connecting path P → Q of length 6 in a 4× 4-grid.

In general, the grid orientation is defined as follows. Given the rows
{p1, . . . , pL} and columns {q1, . . . , qR} which define the vertices (pi, qj),
1 ≤ i ≤ L, 1 ≤ j ≤ R, we have the edges

(pi, qj1)~ (pi, qj2), for all 1 ≤ i ≤ m, 1 ≤ j1 < j2 ≤ m
(horizontal edges)

(pi, qi+1)~ (pi+1, qi+1), for all i, 1 ≤ i ≤ m− 1
(vertical edges on the path)

(pi1 , qj)~ (pi2 , qj), for all 1 ≤ j ≤ m, 1 ≤ i2 < i1 ≤ m,
whenever i1 6= i2 + 1 or j 6= i1.

(remaining vertical edges)

It is not hard to see that this defines a unique sink orientation.
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We claim that the shortest path from P = (p1, q1) to Q = (pm, qm) has length
2(m − 1). Observe that only m − 1 column-edges lead from some row pi to
row pj with i < j. In fact, in all m−1 cases, we have j = i+1. Furthermore,
no two of them lie in the same column. So, in order to get from P (in row p1)
to Q (in row pm) we need to make use of all of them plus the m−1 row-edges
(pi, qi)~(pi, qi) that take us from the end of one possible column edge to the
starting point of the next. Hence, |P → Q| = 2(m− 1), as claimed.

Observe, that for the acyclic case this is best possible: For a shortest path we
may use only one edge from each row or column.

4.3 A Random Walk on Admissible Grid Orien-
tations

Our successful analysis of RANDOM EDGE on (d, d + 2)-polytopes in Chap-
ter 3 relied on the ability to model its behaviour as a random process on a
planar configuration of one line and n points.

In this section we will see that one can analyse RANDOM EDGE directly, that
is, as a Random Walk on an admissible grid orientation.

With the terminology introduced at the end of Section 4.1, we define this ran-
dom walk formally as Algorithm 4.3.

Algorithm 4.3 RANDOM WALK

on an admissible grid orientation G

1 P ← arbitrary node of G;
2 N ← {Q | P~Q};
3 whileN 6= ∅
4 do
5 P ←random N ;
6 N ← {Q | P~Q};
7 return P.

We will prove the following theorem:

Theorem 4.4 Starting at an arbitrary node of an L× R admissible grid ori-
entation, the expected number of steps needed to reach the sink by means of a
random walk on the graph is at most

O((log n)(1 + log m)) = O(log2 n),

where n = L + R and m = min{L, R}.
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Note the similarity to Theorem 3.2. In the light of Observation 2.11 this is
no coincidence. In fact, the analysis of Algorithm 4.3 can be based on the
Analysis of the Fast Process in Section 3.2. The challenge lies in extracting
and translating the decisive geometric properties there into properties of an ad-
missible graph orientation here. Most interestingly, the analysis will depend
crucially on the validity of the path condition. Practical experiments suggest
that the upper bound of Theorem 4.4 holds for any unique sink orientations
(not necessarily fulfilling the path condition). From our discussion below it
becomes clear that in order to prove this conjecture an entirely different ap-
proach would be needed.

4.3.1 The Refined Index

There are L− 1 row-edges and R− 1 column-edges incident to each node P .
We say that P has refined index [r, s] (index (P ) = [r, s]) if P has r outgoing
row-edges and s outgoing column-edges.

Lemma 4.5 Given some unique sink grid orientation G of size L × R, the
function

index : G→ {[r, s] | 0 ≤ r < L, 0 ≤ s < R}

is a bijection between the coordinates of the vertices and their indices.

Proof We have to show that for each refined index there is exactly one node
carrying it. Suppose otherwise. Then there are two nodes P = (p1, p2) and
Q = (q1, q2), both with refined index [r, s]. Clearly, P and Q are neither
lying in the same row nor in the same column, i.e. pi 6= qi, i = 1, 2. As
〈P, Q〉 must be a unique sink orientation we may assume, w.l.o.g., P~ (q1, p2)
and (p1, q2)~Q, cf. Figure 4.10(a). As both P and Q have the same number
of outgoing column-edges, there must be some row r, say, that is only reach-
able from Q but not from P , i.e. Q~(r, q2) and (r, p2)~P . But this implies
(r, p2)~(q1, p2), and the edges in the rows p1, q1 and r that link the columns
p2 and q2 must all have the same orientation, cf. Figure 4.10(a).

Case 1: (x, q2)~ (x, p2) for x = p1, q1, r.
As P and Q have the same column index, there must be a column c, say,
such that P~(p1, c) and (q1, c)~Q. Figure 4.10(b) demonstrates the situation.
Observe, that this results in a cycle isomorphic to the one in Figure 4.4. With
Claim 2 in Section 4.2 we have proven that this is in contradiction to the
unique sink property.
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Figure 4.10: Suppose, there are nodes P and Q with equal refined index.

Case 2: (x, p2)~ (x, q2) for x = p1, q1, r.
Again, there must be a column c, this time such that there are edges (p1, c)~P
and Q~(q1, c). Two edge orientations follow due to the unique sink property:
(p1, c)~(q1, c), (p1, c)~ (p1, q2), cf. Figure 4.10(c). Now, (q1, c)~(r, c) leads
to a contradiction as we cannot orient the edge connecting (r, c) and (r, p2) to
our satisfaction. Either 〈(q1, p2), (r, c)〉 or 〈P, (r, c)〉 will not have a unique
sink. But setting (r, c)~ (q1, c) would imply (r, q2)~ (r, c), making it impossi-
ble to orient the edge connecting (r, c) and (p1, c) without violating the unique
sink condition either in 〈P, (r, c)〉 or in 〈(p1, q2), (r, c)〉.

Note that the refined index determines the h-vector (cf. Lemma 2.13): hk is
the number of nodes with exactly k incoming (i.e. L + R − 2 − k outgoing)
edges.

A corollary of Lemma 4.5 is, therefore, that the h-vector of unique sink orien-
tations on grid graphs of size L×R is a function of L and R only.

4.3.2 Basic Properties

Lemma 4.6 For any two nodes P = (p1, p2), Q = (q1, q2) in a unique sink
grid orientation G, we observe:

(i) q1 ∈ (R-below(P ) ∪ {p1}) ∧ q2 ∈ (C-below(P ) ∪ {p2}) =⇒
Q ∈ reach(P ),

(ii) If G is acyclic then Q ∈ reach(P ) =⇒ Q ∈ below(P )

(iii) Q 6∈ below(P ) =⇒ P ∈ reach(Q).
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Proof All three are easy. Here is the proof for (ii): suppose, Q 6∈ below(P ),
that is, q1 6∈ R-below(P ) and q2 6∈ C-below(P ). Then P is the sink of 〈P, Q〉.
Hence, from any node in 〈P, Q〉, there is a path to P , in particular, Q→ P .
This implies Q 6∈ reach(P ) by acyclicity.

Lemma 4.7 Given nodes P = (p1, p2) and Q = (q1, q2) with indices
index (P ) = [r, s], index (Q) = [x, y] where r ≥ x, s ≥ y. Then Q 6→ P .

Proof Suppose q1 ∈ (R-below(P ) ∪ {p1}) and q2 ∈ (C-below(P ) ∪ {p2}).
By Lemma 4.6(i), then P → Q and the claim holds thanks to acyclicity.

Therefore, we may assume that P and Q neither share the same row nor the
same column and that, w.l.o.g., q2 6∈ C-below(P ), i.e. (p1, q2)~P .

We distinguish between two cases:

Case 1: p2 6∈ C-below(Q), cf. Figure 4.11(a) with the thick edges determined.
Either P → Q and the claim holds. Or we have edges (q1, p2)~P and
Q~(p1, q2). Since P has at least as many outgoing edges to other rows as Q,
there is a row r1 with P~(r1, p2) and (r1, q2)~Q. In this row, (r1, q2)~ (r1, p2)
by the unique sink property in the subgrid 〈P, (r1, q2)〉. But no matter how we
now orient the edge between the nodes (r1, p2) and (q1, p2), the unique sink
property is always violated.

Case 2: p2 ∈ C-below(Q), cf. Figure 4.11(b), the thick edges being given.
Since P has at least as many outgoing edges to other columns as Q, there must
be a column c that is in C-below(P ) \ C-below(Q) i.e. we have some c with
P~ (p1, c) and (q1, c)~Q. Either P → Q and the claim holds, or (q1, c)~(p1, c).
By the unique sink property we have (q1, p2)~P , (p1, q2)~ (p1, c), Q~(p1, q2).
That is, p1 ∈ R-below(Q) and q1 6∈ R-below(P ). P has at least as many out-
going edges to other rows as Q, there must be (as in case 1) a row r2 that is in
R-below(P )\R-below(Q). But then the 3×3-subgrid 〈P, Q, (r2, c)〉 contains
two nodes with refined index [1, 1], namely P and Q. Thus, by Lemma 4.5, a
contradiction.

Lemma 4.8 Given nodes P = (p1, p2) and Q = (q1, q2) with Q 6→ P . Then
C-below(Q) ⊂ C-below(P ) or R-below(Q) ⊂ R-below(P ).

Proof We may assume that P and Q share neither a row nor a column,
for otherwise Q 6→ P implies P → Q and the lemma clearly holds. Suppose
there is a node R = (r1, r2) with r1 ∈ R-below(Q) \ R-below(P ) and r2 ∈
C-below(Q) \ C-below(P ). Q 6→ P implies that we have (p1, r2)~ (q1, r2)
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Figure 4.11: Consider nodes P, index (P ) = [r, s] and Q, index (Q) = [x, y]
with r ≥ x, s ≥ y. Q→ P leads to a contradiction.

and (r1, p2)~ (r1, q2). Since by Lemma 4.6(i) there is a path from Q to R,
Q 6→ P further implies that there is no path from R to P . Thus, we have
(p1, r2)~ (r1, r2) and (r1, p2)~ (r1, r2). The resulting configuration is depicted
in Figure 4.12. Clearly, 〈P, R〉 does not have a unique sink.

P

Q

r1

p2 q2

q1

p1

r2

R

Figure 4.12: Q 6→ P implies C-below(Q) ⊂ C-below(P ) or
R-below(Q) ⊂ R-below(P ).

Corollary 4.9 Given nodes P = (p1, p2) and Q = (q1, q2) with Q 6→ P and
p1 ∈ R-below(Q) (p2 ∈ C-below(Q), respectively). Then C-below(Q) ⊂
C-below(P ) (R-below(Q) ⊂ R-below(P ), respectively).

Lemma 4.10 Given some grid orientation consisting of a single row or col-
umn with k nodes. Then a random walk (as defined in Algorithm 4.3) starting
at an arbitrary node takes at most log2 k steps.
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Such a grid orientation is the complete graph with k nodes. We have studied
this (trivial) case extensively in Section 3.1. So, there is nothing (left) to prove.

4.3.3 The Analysis

We follow closely the analysis of the Fast Process in Section 3.2, dividing the
random walk into phases and estimate their number and their respective dura-
tion. Whenever possible, we will also use the same notation as in Section 3.2.

In fact, some of the terminology we have introduced was motivated by the
need to describe the (geometric) properties of the planar configuration of one
line and n points as the combinatorial properties of an admissible grid orien-
tation.

Recall Observation 2.11: each `-edge corresponds to a vertex in the graph,
there is an edge from one to another vertex if one can pivot directly from one
to the other of the corresponding `-edges. So, the rows of the grid can be iden-
tified with the points left of `, the columns with the points on the right hand
side of `. In this light, the notions of R-below(P ) and C-below(P ) suddenly
make sense: these denote those rows and columns that correspond to points
lying below the `-edge that is represented by the node P .

As before, we assume that G is an admissible grid orientation of size L× R,
L + R = n; assume further, w.l.o.g., that L ≥ R.

For 0 < i ≤ blog2 Rc, let λi = (l
(i)
1 , l

(i)
2 ) denote the unique node with refined

index [2i−1, 2i−1], λ0 is the sink [0, 0]. λblog2 Rc+1 is the source [L−1, R−1].
(So, if R = L and equals a power of 2 then λblog2 Rc+1 = λblog2 Rc.) We
say that a node P belongs to phase i of the random walk if λi+1 → P and
λj 6→ P , for all j ≤ i or if λi = P . We define the random variable Xi, i =
0, ..., blog2 Rc, as the number of nodes visited during phase i. As λ0 is the sink
of the graph, completion of phase 0 entails completion of the whole random
walk. Hence, Z =

∑blog2 Rc
i=0 Xi is the random variable whose expectation we

want to analyse.

We will show that E(Xi) = O(log n) for all i and, hence,

E(Z) = O((log n)(1 + log R)) = O(log2 n).

Analysis of a Single Phase Fix some i, 0 ≤ i ≤ blog2 Rc, set k = 2i−1.
We have node λi+1 or some node in reach(λi+1) \ reach(λi) and the phase
starts. The phase ends whenever we reach the node λi or some node which is
in the reach of λj , j ≤ i.
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Recalling Lemma 4.6 we see that for any node P = (p1, p2) in phase i we
have (p1, p2) ∈ below(λi+1) while p1 6∈ R-below(λi) or p2 6∈ C-below(λi).
(For otherwise it would already belong to a lower phase.)

We further split phase i into strokes. A stroke starts after we have sampled a
node with a new witness for being below λi or λi+1, or at the beginning of a
new phase. The start of a new stroke also terminates the previous one.

In other words, a new stroke starts whenever we have moved along a row
to a column in C-below(λi) ∪ C-below(λi+1) or along a column to a row in
R-below(λi) ∪ R-below(λi+1) (or at the beginning of a phase).

If N is the number of strokes, then we can write X := Xi as

X = Y1 + Y2 + · · ·+ YN

where Yj is the number of nodes visited during the jth stroke. Note that N
itself is again a random variable. (For j > N we set Yj = 0.)

We will show that

(i) E(Yj |j ≤ N) = O(log n) for all j, and

(ii) E(N) = O(1).

It follows that E(X) = O(log n):

E(X) =

∞∑

j=1

O(log n)
︷ ︸︸ ︷

E(Yj |j ≤ N) Pr(j ≤ N)

= O(log n)

∞∑

j=1

Pr(j ≤ N)

= O(log n) E(N) . (4.1)

The nodes starting a new stroke can be grouped into different ‘categories’, de-
pending on the associated witness. We will see that with a certain probability
we move to a new category and come closer to our goal: to escape the current
phase.

We argue as follows: At any point of phase i, the following four claims hold:

Claim 1 The expected number of nodes visited until we reach either a new2

row in R-below(λi+1) or a new column in C-below(λi+1) is at most log2 n.

2We use ‘new’ as ‘new with respect to the current node’. With each pivot we either enter a
new row or a new column — while either staying in the current column or in the current row.
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Proof The current node P = (p1, p2) is in reach(λi+1). By Lemma 4.6 we
have p1 ∈ R-below(λi+1) or p2 ∈ C-below(λi+1). All nodes reachable from
P must also be in reach(λi+1). W.l.o.g. assume, that we pivot to a point Q in
the same row as P , Q = (p1, q2). Then either q2 ∈ C-below(λi+1) and we are
done. Or we will reach a node with the desired property as soon as we have
left the current row p1.

How long can we stay in p1? If we have reached its local sink we have no al-
ternative to choosing one of the outgoing column-edges. So the situation is al-
most like in the analysis of the graph with dimension (1×n), see Lemma 4.10.
In fact, there are two differences which can only improve our expectations: We
terminate not only in the local sink but also when we reach a column which
is in C-below(λi+1). Furthermore, in each step we choose out of all outgoing
edges one at random, including the ones which take us away from the current
row. Hence, the expected number of visited nodes is at most log n.

Since any node sampled that has a new witness for being in below(λi) starts
a new stroke, this also establishes (i) from above: the expected number of
iterations during a stroke is O(log n).

Claim 2 Conditioned on the event that we sample a node in

below(λi+1) ∪ below(λi) ,
the node will have a witness for being in

below(λi)
with probability at least 1

5 .

Proof Suppose we are currently at node P = (p1, p2) in phase i. We have
λi 6→ P . By Lemma 4.8 and w.l.o.g, C-below(λi) ⊂ C-below(P ). There-
fore, exactly k = 2i−1 columns of those belonging to C-below(P ) are also
in C-below(λi). On the other hand, the sets R-below(P ) ∩ (R-below(λi+1) ∪
R-below(λi)) and C-below(P ) ∩ (C-below(λi+1) ∪ C-below(λi)) have com-
bined at most 5k elements. Again, this holds by Lemma 4.8: since λi 6→ λi+1

by Lemma 4.7, we have R-below(λi) ⊂ R-below(λi+1) or C-below(λi) ⊂
C-below(λi+1). In addition, recall that |R-below(λi+1)| = |C-below(λi+1)| =
2k and |C-below(λi)| = |R-below(λi)| = k.

Claims 1 and 2 combined assure that we reach a node below λi within an
expected number of at most 10 log2 n steps.

So what happens after we see such a node Q ∈ below(λi)?
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Two cases have to be distinguished, depending on whether Q’s witness for
being below λi is also a witness for being below λi+1 or not. First, we deal
with the latter case:

Claim 3 If Q = (q1, q2) is the current node and

either q1 ∈ R-below(λi) \ R-below(λi+1), q2 ∈ C-below(λi+1)
or q2 ∈ C-below(λi) \ C-below(λi+1), q1 ∈ R-below(λi+1),

then the next node sampled which terminates the stroke will have a witness for
being in

below(λi+1) ∩ below(λi)

with probability at least 1
5 .

Proof Assume q1 ∈ R-below(λi) \ R-below(λi+1); the other case can be
discussed analogously. Since λi 6→ Q we have C-below(λi) ⊂ C-below(Q)
(by Corollary 4.9).

Furthermore, we must have C-below(Q) ⊂ C-below(λi+1). For, suppose oth-

erwise. Then there is a column c such that Q~ (q1, c) and (l
(i+1)
1 , c)~λi+1,

implying the thick arrows in Figure 4.13.

Now λi+1 → Q implies Q 6→ λi+1 and we must have (l
(i+1)
1 , c)~ (q1, c).

By the unique sink orientation in various subgrids, this further implies
(l

(i+1)
1 , c)~(l

(i+1)
1 , q2), (l

(i+1)
1 , q2)~Q and (q1, l

(i+1)
2 )~λi+1 gives a contradic-

tion to the unique sink property in the subgrid 〈λi+1, (q1, c)〉, see Figure 4.13.

Q

λi+1

q2l
(i+1)
2

l
(i+1)
1

q1

c

Figure 4.13: C-below(Q) ⊂ C-below(λi+1).

So, we have shown that C-below(λi) ⊂ C-below(Q) ⊂ C-below(λi+1).

When we sample the first node of a new stroke the current node must still be
of the form (x, q2) with x ∈ R-below(λi) \ R-below(λi+1). (Recall that we
are in reach(λi+1). Staying in a row which is not in R-below(λi+1) we can
only pivot towards columns in C-below(λi+1).)

Hence all columns in C-below(λi) are at our disposal. The claim follows.
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Claim 4 If Q = (q1, q2) is the current node and

either q1 ∈ R-below(λi) ∩ R-below(λi+1),
or q2 ∈ C-below(λi) ∩ C-below(λi+1),

then the next node sampled which terminates the stroke will have a new witness
for being in

below(λi)

(that is, finish the phase) with probability at least 1
5 .

Proof W.l.o.g. assume q1 ∈ R-below(λi)∩R-below(λi+1). So, in particular,
q1 ∈ R-below(λi) and R-below(λi) 6⊂ R-below(Q). Since λi 6→ Q we may
deduce C-below(λi) ⊂ C-below(Q) by Lemma 4.8.

Suppose, there is some row r such that Q~ (r, q2) with r 6∈ R-below(λi) ∪
R-below(λi+1). Since Q belongs to phase i there is neither a path from λi to
Q nor from Q to λi+1, and we must have the situation as drawn in Figure 4.14.

Consider the subgrid
〈

Q, (r, l
(i)
2 ), (r, l

(i+1)
2 )

〉

: it is isomorphic to the forbid-

den subgraph from Figure 2.5(b) – a violation of Property 3 on page 25.3

Hence, we may deduce that R-below(Q) ∈ R-below(λi) ∪ R-below(λi+1).

Q

λi

r

q2l
(i)
2

l
(i)
1

q1

l
(i+1)
2

λi+1

l
(i+1)
1

Figure 4.14: R-below(Q) \ (R-below(λi) ∪ R-below(λi+1)) = ∅

So, the first time we reach a new node that has a new witness for being
below(λi+1) or below(λi) the preceding node must still have been in row q1.

3Note that this is the only time where this property is used in the entire analysis!
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Since C-below(λi) ⊂ C-below(Q) this implies that out of at most 5k choices
of nodes that terminate the stroke we have at least k good ones that actually
terminate the phase.

Claim 4 entails that once we have chosen a node with one witness for being
below λi and λi+1, then – with probability at least 1

5 – the next node that has
(another) witness for being below λi or λi+1 will terminate the phase.

This completes the argument as the remaining part is identical to the final
part of the analysis of the Fast Process in Section 3.2 — apart from only
slight differences that are irrelevant for the analysis: whenever we speak of
sampling a new point there, we are referring to choosing the next node here.
Furthermore, the nodes are classified depending on whether the new witness
for being below λi or below λi+1 lies in

Class 0: R-below(λi+1) \ R-below(λi) or C-below(λi+1) \ C-below(λi),
Class 1: R-below(λi) \ R-below(λi+1) or C-below(λi) \ C-below(λi+1),
Class 2: R-below(λi) ∩ R-below(λi+1) or C-below(λi) ∩ C-below(λi+1).

Hence, we have shown that the expected number of pivots in a single phase is
bounded by 310 log2 n, and the theorem follows. Theorem 4.4

4.4 Pseudo Realizability of Admissible Grid Ori-
entations

A uniform pseudoconfiguration of points of rank 3 is a pair (A, S) where S
is a planar point set of size n, and A is an arrangement of

(
n
2

)
pseudolines

λss′ through all pairs of points s, s′ ∈ S. Uniform means that no three points
in S lie on the same pseudoline. Let ` be a vertical line which is disjoint
from S and from all intersections of pseudolines. We refer to such a planar
pseudoconfiguration as the configuration (A, S, `).

Obviously, this is a generalization4 of the scenario One line and n points which
was discussed in Section 2.2. We will, therefore, reuse the notation introduced
there. Each configuration (A, S, `) still induces an admissible grid orientation,
cf. Figure 4.15. (Recall Observation 2.11 and Section 2.5.) The orientation is
determined by the relative order of pseudolines λpq along the vertical line `.

We call an admissible grid orientation pseudo realizable whenever it is in-
duced by some configuration (A, S, `).

4Section 4.5 is dedicated to the proof, that it is a proper generalization.



4.4. Pseudo Realizability of Admissible Grid Orientations 85

p2

p3

q1

q2

p1

p1

p2

p3

q1 q2`

Figure 4.15: One line and a pseudoconfiguration of n points induces an ad-
missible grid orientation.

Theorem 4.11 Every admissible grid orientation is pseudo realizable, i.e. in-
duced by a line `, n points, and pseudolines through the pairs of points whose
relative orders along ` determine the orientation.

The proof of this theorem needs some preparation. We will not construct
a configuration (A, S, `) directly; rather, we define so-called hyperline se-
quences, from which we can deduce the existence of suitable S, A and ` by
using a connection between hyperline sequences and oriented matroids via
abstract determinant functions.

Hyperline sequences Let S be a set of n distinct points in general position,
indexed by En = {1, . . . , n}. Adding to En the new elements {ī|i ∈ En},
we get the signed index set Ēn (with ¯̄s = s, ∀s ∈ Ēn). conv S shall denote
the convex hull of S.

Rotating an oriented line in counterclockwise order around si, i ∈ En, and
looking at the successive positions where it coincides with lines defined by
pairs of points (si, sj) defines the hyperline sequence πi over Ēn, cf. [BMS01].
If a point sj is encountered by the rotating line in positive direction from si,
it will be recorded as a positive index j, otherwise as a negative index j̄. The
whole sequence is recorded in the order induced by the rotating line, and an
arbitrary half-period is chosen to represent it, cf.Figure 4.16 for a simple ex-
ample.

Note that the hyperline sequence of a point which belongs to the convex hull
of the point configuration has a half-period consisting only of positive indices.
In other words, it is represented by some permutation of the other points.
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Similarly, we can define for any additional point s′ the hyperline sequence of
s′ with respect to S. If s′ is outside conv S, and not on any of the lines defined
by two points of S, this sequence is represented by a permutation σ ∈ Sn.

s1

s2

s3

s4

s5

Figure 4.16: π1 = 2345.

The rule to create a set of hyperline sequences for a point set can be carried
over to pseudoconfiguration of points: The hyperline sequence πi for a point
si, i ∈ En describes the order in which we encounter the pseudolines passing
through si and some other point sj in counterclockwise order around si.

Abstract determinant functions Given an abstract set of hyperline se-
quences (not necessarily coming from a point configuration with pseudolines),
we want to deduce orientations for triples α, β, γ. For this, we define χ :
(
En

3

)
→ {−1, 1} (partially) by setting χ(α, β, γ) := 1 if β and γ occur in this

order in πα, and χ(α, β, γ) := −1 if β and γ occur in reverse order in πα. We
can write this as

χ(α, β, γ) :=

{
1, if α : ..β..γ..,
−1, if α : ..γ..β...

We also define χ(α, γ, β) = −χ(α, β, γ). obtaining values χ(α, β, γ) for all
distinct α, β, γ ∈ En. We call χ consistent if χ(α, β, γ) = χ(σ(α)σ(β)σ(γ))
exactly for the even permutations σ ∈ S3. In this case, we call χ an abstract
determinant function [BMS01], and we say that the hyperline sequence admits
an abstract determinant function.

Proof Theorem 4.11 It has been shown in [BMS01] that an abstract deter-
minant function fulfills the axioms of a rank-3-chirotope. Oriented matroid
theory [BLW+93] then guarantees that this chirotope has a representation as
a pseudoconfiguration of points which is consistent with the chirotope infor-
mation (and hence with the hyperline sequence). This is, that there are points
S = {sα, sβ , sγ , . . . } and oriented pseudolinesA through pairs of points such
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that χ(α, β, γ) is positive (negative) if and only if sγ is to the left (to the right)
of the pseudoline through sα and sβ.

The challenge lies in defining an abstract determinant function for a given grid
orientation G.

To simplify notation, we will assume that the grid graph has L rows, associated
with indices L = {i, j, k, . . .}, and R columns, indexed with capital letters
R = {I, J, K, . . .}. We use Greek letters α, β, γ, . . . for any other indices.
Thus, nodes correspond to pairs (i, I), and we write v → w to indicate the
fact that there is a directed edge from node v to node w.

We shall construct point sets SL = {pi, pj , pk, ..} and SR = {qI , qJ , qK , ..}
(SL ∪ SR = S of sizes L and R (L + R = n), respectively, separated by a
vertical line `. Along with this we will have an arrangementA of

(
n
2

)
oriented

pseudolines λss′ through all pairs of points s, s′ ∈ S.

But first, we derive a set of hyperline sequences. Those will then define an
abstract determinant function whose values on ‘mixed’ triples are consistent
with G, meaning that

(i, I)→ (i, J) ⇐⇒ χ(i, J, I) > 0

⇐⇒ qJ is to the right of λpi,qI
, (4.2)

(i, I)→ (j, I) ⇐⇒ χ(I, i, j) > 0

⇐⇒ pj is to the right of λpi,qI
. (4.3)

This gives us the desired relation between the original grid orientation and the
pair (S,A) constructed from the chirotope χ on S.

The requirements (4.2) and (4.3) already determine the order in which the
indices ofR must appear in the sequences πi, i ∈ L (and vice versa).

Namely, for every index i ∈ L, the graph gives us an ordering I1, . . . , It ofR
such that

(i, I1)→ (i, I2)→ · · · → (i, IR).

Restricted to R, the sequence πi must then be representable by the following
half-period:

i : IRIR−1 . . . I1.

Similarly, for an index I ∈ R such that

(i1, I)→ (i2, I)→ · · · → (iL, I),
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we obtain the restriction

I : i1i2 . . . iL.

It remains to insert the residual indices into the sequences in a consistent way.
We describe how to do this for sequences πi, i ∈ L; the other case is symmet-
ric.

Lemma 4.12 Assume that i : IRIR−1 . . . I1 is the partial list for i, and for
some j ∈ L, j 6= i we have (i, IR) → (j, IR). Then there is a unique index
τij ∈ {1, . . . , R} such that

(i, It)→ (j, It), t ≥ τij ,

(i, It)← (j, It), t < τij .

Similarly, if (i, IR)← (j, IR),
there is a unique index τij ∈ {1, . . . , R} such that

(i, It)← (j, It), t ≥ τij ,

(i, It)→ (j, It), t < τij .

The lemma easily follows from the fact that no forbidden subgrid (as described
in Figure 2.5(b)) exists and all 2× 2 subgrids have unique sinks. This implies
that the orientation of the edge connecting (i, It) and (j, It) can change at
most once as we let t decrease from R to 1.

The lemma points out a canonical way to insert j into πi: in the first case (i.e.
(i, IR)→ (j, IR)), we get

i : IR . . . Iτ jIτ−1 . . . I1,

in the second case we obtain

i : IR . . . Iτ jIτ−1 . . . I1.

Doing this for all j, we obtain the half-period h(πi) representing the hyperline
sequence πi which is complete and unique up to the order of elements j, k that
give rise to the same value of τ = τij = τik in the lemma.

From now on, we will always refer to the half-period h(πi) even though we
frequently just speak of ‘the half-period’ (of element i).

Recall that χ(i, j, k) can be read off from the order of the elements j, k in
the sequence πi. To prove that the partial map χ is extendible to an abstract
determinant function we therefore need to establish the following claims:
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Claim 1 Whenever the values are determined by the construction above, the
orders of elements j, k in πi, i, k in πj , and i, j in πk are consistent.

Claim 2 Whenever elements j, k give rise to the same value of τ , τ = τij =
τik , their order in πi can be determined in a consistent way.

Observe that τij = τji, ∀ i, j. Furthermore, whenever an element j is included
into the half-period of some element i as j, the half-period of j will contain i
and vice versa. More precisely, j is represented by a positive index in i’s half-
period if and only if the sink of the 2× R subgrid consisting of the two rows
i and j lies in row i. Extending this argument, we can deduce the following
lemma:

Lemma 4.13 Consider the half-periods representing the hyperline sequences
of the indices in L. For any α, 0 ≤ α < |L|, there exists a unique index
i = i(α) ∈ L whose half-period contains exactly α positive indices of L. (The
analog property holds for the sequences of the indicesR.)

Proof Consider the global sink of the graph. All edges point to it, in partic-
ular, the ones connecting it to the nodes of the same column. Thus, the other
indices in L are represented by positive indices in the sink row’s half-period.
Deleting this row, we get an induced subgraph which again has a global sink.
In the half-period of the index representing the according row, we find all the
other indices of L represented by positive indices – with the exception of the
one corresponding to the original global sink. Reapplying this argument the
lemma becomes obvious.

Proof Claim 1 Without loss of generality, we may assume that j and k are
represented by positive indices in the half-period representing the hyperline
sequence of i and that k appears as positive index in h(πj). (So, negative
indices represent i and j in the half-periods of k and k in j’s half-period.)
Furthermore, as the other case can be dealt with in very much the same way,
we assume τij > τik, i.e. χ(i, j, k) = 1. The half-period for i is then of the
form: i : AijBikCi, where







Ai = {I ∈ SR|(j, I)→ (i, I), (k, I)→ (i, I)},
Bi = {I ∈ SR|(k, I)→ (i, I)→ (j, I)},
Ci = {I ∈ SR|(i, I)→ (j, I), (i, I)→ (k, I)},

(4.4)

and SR = Ai ∪ Bi ∪ Ci. By our assumption, Bi cannot be empty. So let
J be an index in Bi. We will show that whenever the order of i, k in πj and
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i, j in πk is given, it is consistent with the order of j, k in πi. This means
χ(j, i, k) 6= 1, χ(k, j, i) 6= 1.

So, assume for a contradiction χ(j, i, k) = 1, j : AjkBjiCj , and SR =
Aj ∪ Bj ∪ Cj . Hence, index J from above must be in one of the sets Aj , Bj

or Cj . Since for any index I ∈ Aj ∪ Bj (j, I) → (i, I) (implying I ∈ Ai),
and for any index I ∈ Cj (j, I) → (k, I) (implying I 6∈ Bi) must hold, this
gives a contradiction to Bi being non-empty.

J K

i

j

k

?

Figure 4.17: The case χ(k, j, i) = 1.

Assuming χ(k, j, i) = 1 also leads us to a contradiction: The half-period for
k would be of the form k : AkjBkiCk.
SR = Ak ∪ Bk ∪ Ck and







Ak = {I ∈ SR|(k, I)→ (i, I), (k, I)→ (j, I)},
Bk = {I ∈ SR|(j, I)→ (k, I)→ (i, I)},
Ck = {I ∈ SR|(i, I)→ (k, I), (j, I)→ (k, I)}.

Considering Equation 4.4, we see that Ai ⊇ Bk = {I | (j, I) → (k, I) →
(i, I)} and Ak ⊇ Bi = {I | (k, I) → (i, I) → (j, I)}. Taking a representa-
tive from each set, J from Bk ⊆ Ai and K from Bi ⊆ Ak say, we see – as
shown in Figure 4.17 – that however the edge (j, J) − (j, K) is directed, we
always have a subgraph which does not have a unique sink. Hence, a contra-
diction. Claim 1

For the proof of Claim 2 we need yet another lemma:

Lemma 4.14 Whenever elements j, k give rise to the same value of τ , τij =
τik , then in both sequences πj and πk the respective order of i, k and i, j is
either undetermined or determined. Moreover, in the latter case, the indices j
and k are either both positive or both negative in the half-period of i.
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Proof If in all three sequences πi, πj and πk the relative order of j, k, i, k
and j, k is not determined there is nothing to prove.

So consider the case, where those values χ(i, j, k), χ(j, k, i), χ(k, i, j) that are
determined all equal +1. (The discussion of the other case runs analogously.)
Renaming i, j and k, if necessary, we may assume that their half-periods are
of the form i : AijBikCi, j : Aj īBjkCj and k : Ak īBk j̄Ck. The statement
of the lemma can then be restated as: Bj is nonempty if and only if Bi or Bk

is nonempty.

Suppose, there is some I ∈ Bj . Then either (i, I) → (k, I) → (j, I) (im-
plying I ∈ Bk) or (k, I) → (i, I) → (j, I) (implying I ∈ Bi). The other
direction is equally simple to see, as Bi ⊂ Bj and Bk ⊂ Bj .

Proof Claim 2 As Lemma 4.14 tells us, we need to distinguish between two
cases. Either, in all three hyperline sequences πi, πj and πk the respective
order of j, k, i, k, and i, j is not determined. (This case will be discussed
later.) Or two such orders are induced by the according hyperline sequences
but not the third. This latter sequence can only be one in which the indices
concerned are either both positive or both negative, i.e. πi or πk.

We may assume that πi is the sequence with τij = τjk and j, k are both
positive. (By flipping all column edges we may change the sign of all row-
indices L.) We would like to impose the order of j and k in πi (and thus to
define the value χ(i, j, k)) such that it is consistent with the values χ(j, k, i) =
χ(k, i, j) given by πj and πk.

If only two indices j, k are involved, this is certainly possible. However, in
case three or more indices in πi have the same τ we need to exclude the pos-
sibility that a cycle is induced.

Suppose that for the half-period h(πi) of the index i the elements k0, . . . , kn−1

give rise to the same value of τ , τ = τik0
= τik1

= · · · = τikn−1
while the

hyperline sequences of the other elements determine the values χ(k0, k1, i),
χ(k1, k2, i), . . . , χ(kn−1, k0, i). Then, by Lemma 4.14, we may assume that
k0, . . . , kn−1 are all positive in h(πi).

The values χ(kj , kj+1, i) determine an order on the pairs ki, kj in h(πi). We
claim that this is a partial order whose extension we can use to define the
values χ(i, kj , kj+1) consistently.

Assume for a contradiction, that
χ(k0, k1, i) = χ(k1, k2, i) = · · · = χ(kn−1, k0, i) = +1,

thus inducing the subsequences: i : ..k0k1 · · · kn−1.. and i : ..kn−1k0.. that
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exclude each other. Furthermore assume that n is smallest possible. (Note that
n ≥ 3, by Claim 1.)

Then the set SR can be partitioned into SR = Ai ∪ Ci where

{
Ai = {I ∈ SR | (kj , I)→ (i, I) ∀j},
Ci = {I ∈ SR | (i, I)→ (kj , I) ∀j}. (4.5)

This means that the vertices in row i are either the source or the sink with
respect to the column they belong to.

By Lemma 4.13, index i is negative in all half-periods h(πkj
), j = 0, ..., n−1.

To define the aforementioned values χ(kj , kj+1, i) = +1, h(πkj
) is therefore

either of the form kj : ..̄i..kj+1.. or kj : ..k̄j+1..̄i... We say that h(πkj
) is of

type T⊕ or T	, respectively.5

Suppose first that we have hyperline sequences of both types. Then there
must be a j, such that h(πkj

) is of type T⊕ and h(πkj+1
) is of type T	.

More specifically, there is a j such that kj : Akj
īBkj

kj+1Ckj
and kj+1 :

Akj+1
k̄j+2Bkj+1

īCkj+1
, where







Akj
= {I ∈ SR|(kj+1, I)→ (kj , I)→ (i, I)},

Bkj
= {I ∈ SR|(i, I)→ (kj+1, I)→ (kj , I)},

Ckj
= {I ∈ SR|(i, I)→ (kj , I)→ (kj+1, I)},

(4.6)







Akj+1
= {I ∈ SR|(kj+1, I)→ (kj+2, I)→ (i, I)},

Bkj+1
= {I ∈ SR|(kj+2, I)→ (kj+1, I)→ (i, I)},

Ckj+1
= {I ∈ SR|(i, I)→ (kj+2, I)→ (kj+1, I)},

(4.7)

and SR = Akj
∪ Bkj

∪ Ckj
= Akj+1

∪Bkj+1
∪ Ckj+1

. Note that we already
used the implications of Equations 4.5.

Equations 4.6 and 4.7 imply that Akj
= Akj+1

∪ Bkj+1
and Bkj

∪ Ckj
=

Ckj+1
. By our assumption, Bkj

and Bkj+1
cannot be empty. So, there exist

indices J, K ∈ SR with

J ∈ Bkj+1
⊂ Akj

and (kj+2, J)→ (kj+1, J)→ (kj , J)→ (i, J),
(4.8)

K ∈ Bkj
⊂ Ckj+1

and (i, K)→ (kj+2, K)→ (kj+1, K)→ (kj , K).
(4.9)

In the half-period of the hyperline sequence πkj
, where would we find the

index kj+2? Requirement 4.9 implies that kj+2 comes after K whenever it is

5We compute the indices of k modulo n.
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represented by a positive index. For Requirement 4.8 to hold, kj+2 needs to
come before J whenever it is negative. This tells us that h(πkj

) is either of the
form kj : ..k̄j+2..J..̄i..K..kj+1.., or of the form kj : ..J..̄i..K..{kj+1kj+2}..
(where the relative order of kj+1 and kj+2 is still undefined). In either case,
χ(kj , kj+2, i) = 1. Therefore, we may delete column kj+1 and the hyperline
sequences πk0

, . . . , πkj
, πkj+2

, . . . , πkn−1
still induce a cycle on the order of

the elements k0, . . . , kj , kj+2, . . . , kn−1 in πi. As we chose n to be smallest
possible, this implies that we must have had n = 3. So there are j := kj1 and
k := kj2 with χ(j, k, i) = −χ(k, i, j). A contradiction to Claim 1.

So we may assume that all half-periods h(πk0
), . . . , h(πkn−1

) are of the same
type. Suppose they are of type T⊕, i.e. kj : Akj

īBkj
kj+1Ckj

with SR =
Akj
∪ Bkj

∪ Ckj
. Equations 4.6 hold for all j. Therefore, all sets Akj

are
identical, let A := Akj

, ∀j.

Recall that the representing half-periods were defined in such a way that the
sets Akj

are nonempty, cf. Lemma 4.12. So, there is an index J ∈ A for which
Equations 4.6 hold ∀j, that is, (kn−1, J) → (kn−2, J) → · · · → (k1, J) →
(k0, J) → (kn−1, J). But this is a cycle in row J — in contradiction to
acyclicity of admissible grid orientations.

Analogously, the assumption that all half-periods are of type T	 can be lead
to a contradiction.

So we showed that if at least two of the values χ(i, j, k), χ(j, k, i), χ(k, i, j)
are defined, the remaining one can be imposed such that they are all equal.

Finally, consider all triples i, j, k for which no constraint for the order of j and
k in πi is given. There, we impose the generic order. Claim 2

We have extended the partial chirotope defined by the admissible grid ori-
entation G to the rank-3-chirotope χ on S. Thus, it has a representation as
a pseudoconfiguration of points (A, S), and S is of the form S = SL∪̇SR

where the points in SL and in SR represent the rows L and the columnsR of
G, respectively.

What remains to be shown is the existence of a vertical line ` separating SL

and SR. For this, we view (A, S) as the oriented matroidM making us the
standard machinery for oriented matroids available. In terminology and no-
tation we follow [BLW+93]. Then a separating pseudoline, say `′, exists if
there is a covector Y = ({i, j, k, . . . }, {I, J, K, . . .}). By applying a suit-
able homeomorphic transformation we can map A ∪ {`′} to an isomorphic
arrangementA′ ∪ {`} where ` is a vertical line.
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Let i be the unique element for which all other elements k ∈ L, are represented
by negative indices in the half-period h(πi). Let j be the first of those indices
in h(πi).6 Let I and J be the analog indices inR.

Then we have χ(i, j, k) = + for all k ∈ L \ {i, j} and χ(i, j, K) = − for all
K ∈ R, giving us the cocircuit Xij = ({k, l, . . . }, {I, J, K, L, . . .}). Simi-
larly, we may deduce XIJ = ({i, j, k, l, . . .}, {K, L, . . .}). The composition
of Xij and XIJ is the covector Xij ◦ XIJ = ({i, j, k, . . . }, {I, J, K, . . .}),
which is just the covector Y from above.

Thus, we have proved that there exists a representation (A, S, `) for the chiro-
tope χ on S where χ is the extension of the partial chirotope induced by some
admissible grid orientation G. Theorem 4.11

Remark: With hindsight we see that the partial function χ as defined directly
by the admissible grid orientation constituted a partial chirotope. Note that one
can check this easily directly: We only need to verify the Grassmann-Plücker-
Relations (Axiom 2 in Definition 2.14), as the other axioms are obviously
fulfilled.

But if there are indices α, β, γ, δ and ε such that
{χ(α, β, γ)χ(α, δ, ε),−χ(α, β, δ)χ(α, γ, ε), χ(α, β, ε)χ(α, γ, δ)}
= {−1, +1}

then there exists a forbidden subgrid in G (or the unique sink property is vio-
lated), see Figure 4.18.

Equally, we see that if there is a forbidden subgrid, w.l.o.g. induced by rows
i, j, k and columns J, K, then the Grassmann-Plücker-Relations for the ele-
ments i, j, k, I, J are not fulfilled.

γ δ ε

α

β

Figure 4.18: χ(α, β, γ) = χ(α, δ, ε) = −χ(α, β, δ) = χ(α, γ, ε) = χ(α, β, ε)
= χ(α, γ, δ) implies the existence of the forbidden subgrid.

6Note that, by Lemma 4.12, index i must exist and j will be very first index in h(πi).



4.5. What about ‘Proper’ Realizability? 95

4.5 What about ‘Proper’ Realizability?

Not all admissible grid orientations are ‘properly’ realizable. We will see
below that only the structure of 2 × m gridgraphs, where m is an arbitrary
positive number, is simple enough to guarantee realizability.

Deriving a nonrealizable admissible grid orientation. It is a well-known
fact that every oriented matroid consisting of less than 9 elements is realizable,
cf. [BLW+93]. Having just 9 elements, the example we are about to present
is, therefore, smallest possible.7

q1 q2 q3

p1

p2

p3

p4

p5

p6G

(a)

q1 q2 q3

p2

p6

p4

p6

p5

p6

p1

p6

p3

p6

p3

p5

p4

p5

p3

p4

p4

p1

p3

p1

p5

p2

p5

p1

p4

p2

p3

p2

p2

p1

(b)

Figure 4.19: The 6× 3 grid orientation G is admissible.

Consider the 6 × 3 grid orientation G of Figure 4.19(a).8 Obviously, it is an
acyclic unique sink orientation. We only have to convince ourselves that it
does not contain the forbidden subgrid. Clearly, it could only ‘hide’ in a 2× 3
subgrid. But having examined all pairs of rows pi, pj in Figure 4.19(b) we
know that this is not the case. So, G is admissible, hence pseudo realizable
(by Theorem 4.11).

So assume further that it can be realized by a point configuration S, S =
{p1, . . . , p6, q1, q2, q3} and a vertical line ` separating each pair pi, qj such
that (S, `) induces G. Denote p1, . . . , p6 and q1, q2, q3 by SL and SR, respec-
tively, such that S = SL∪̇SR.

The following hyperline sequences are witnessed: πq1
: p5p6p1p4p3p2, πq2

:
p4p5p6p3p2p1 and πq3

: p3p4p5p2p1p6. Points p1, . . . , p6 all witness the se-
quence q3q2q1.

7We are defining a variant of the non-Pappus matroid, cf. [Rin56], [BLW+93, Section 8.3].
8For better visibility, we omitted all directed edges whose direction is non-ambiguous.
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Using the construction derived from Lemma 4.12, we can complete these se-
quences by including the points belonging to the same set as the observing
point. We have:

πp1
: q3p6q2p2p3p4q1p5, πp2

: q3p6q2p1q1p3p4p5,

πp3
: q3p4p5p6q2p1q1p2, πp4

: q3p3q2p5p6p1q1p2,

πp5
: q3p3q2p4q1p6p1p2, πp6

: q3p1p2p3q2p4q1p5.

Focusing our attention on SL, we are interested in the hyperline sequences for
each point pi with respect to SL. We get:

π′
p1

: p2p3p4p5p6, π′
p2

: p3p4p5p6p1, π′
p3

: p4p5p6p1p2,

π′
p4

: p5p6p1p2p3, π′
p5

: p6p1p2p3p4, π′
p6

: p1p2p3p4p5.

Note that we were able to choose for each sequence a half-period consisting
only of positive indices. This tells us, that the six points actually lie in convex
position. SL is the hexagon p1p2p3p4p5p6, listing the vertices counterclock-
wise.

Now we want to deduce the location of q1, q2 and q3 with respect to SL. For
this, suppose that each point pi is given in normalized homogeneous coordi-
nates, i.e. in the form pi = (xi yi 1)

T . We use the bracket notation [ pi pj pk]
as shorthand for the orientation determinant det |pipjpk| which equals the
(oriented) area of the triangle spanned by the three points. Its sign indicates
the orientation of the triple: It is positive if and only if the points appear in
counterclockwise order. (This holds whenever the homogenizing coordinates
of all three points are positive.)

Then πq1
: ..pi..pj .. implies [ q1 pi pj ] > 0 and we say q1 lies left of the line

pipj . Accordingly, q1 lies right of the line pipj whenever πq1
: ..pj ..pi.., and

the orientation determinant [ q1 p1 pj ] is negative.

Specifically, πq1
: p5p6p1p4p3p2 implies (among other relations) that q1 lies

left of p1p4, right of p2p3 and right of p3p4. This implies that the point of
intersection of p2p3 and p1p4, call it M , must lie right of p3p4 as well, cf. Fig-
ure 4.20.

q2 lies right of p1p2, left of p6p3, and right of p2p3. So p6p3 and p1p2 intersect
right of p2p3 in the point N , say. Finally, we deduce that q3 lies right of p6p1,
left of p5p2, and right of p1p2 which implies that point of intersection of p6p1

and p5p2 lies right of p1p2.

The combinatorial structure of the point configuration is, therefore, as in Fig-
ure 4.21.



4.5. What about ‘Proper’ Realizability? 97

p1 p2

p3

p4

p5

p6

q1

M

Figure 4.20: The ‘right’ point q1 must lie in the shaded sector as determined
by the location of the ‘left’ points p1, . . . , p6.

We want to argue that it is impossible to draw this picture with straight lines
connecting the points.

M can be expressed as:

M = [ p2 p3 p1] p4 − [ p2 p3 p4] p1,

since

[ p2, p3, [ p2 p3 p1] p4 − [ p2 p3 p4] p1]

= [ p2 p3 p1] [ p2 p3 p4] − [ p2 p3 p4] [ p2 p3 p1] = 0.

We even know that the homogenizing coordinate of M is positive in this rep-
resentation, because [ p2 p3 p1] > [ p2 p3 p4] . This follows from the fact that
p1, p4, M appear in this order along p1p4. By the same reasoning, the homog-
enizing coordinates of

N = [ p1 p2 p6] p3 − [ p1 p2 p3] p6

and P = [ p6 p1 p5] p2 − [ p6 p1 p2] p5

are positive too. As q1 lies to the right of p6p5 so does M ; equivalently,
[ M p5 p6] > 0 must hold. This can be rewritten as:

0 < [ M p5 p6]
= [( [ p2 p3 p1] p4 − [ p2 p3 p4] p1) p5 p6]
= [ p2 p3 p1] [ p4 p5 p6] − [ p2 p3 p4] [ p1 p5 p6] .

(4.10)
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p1 p2

p3

p4p5

p6

M

N

P

q1

q2

q3

Figure 4.21: Constraints on the location of the 6 points.

Analogously, we see that [ N p4 p5] > 0, which can be rewritten as:

[ p1 p2 p6] [ p3 p4 p5] − [ p1 p2 p3] [ p6 p4 p5] > 0, (4.11)

and [ P p3 p4] > 0, which yields:

[ p6 p1 p5] [ p2 p3 p4] − [ p6 p1 p2] [ p5 p3 p4] > 0. (4.12)

Adding (4.11) and (4.12), we get

[ p6 p1 p5] [ p2 p3 p4] − [ p1 p2 p3] [ p6 p4 p5] > 0,

a contradiction to (4.10).

The case 2×m. We are given an admissible grid orientation G of size 2×m.
We will show that it is induced by a configuration (S, `). The proof is by
construction.
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As before, we let S = SL∪̇SR, where SL = {p1, p2} are the two points left
of ` and SR is the set of m right points.

Then we can partition SR into two sets, according to the order in which its
elements see the points p1 and p2. The crucial observation is that both p1

and p2 see first all points which see them in one order, and then all the others
which see them in the other order. (For, assuming otherwise, the unique sink
property would imply the existence of a forbidden subgraph.)

Therefore, each 2 × n (sub-)graph is essentially of the form depicted in Fig-
ure 4.22.

Figure 4.22: The combinatorial structure of a 2×m admissible grid orienta-
tion.

Figure 4.23 shall suffice as a demonstration of how a particular example can
be realized.

p1p2

q1

q2

q3

q4 q5

1

2

1 2 3 4 5

Figure 4.23: An admissible 2×m orientation and its realization.





Chapter 5

On the Completability of
Partial Chirotopes

By the Folkman-Lawrence representation theorem [FL78] every oriented ma-
troid of rank 3 can be represented as an arrangement of oriented pseudolines.
(By oriented pseudolines we mean pseudolines in the projective plane which
are oriented with respect to a special line at infinity.) Uniformity means that
no three pseudolines meet in a common point.

If we are given such a uniform pseudoline arrangement, it is simple to read off
the chirotope: Any three pseudolines i, j, k, say, enclose a pseudotriangle. De-
noting by r ∈ {1, 2, 3} the number of lines whose positive halfplane contains
the triangle we define χ(i, j, k) by (−1)r and (−1)r+1, respectively, when-
ever i, j, k bound the pseudotriangle in clockwise and counterclockwise order,
respectively. Figure 5.1 demonstrates how, given two pseudolines `, `′, the ori-
entation and location of a third pseudoline p affects the value of χ(`, `′, p).1

It shall serve as an easy reference point for the reader when studying more
complicated drawings later.

Thus the problem of completability of uniform partial chirotopes of rank 3,
CPC, is equivalent to the following problem:

1From now on, we will use the bracket notation as abbreviation for χ, i.e. χ(i1, . . . , ir)
becomes [i1i2 . . . ir ]. +1 and −1 will also be abbreviated to + and −, respectively.

101
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REALIZABILITY OF PARTIAL CHIROTOPES (RPC)

Given: A partial, uniform chirotope χ of rank 3 on a set E.
Question: Is there an arrangement (p1, ..., pn) of oriented pseudo-

lines such that [ i j k] = χ(i, j, k) = +(−) whenever the
i, j, k bound the triangle as described above and χ(i, j, k)
is defined?

Since there exists a polynomial-time test for whether a chirotope satisfies the
Grassmann-Plücker relations (Definition 2.14.2) this problem is in NP. Thus
NP-hardness implies NP-completeness of RPC – which in turn implies NP-
completeness of CPC.

We will reduce RPC to a variant of 3-SAT. Our construction is inspired by
Richter-Gebert’s proof [RG99] that the problem of deciding whether a given
matroid is orientable is NP-complete. However, having to avoid zeros meant
that we required something more elaborate.

`

`′

p

[` `′ p] = + [` `′ p] = −

`

`′

p `

`′
p

`

`′

p
`

`′

p

`
`′

p`

`′

p

`
`′

p

Figure 5.1: Pseudoline p added to the arrangement of lines ` and `′.
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5.1 A Variant of 3-SAT

NOT-ALTERNATING-3SAT (NA-3SAT)

Given: An ordered set of boolean variables X = (x1, . . . , xn)
and a set C of m three-clauses. partial, uniform chirotope
χ of rank 3 on a set E.

Question: Is there a truth assignment for the elements of X such
that in none of the clauses the truth values of the
three literals alternate, i.e. are (false, true, false) or
(true, false, true)?

This problem is known to be NP-complete (cf. [RG99], [GJ79]). Note that it
is essential to have a total order on the indices of X , which induces an order
on the literals of each clause. In our construction, each clause will correspond
to a pair of pseudolines that have at least one crossing for each false/true
(or true/false) transition in a clause. Thus, alternating clauses would force
this pair of pseudolines to cross twice, something which is forbidden by the
definition of pseudolines.

The next sections introduce the necessary configurations. We will later use
these building blocks to actually do our construction.

5.2 The Frame of Reference

The frame of reference into which we embed our construction will be a rect-
angular grid Gm,n contained in an oriented matroidFm,n as visualized in Fig-
ure 5.2: We shall have two ordered sets of lines, vertical and horizontal ones,
and all lines belonging to the same set shall have the same orientation in the
grid.

So, let Fm,n be the oriented matroid with elements 0, . . . , m, the so-called
‘verticals’, 0′, . . . , n′, the so-called ‘horizontals’, and ω, the line at infinity.
Impose the canonical order on these two sets: 0 < 1 < · · · < m, and
0′ < 1′ < · · · < n′, referring to their elements by using indices i, j, k,
i < j < k and i′, j′, k′, i′ < j′ < k′, respectively.

The oriented matroid Fm,n is given by the chirotope

[ωij] = [ijk] = [k′j′i′] = [ij′i′] = [ωii′] = [ωj′i′] = [ij′j] = +,

where i, j, k are any three distinct ‘verticals’ with i < j < k, and i′, j′, k′ are
any three distinct ‘horizontals’ with i′ < j′ < k′; ω is the line at infinity.
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ω

0 1 2

2
′

1
′

0
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′
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F3,2

G3,2
3

3

Figure 5.2: Instance of the 4× 3 grid.

5.3 Adding Pseudolines

A given oriented matroid can be completed, e.g. by adding one element at
a time, cf. [BLW+93]. From the chirotope information for the additional el-
ement, one can deduce the location of the corresponding pseudoline in the
pseudoline arrangement. Conversely, having drawn an extra pseudoline, one
can immediately read off the corresponding chirotope information.

We will now enlarge the oriented matroid defined in the previous section by
those elements for which only partial information is given. The location of the
corresponding pseudolines is, therefore, constrained, yet possesses a certain
degree of freedom.
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Note that each drawing satisfying all given constraints defines, in fact, a pos-
sible completion of the partial chirotope.

The crucial fact is that the partial information can be given in such a way that
there are only a few (two, preferably) very specific options to place the corre-
sponding pseudoline (i.e. to actually complete the chirotope). Hence, we are
able to devise switches representing clauses and possible truth assignments.
The feasibility of certain choices will only become clear once a whole clause
is defined.

The actual construction will be the best explanation.

To simplify the description, we call the intersection point between a vertical
i and a horizontal j ′ in our rectangular grid Gm,n vertex i ∧ j′ of Gm,n. We
write [i′, j′]i short for the segment from i∧ i′ to i∧ j′ on i; [i, j]i′ denotes the
segment from i ∧ i′ to j ∧ i′ on i′, see Figure 5.3.

i k

j ∧ j′

k′

i′

j′
[i′, k′]j

[i, k]j′

j

Figure 5.3: Vertices and segments in a rectangular grid.

The pseudolines 0, 0′ and their intersection point 0∧0′ will play a special role
in our discussion as we will see shortly. Therefore, from now on, whenever
we refer to pseudolines i, j and i′, j′, we assume i, j > 0, i′, j′ > 0′.

Diagonal lines. Suppose we add just a single basis orientation for a new line
p, [ i i′ p] = −, say. In Figure 5.1, we illustrated already the four options we
have to draw this new pseudoline in our picture with respect to i ∧ i′.

Having two conditions for p, [ i i′ p] = −, [ j j′ p] = +, say, reduces these
possibilities to exactly three, see Figure 5.4. In order to get rid of the ‘non-
rigid’ situation drawn in the right picture of Figure 5.4, we impose a third
condition, [ 0 0′ p] = +. It reduces the options further to two, as shown in
Figure 5.5. This is what we will work with.
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Figure 5.4: Three ways to draw p given i < j, i′ < j′ and [ i i′ p] = −,
[ j j′ p] = +.
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i j
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pB
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Figure 5.5: Two ways to draw p given 0 < i < j, 0′ < i′ < j′ and
[ i i′ p] = −, [ j j′ p] = +, and [ 0 0′ p] = +.

We call the added pseudoline p in Figure 5.5 the diagonal p passing vertices A
and B. Later we will use this terminology as an abbreviation for ‘p, with chi-
rotope information [ i i′ p] = −, [ j j′ p] = [ 0 0′ p] = + where 0 < i < j,
0′ < i′ < j′, and A = i ∧ i′, B = j ∧ j′’.

Parallel lines. We observed that there are essentially two ways to draw
an additional pseudoline p which is ‘a diagonal passing A = i ∧ i′ and
B = j ∧ j′’. Which one is chosen can be determined by defining further
values of the chirotope function: Either, we set [ ω 0 p] = + and get the pic-
ture on the right in Figure 5.5, or [ ω 0 p] = − and p has to lie as shown on
the left. (Recall, that ω denotes the line at infinity, cf. Figure 5.2.) By setting
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just this one bracket value many others will be determined. However, this is
of no concern to us – whenever we can draw a pseudoline such that all given
chirotope information is correct, there obviously is a completion.

Of course, the location of p is still far from being non-ambiguous. But note
that p either cuts the interior of the segments [i, j]x′ (whenever [ ω 0 p] = −)
or the interior of the segments [i′, j′]x (for [ ω 0 p] = +) for all i < x < j or
i′ < x′ < j′, respectively.

In the first case, therefore, we call p vertical parallel in [i′, j′][i,j]. Similarly,
we call, in the latter case, p horizontal parallel in [i, j][i′,j′], cf. Figure 5.6.

i j

j′

i′

p

A

B

0

0′

(a)

i j

j′

i′

p

B

A

0

0′

(b)

Figure 5.6: p as (a) vertical parallel in [i, j][i′,j′] and as (b) horizontal paral-
lel in [i′, j′][i,j].

5.4 The Construction

We are now ready to encode an instance of the problem NA-3SAT into a
completability problem. For this we need a switch which sets each variable
true or false, and a structure to encode the actual clauses. In a final step, we
will get a realization (and hence a full chirotope) if and only if NA-3SAT has
an admissible assignment of boolean variables.

Let X = (x1, . . . , xn) be the sequence of boolean variables, and let
C1, . . . , Cm be the set of clauses. The frame F := F3m+3,3n contains the
rectangular grid G3m+3,3n. This is large enough for our construction: for
each variable xi from X , we reserve three consecutive horizontal lines (rows)
ai, bi, ci of G. For each clause Cj , we reserve three vertical lines (columns)
1j , 2j , 3j of G. In addition, we reserve three vertical lines 1, 2, 3 for encoding
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the switches to choose between values for the boolean variables. A horizon-
tal line 0′ and a vertical line 0 will be used as auxiliary pseudolines to define
certain diagonals. Figure 5.7 sketches the global situation.

switches

1 2 3d

t
′

1m 2m 3m
︸ ︷︷ ︸

Cm
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


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V2







c2

b2
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Vn







cn

bn

an

12 22 32
︸ ︷︷ ︸

C2

11 21 31
︸ ︷︷ ︸

C1

Figure 5.7: The structure to embed the NON-ALTERNATING-3SAT instance.

The switch. The idea is to give partial information such that exactly two
well-defined configurations can occur. One will then represent the case ‘xi is
true’, the other ‘xi is false’. You can follow the construction in Figure 5.8.

For every variable xi we do the following:

First, we consider the rows ai, bi, ci and add elements Xi and X ′
i as horizontal

parallels in [ai, ci][1,3m], representing xi and ¬xi. This alone does not give us
any control over the location of the intersections points of Xi, X

′
i, bi yet—we

want them to intersect in the region between 1 and 3.

Secondly, for this very reason, we introduce two new diagonals Ui and Wi
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passing 1 ∧ ci and 2 ∧ ai, and 2 ∧ ci and 3 ∧ ai, respectively. The informa-
tion [ Ui ai Wi] = [ Ui bi Wi] = [ Ui ci Wi] = − guarantees that they have
opposite orientation and do not intersect inside our little gadget.

Finally, we force Ui and Wi to meet X ′
i, bi, Xi in the same order. Since Ui and

Wi have opposite orientation, this will imply that X ′
i , bi, Xi pairwise intersect

between Ui and Wi inside the 3×3-grid-gadget. This can be guaranteed by the
additional chirotope information [ Ui bi Xi] = [ Wi bi Xi] = [ Ui X ′

i bi] =
[ Wi X ′

i bi] = [ Ui X ′
i Xi] = [ Wi X ′

i Xi] = −.

Note that these additional conditions also ensure that Xi, X
′
i and b are pairwise

non-identical.

The two possible situations in our realization are shown in Figure 5.8. We
associate the situation on the right with xi = false, and the situation on the
left with xi = true. (We omit the drawing of the pseudolines 0, 0′ for the sake
of lucidity.)

1 2

ai

bi

ci

Xi

X
′

i

Ui

3

Wi

xi = true

1 2

ai

bi

ci

Xi

X
′

i

Ui

3

Wi

xi = false

Figure 5.8: The two states of a switch.

We make the following crucial observation:

Lemma 5.1 If we are in the situation xi = true, then for all 3 ≤ k ≤ 3m+3
the line X ′

i cuts the interval [ai, bi]k and the line Xi cuts the interval [bi, ci]k.
For xi = false, the situation is reversed.

So, the locally fixed choice in our switches is having an impact on the whole
configuration, the information xi = false/true is ‘present’ not only in the
switches. Thanks to this key property, the clauses (which we will describe
next) can function.
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The clauses.

Let `i denote the ith literal, i.e. `i = xi or ¬xi; let Li =

{

Xi, `i = xi

X ′
i, `i = ¬xi

.

Then Lemma 5.1 implies that the truth value of `i is true whenever Li cuts
[bi, ci]k, `i = false whenever Li cuts [ai, bi]k, for all k, 3 ≤ k ≤ 3m + 3.

Remember that, for each clause Cj , we reserved three vertical lines 1j , 2j , 3j .
The clause Cj consists of three literals. For each literal `i (represented by
Li) that appears in the clause Cj , we enlarge our chirotope with a diagonal
T j

i passing 1j ∧ ci, 2j ∧ Li and 3j ∧ ai, and satisfying [ T j
i bi Li] = −.

The latter condition determines which of the two possible drawings for the
diagonal T j

i is chosen (recall Figure 5.5)—depending on the relative position
of bi and Li. So, in accordance with the state of `i, we can only have one of
the two situations shown in Figure 5.9.

1j 2j

ai

bi

ci

T
j

i

Li

3j

`i = false

1j 2j

ai

bi

ci

T
j

i

Li

3j

`i = true

Figure 5.9: Connecting a switch and a clause.

The proof of the following lemma is again straightforward.

Lemma 5.2 If we are in the situation `i = false, then the line T j
i cuts the

interval [1j , 2j ]bi
. Otherwise T j

i cuts the interval [2j , 3j ]bi
.

Before we do the final step, let us look back for a moment at what we have got
so far. For a given set of three-clauses over n boolean variables, we defined a
partial chirotope2 which has inside the gadget exactly 2n possible completions
— each one corresponding to a truth assignment.

2Note that there is no need to review the axioms of Definition 2.6 in order to see that the set
of basic orientations given so far constitutes a partial chirotope. Instead, we have shown that we
can construct arrangements of oriented pseudolines for which all the given basic orientations are
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Our aim is therefore to add further chirotope information such that only truth
assignments without alternating clauses are possible, while still having a par-
tial chirotope.

For each clause Cj , consisting of literals coming from the variables xi1 , xi2

and xi3 , say, we add Zj , which is vertical parallel in [1j , 3j ] and for which
[ T j

i1
bi1 Zj ] = [ T j

i2
bi2 Zj ] = [ T j

i3
bi3 Zj ] = + holds.

These values suffice to force the line Zj to pass T j
i1
∧ bi1 , T

j
i2
∧ bi2 , and T j

i3
∧

bi3 “away from” 2j . It remains to be checked that they do not violate the
chirotope axioms (Definition 2.14). But since we do not specify any further
basic orientations involving the new elements Zj , this is clearly the case.

Extending our arrangement of pseudolines by such lines Z1, . . . , Zm (and
hence completion of the partial chirotope) is only possible if the correspond-
ing literals in the clauses do not alternate. Alternating literals in clause Cj

would force the line Zj to cross the line 2j twice which is forbidden by the
axioms. In all other cases, the pseudolines are insertable. For an example, see
Figure 5.10.

This completes the proof of our result: Given an ordered set of boolean vari-
ables X = (x1, . . . , xn) and a set S of m three-clauses, we may define a par-
tial chirotope which is completable if and only if there is a ‘non-alternating’
truth assignment for the elements of X , cf. NA-3SAT. Moreover, we can read
off the admissible truth values for the boolean variables from the completion:
Using our notation from above, we have

xi =

{
true whenever [ 1 Xi X ′

i ] = +
false whenever [ 1 Xi X ′

i ] = −.

Conversely, every admissible assignment of truth values for C corresponds to a
chirotope (representable by a pseudoline arrangement) that can be considered
as a completion of the partial chirotope induced by the set C as described.

Thus we have proved:

Theorem 5.3 The problem of testing completability of a partial chirotope is
NP-complete.

valid. Since each such arrangement defines a chirotope this implies that we have defined indeed a
partial chirotope, and this partial chirotope is completable.
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