DISS. ETH NO. 15747

Unique Sink Orientations of Cubes

A dissertation submitted to the
Swiss FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of Doctor of Sciences

presented by

Ingo Andreas Schurr

Dipl. Math., Freie Universitat Berlin, Germany
born March 12, 1972 in Baden—-Baden, Germany
citizen of Germany

accepted on the recomodation of

Prof. Dr. Emo Welzl, ETH Ziirich, examiner
Dr. Tibor Szab6, ETH Ziirich, co-examiner
Prof. Glinter Ziegler, TU Berlin, co-examiner

Acknowledgments

I would like to express my deep gratitude to my advisor Emo Welzl. His
idea of a Pre-Doc program gave me the chance to sneak into the world
of discrete mathematics. Furthermore, all I know about how science
works, I know from him.

I am also deeply grateful for being the first Ph.D. student of Tibor
Szabé. He was a wonderful advisor. Thanks for reading and commenting
(nearly) every single page of this thesis.

Thanks to Giinter Ziegler, not only for being my third supervisor, but
also for letting me stay in his group in Berlin for one semester.

Without Bernd Gartner a whole chapter of this thesis would never
have been written. Thanks for all the fruitful discussions about linear
programing and the business class.

I would like to thank Andrea Hoffkamp (for all the ”germanisms”
and the (soap) operas), Arnold Wassmer (for sharing his mathematical
thoughts with me), Carsten Lange (for sharing his experience), Enno
Brehm (for all I know about programming), Falk Tschirschnitz (for
proofreading), Iris Klick (for at least trying to read), Kaspar Fischer
(for all his advices and the roar of the tiger), Mark de Longueville (for
teaching me Analysis and all the comments), Nando Cicalese (for the
espresso and last minute words of wisdom), Shankar Ram Lakshmi-
narayanan (for sharing a flat and all the questions and answers), Uli
Wagner (for forcing me into the pre-doc program, sharing a flat and
enlightening me) and Zsuzsa (for bringing me to Ziirich, sharing a flat
and criticizing my criticisms). Without you I would not have been able
to finish this thesis.

Thanks to the first pre-docs Frank Vallentin, Godfrey Njulumi Justo,
Hiroyuki Miyazawa, Sai Anand, and Stamatis Stefanakos. It was a great
half-a-year.

Last, but not least, I am very thankful for being part of the gremo
group. Thank you all, it was a pleasure working with you.

iii

Abstract

Subject of this thesis is the theory of unique sink orientations of cubes.
Such orientations are suitable to model problems from different areas of
combinatorial optimization. In particular, unique sink orientations are
closely related to the running time of the simplex algorithm.

In the following, we try to answer three main questions: How can
optimization problems be translated into the framework of unique sink
orientations? What structural properties do unique sink orientations
have? And how difficult is the algorithmic problem of finding the sink
of a unique sink orientation?

In connection to the first question, the main result is a reduction from
linear programming to unique sink orientations. Although the connec-
tion to linear programming was the core motivation for our studies, it
was not clear in the beginning how general linear programs can be fit
into the theory of unique sink orientations. The reduction presented in
this thesis closes this gap.

For the second question we can provide several construction schemes
for unique sink orientations. On the one hand we know schemes which
allow us to construct all unique sink orientations. On the other hand we
present easier constructions, which are still powerful enough to provide
us with a number of interesting orientations. The hope that unique sink
orientations on their own carry an interesting algebraic structure turns
out to be wrong.

Equipped with the construction schemes just mentioned we are able
to give some answers to the third question about the algorithmic com-
plexity. The true complexity of the problem of finding a sink of a unique
sink orientation remains open. But we can provide first lower bounds
for special algorithms as well as for the general case. Furthermore, it
turns out that the algorithmic problem is NP-hard only if NP=coNP.

iv

Zusammenfassung

Gegenstand der vorliegenden Arbeit sind Orientierungen des Kanten-
Graphs eines Hyperwiirfels, so dass jeder Unterwiirfel eine eindeutige
Senke hat (im folgenden ESE-Wiirfel genannt). Solche Orientierungen
modellieren etliche Probleme aus unterschiedlichen Bereichen der kom-
binatorischen Optimierung. Insbesondere besteht ein enger Zusammen-
hang zu der (seit langem) offenen Frage nach der Laufzeit des Simpex-
Algorithmus.

Im folgenden werden im Wesentlichen drei Themenkomplexe behan-
delt: Wie konnen Optimierungs-Probleme auf ESE-Wirfel reduziert
werden? Welche strukturellen Aussagen kann man iiber ESE-Wiirfel
machen? Und wie schwer ist das algorithmische Problem, die Senke
eines ESE-Wiirfels zu finden?

Im Zusammenhang mit der ersten Frage ist die Reduktion von line-
arem Programmieren auf ESE-Wiirfel hervorzuheben. Die Verbindung
zwischen linearem Programmieren und ESE-Wiirfeln war zwar von An-
fang an Motivation fiir die vorliegenden Studien, lange Zeit jedoch war
es nicht klar, wie allgemeine lineare Programme in die Theorie der ESE-
Wiirfel passen. Die hier vorgestellte Reduktion schliesst diese Liicke.

Beziiglich der zweien Frage sind vor allem eine Reihe von Konstruk-
tionsvorschriften fiir ESE-Wiirfel zu nennen. Auf der einen Seite haben
wir ein allgemeines Konstruktions-Schema, das stark genug ist, alle ESE-
Wiirfel zu generieren, auf der anderen Seite stellen wir einige deutlich
einfachere Konstruktionen vor, die allerdings noch méchtig genug sind,
um interessante ESE-Wiirfel zu beschreiben.

Mit Hilfe dieser Konstruktionsvorschriften ist es uns moglich, auch
Antworten auf die dritte Frage nach der algorithmischen Komplexitét
zu finden. Zwar ist die wirkliche Komplexitéit des Problems die Senke
zu finden weiterhin offen, aber es ist uns moglich, untere Schranken
herzuleiten, sowohl fiir spezielle Algorithmen, als auch fiir den allge-
meinen Fall. Des weiteren wird gezeigt, dass das algorithmische Problem
nur dann NP-schwer sein kann, wenn NP=coNP gilt.

vi

Contents

II.1 Linear Programming|
I1.2 The Object of Interest|
Ill;; g!l]‘lllls !2' (lls lls ii I

[2_Basics|

2.2 Unique Sinks| oL
2.3 Complexity Issues|

B Sources
3.1 Linear Programming|
3.2 Linear Complementarity Problems|
3.3 Strong LP-type Problems|
3.4 Strictly Convex (Quadratic) Programming|.
3.5 Linear Programming Revisited|

4 O Ds| . .

4.6 xamples|
4.6.1 Partial Unique Sink Orientations|
4.6.2 Combed and Decomposable Orientations|
4.6.3 Klee-Minty Cubes|

vii

Contents

) E!Eorltﬁmﬂ
| g zomglexmy Modell

[5.2 A Tower Bound on Deterministic Algorithms|

6 Data
[6.1 Storing Orientations

[6:2 Tmplementational Aspects
6.2.1 Isomorphism Test|

viii

1 Motivation

It's a very funny thought
that, if Bears were Bees,
They'd build their nests at
the bottom of trees. And
that being so (if the Bees
were Bears), We shouldn't
have to climb up all these
stairs.

(Winnie The Pooh)

1 Motivation

1.1 Linear Programming

Back in the 1940, the term “program” (as military term) referred to a
plan or schedule for training, logistical supply or deployment of men.
To automatize such programming, the young mathematician George
Dantzig introduced a mathematical model for programming in a linear
structure. He first presented his idea to a broader audience in 1948 at a
meeting of the Econometric Society in Wisconsin. In [7] Dantzig writes
about this meeting:

After my talk, the chairman called for discussion. For a
moment there was the usual dead silence; then a hand was
raised. It was Hotelling’s. I must hasten to explain that
Hotelling was fat. He used to love to swim in the ocean and
when he did, it is said that the level of the ocean rose per-
ceptibly. This huge whale of a man stood up in the back of
the room, his expressive fat face took on one of those all-
knowing smiles we all know so well. He said: ‘But we all
know the world is nonlinear.” Having uttered this devastat-
ing criticism of my model, he majestically sat down. And
there I was, a virtual unknown, frantically trying to compose
a proper reply.

Even worse, the algorithm Dantzig introduced to solve such linear pro-
grams used a discrete structure only. A linear functional on a polytope
attains its maximum in a vertex. Therefore, one can find such a max-
imal vertex by following ascending edges from vertex to vertex. This
so-called simplex method only uses the edge graph of a polytope, a
discrete object. Although the world is not discrete, linear programming
and the simplex method proved to be very powerful tool to solve real-life
optimization problems.

Despite its usefulness in practice, the simplex method is bad in the-
ory. In 1972, Klee and Minty [24] constructed examples on which the
simplex algorithm using Dantzig’s pivot rule visits all vertices. Based on
their example, similar worst case behavior can be attained for nearly all
deterministic pivot rules (see [3] for a general construction scheme). Tt
took another eight years before Khachiyan [23] developed an algorithm
for linear programming which has polynomial running time in the bit-

1.1 Linear Programming

model. That is, given the linear constraints of a linear program encoded
in a bit-sequence, Khachiyan’s algorithm has a running time polynomial
in the number of bits.

From the point of view of the simplex method, this bit-model is not
satisfactory. As mentioned earlier, the simplex method employs a rather
combinatorial structure of linear programming. In particular, perturb-
ing the linear program (i.e., the defining hyperplanes) slightly does not
change its combinatorics. But such perturbation can drastically change
the size of its encoding.

This observation leads to the attempt to find algorithms which are
polynomial in the combinatorial complexity of a linear program, which
is given by the number of linear constraints of the underlying polytope
and its dimension. So far, no such algorithm is known nor are there
arguments indicating that the problem cannot be solved in polynomial
time.

The best known result is achieved by RANDOMFACET, a random-
ized algorithm independently developed by Kalai [2I] and Matousek,
Sharir, and Welzl [28]. RANDOMFACET is linear in the number of con-
straints and subexponential in the dimension. Remarkably, RANDOM-
FACET works in a much more general setting than the original problem
of solving a linear program.

Following the approach of Kalai, RANDOMFACET maximizes an ab-
stract objective function. Such a function assigns values to the vertices
of the edge graph of a polytope such that every face has a unique maxi-
mal vertex. A further abstraction from the values yields an orientation
of the edge graph by orienting edges towards the vertex with higher
value. Since every face has a maximal vertex v, this vertex is a sink,
i.e., every edge incident to v is oriented towards vE| Such an orientation
is called unique sink orientation.

The focus of this thesis is on unique sink orientations of cubes. That
is, we study orientations on the edge graph of a cube such that ev-
ery subcube has a unique sinkﬂ In particular, an abstract objective
function on a cube induces a unique sink orientation. Although linear
programming was the motivating example for us to study unique sink

1See Section 3.1
2See Chapter 2.

1 Motivation

orientations of cubes, the concept originates from a different source. In
1978, Stickney and Watson [40] introduced such orientations to study
certain linear complementarity problemsﬂ In this set-up the cube is
best viewed as a Boolean lattice rather than as a geometric object.

The main advantage of unique sink orientations of cubes over general
unique sink orientations (on polytopes) lies in the additional structure
of the cube. In particular, in a cube every vertex can be addressed
directly. This permits formulating algorithms other than the simplex
method. For instance, the fastest known deterministic sink-finding al-
gorithm FIBONACCISEESAW [42] maintains a data structure consisting
of two antipodal subcubes and jumps between these two subcubes.

1.2 The Object of Interest

A unique sink orientation of a cube is an orientation of the edges of
the Boolean lattice such that every subcube has a unique sink. The
algorithmic problem we are mainly interested in is to find the sink of
such an orientation.

In all applications, the orientation is given implicitly. We therefore
assume that we have access to the orientation via an oracle. This oracle,
when queried at a vertex, reveals all the edges outgoing from the vertex.

The standard scenario of such an application is the following: Given
some problem P (like for instance a linear complementary problem), we
construct an oracle based on the data of P. To each vertex the oracle
assigns a potential solution for the original problem. The orientation
is obtained by comparing the “solutions” in the vertices. In particular,
the “solution” of the sink solves the original problem. Thus, it is not
enough to know the position of the sink, but we also want to evaluate
the sink. For instance, for linear programming the position of the sink
will tell us which constraints have to be tight. But an oracle query for
the sink on the way will determine a minimizer of the linear program,
hence the optimal value.

Our underlying complexity mode]ﬁ measures the running time of an
algorithm in terms of the number of oracle queries. In-between two

3See Section 3.2.
4See Sections 2.3 and 5.1

1.3 Outline of the Thesis

oracle queries, any amount of computation is permitted. This model
undoubtedly constitutes a severe simplification of the real complexity.
However, all known algorithms for finding the sink of a unique sink
orientation perform only a negligible amount of computation between
queries. In fact, we do not know how to exploit the additional compu-
tational power, which is an indication that the underlying structure is
still not fully understood. From this point of view even an algorithm
which needs exponential (or more) time between queries would be of
great interest. For now the goal is to find an algorithm which finds the
sink of a unique sink orientation using only a small number of oracle
queries.

For most concrete problems, the reduction to unique sink orienta-
tions of cubes is a heavy abstraction. In fact, if we count the number of
d-dimensional unique sink orientations constructed by this class of prob-
lems, then this number over the number of all d-dimensional unique sink
orientations vanishes as the dimension grows. Still, for linear comple-
mentarity problems, for example, this abstraction leads to the fastest
known algorithms for solving such problems.

1.3 Outline of the Thesis

In Chapter 2, we present the basic definitions and notations. Cubes
and unique sink orientations on them are introduced. As a warm-up,
we prove a characterization of acyclic unique sink orientations of cubes.
Furthermore, the basic complexity model based on oracle queries is pre-
sented.

Several reductions to unique sink orientations are presented in Chap-
ter 3. We start with the two classical examples, linear programming
and linear complementarity problems. Then we introduce strong LP-
type problems, which are less general than unique sink orientations.
This scheme captures the main features which make optimization prob-
lems tractable by unique sink orientations. As an example, we reduce
general linear programming to strictly convex quadratic programming,
and strictly convex quadratic programming to strong LP-type problems.

In Chapter 4, we summarize some structural facts about unique sink
orientations of cubes. Such orientations are strongly related to permu-

1 Motivation

tations. Still, the set of all unique sink orientations of cubes itself does
not carry an algebraic structure of its own. We give several construction
schemes for unique sink orientations.

In Chapter 5, these construction schemes are used to construct ex-
amples on which deterministic algorithms for finding the sink have bad
running time.

In Chapter 6, we introduce a data structure to represent unique sink
orientations of cubes. Furthermore, we describe an isomorphy test. A
procedure to enumerate all d-dimensional unique sink orientations is
introduced. The chapter closes with some counting arguments for the
number of unique sink orientations in small dimensions.

1.4 Remarks on the Notation

Throughout the thesis, objects are named according to their use rather
than to their kind. For example, we use the letters I, J for sets if they
denote delimiters of an interval of sets, and w, v if they denote vertices.
The conventions used trough-out this thesis are listed below.

1.4 Remarks on the Notation

Combinatorics:

RS E>NET IS NG

SR

0,0
Linear Algebra:

. a cube

: delimiters of an interval of sets
: vertices

: the set of vertices
: subset of V

: edge

: the set of edges

: subset of

: label

: set of labels

: orientation

: dimension

: outmap

: sink of USO

n, m : dimension
b,c,x : vector

A, B, M,(Q : matrix

T, K : projection
C : cone

F : face

H : affine subspace
P : polyhedron
Others:

a : scalar in R

6 : scalar in [0, 1]

T : bijection

U : isomorphism

f : continuous function
A : algorithm

p : probability

> : alphabet

L : language

1 Motivation

2 Basics

With the tips of your toes
somewhat floating, tread
firmly with your heels.

(Miyamoto Musashi)

2 Basics

2.1 The Cube

We refer by “cube” to the edge graph of a geometric cube rather than
the geometric object itself. In this section, we introduce two formal-
izations of the cube, Boolean lattices and 0/1-words. We will use both
interchangeably in the course of this thesis.

Boolean Lattice: Let us first fix some set theoretic notation. The
power set of a set J is denoted by 27 := {u C J}. For two sets I C J we
define the interval between I and J by [I,J] :={v | I Cv C J}. The
symmetric difference of two sets I, J is the set I® J := (IUJ)\ (INJ).
Furthermore, for a positive integer d we set [d] := {1,...,d}.

Definition 2.1
Given two finite sets I C J, the cube €'’ spanned by I and J is the
graph with vertex and edge set

vy = [LJ={v|ICvCJ}

(w0} € BE) o |jumu|=1. (2.1)

Furthermore, let ¢7 := ¢%7] and ¢4 .= ¢ld = ¢0.{1.-..d}],

Whenever possible we will choose ¢4 as our standard model. The
more involved definition of €//] is mainly needed to properly address
the subcubes of €2, Let €7/ and "7 be given. The cube ¢/:7] is
a subcube of €71 if and only if [I,J] C [I’,J'], ie., I' CI C J C J.
In particular, the poset

{LJ] [rcJcld}, Q)

describes the face-lattice of €?. We will identify [I, J] and ¢l/+7].
The edges of such a cube are labeled in a natural way: The label of

an edge {u, v} is the unique A € u®v. We will refer to edges with label
A as A-edges. The set of all labels is called the carrier,
carr ¢l = g\ I.

See for an example of a cube.

10

2.1 The Cube

[{3},{2,3,5}]

Figure 2.1: The cube ¢{3H{1:2:35} with edge-labels.

Up to isomorphism, a cube is completely determined by the cardinal-
ity of its carrier: Let d = | carr €|. For any bijection 7 : [d] — carr € and
any vertex u € €, the map

[do2v—ud{r(\) | Aev}

is a bijection and maps A-edges to m(A)-edges. Therefore, this map
is a graph-isomorphism of cubes. In other words, a cube € is fully
determined by its dimension

dim € = | carr €.
A posteriori, this justifies talking about the standard d-cube €<, since

¢l o2 @I\ o @l NI

0/1-words: Another way to express cubes is via 0/1-words. A 0/1-
word of length d is a sequence u = (u1,...,uq) in {0,1}¢. The set
of all words carries a metric structure: Two words u,v € {0,1}¢ have
Hamming-distance k if they disagree in exactly k positions, i.e.

dp(u,v) = [{\ [ux #vr}].

11

2 Basics

11101
11100, 01101
10100 00101
010

00100
Figure 2.2: The cube ¢**10%,

From this viewpoint, a d-dimensional cube €? is the graph given by

ved) = {0,1}¢ 99
{u,v} € E(¢Y) <= dg(u,v)=1. (2:2)
In fact, as we can identify subsets of [d] with the characteristic vector
(seen as a 0/1-word), this definition of a cube coincides with the previous
definition. As for sets, we define @ as the component-wise operation
with0®1=160=1and040=101=0.
To express subcubes in the 0/1-world, we extend the alphabet by a
wildcard-symbol x. A word w € {0, 1, *}¢ defines a subcube €* by

V(@w):{ue{o,l}d‘VA:wx;ﬁ* = uy=uw}, (2.3)

i.e., w and u can only differ in labels A for which wy = *. See

The number of %’s in w equals the dimension of €¥. A subcube of
dimension k is called k-face. Furthermore, subcubes of dimension 0, 1
and d — 1 are called vertices, edges and facets, respectively. Similar to
edges we can define the notion of a A-facet. The upper \-facet is the
subcube defined by the word *...x1x...% consisting of *’s and one 1
at position A. Analogously, the lower A-facet is the subcube defined by
the word *...*0x%...* consisting of *’s and one 0 at position .

12

2.2 Unique Sinks

In general, for a subcube defined by w, the antipodal subcube is de-
fined the following way: Extend & to {0,1,*} by z @ % = x @ & = « for
x € {0,1,*}. Then, forw € {0, 1, *} the antipodal word is w = w®1---1
and €% is called antipodal to €.

2.2 Unique Sinks

Given a graph G = (V, E) a partial orientation is a map ¢ : L — V|
L C E, such that ¢(e) € eforalle € L. If L = E we call ¢ an orientation

of G. For an edge e = {u,v} with ¢(e) = v write u L 1 ¢ is clear
from the context we simply write u — v. The vertex v is called the sink
of e and wu is called the source of e. Furthermore, we say e is incoming in
v, directed towards v, and outgoing from u. The out-degree (in-degree)
of a vertex v is the number of outgoing (incoming) edges incident to v.

Two orientations ¢ of G = (V,E) and ¢’ of G' = (V', E') are iso-
morphic if there is a bijection o : V — V' which preserves edges
({u,v} € F <= {a(u),a(v)} € E’) and orientations:

ud vy = alu) 2, a(v).
In other words, an isomorphism of orientations is a graph-isomorphism
which maps sinks to sinks.

A vertex o in G is called sink of G if it has no outgoing edges, i.e.,
is sink of all incident edges. Accordingly, a source is a vertex with no
incoming edges. In a subcube € of €, the orientation ¢ induces an
orientation ¢’ by

u v = udo
for an edge {u,v} in @. The orientations we are interested in have
unique sinks in the induced orientations on all subcubes.

Definition 2.2
A unique sink orientation (USO) of the d-dimensional cube is an orien-
tation ¢ of €%, such that any subcube has a unique sink. More formally,

VICJC[d Fuell,J] VAeJJ\T:ud{A} - u (2.4)

13

2 Basics

Figure 2.3: The leftmost orientation has no global sink. The center ori-
entation has a global sink but the gray facet has two sinks.
Ergo both orientations are not USOs. The rightmost orien-
tation is a USO.

For instance, the leftmost orientation in has no global sink.
The center one has a global sink but is not a USO since one of its facets
has two sinks. Finally, the rightmost orientation is a USO.

As a small warm-up, we consider low dimensions. The 0-dimensional
cube €° consists of exactly one vertex and no edges. Obviously, this
one vertex has no outgoing edges, i.e., is the unique sink. The cube
¢! consists of two vertices u = () and v = {1} connected by one edge.
There are only two possible orientations, namely ¢;({u,v}) = u and
¢2({u,v}) = v. For ¢; the vertex u is the unique sink and for ¢, the
vertex v is the unique sink. In particular, for vertices and edges the
unique sink property is always satisfied.

The two-dimensional cube €2 has four vertices ug = 0, uy = {1},
uz = {2}, and uz = {1,2}. The edges are {ug,u1}, {uo,u2}, {u1,us}
and {ug,us}. An orientation ¢ assigns to each of these four edges one
of its incident vertices. Thus, there are 16 orientations of ¢2.

Let ¢ be an orientation of €2. If ¢ has no sink, each vertex has at
least one outgoing edge. Thus, ¢ must be a cycle. See the left picture

in [Figure 2.4 Now assume ¢ has a sink in vy € {ug,...,us}. That is,

its two incident edges {vg,v1} and {vg,ve} are directed towards vg. In
particular, v; and vo have at least two outgoing edges. Thus, for the
out-degree of v; and wvs three possible cases remain.

14

2.2 Unique Sinks

V2 V3
A
Y
) Vo V1

Figure 2.4: The cyclic orientation and the orientation with two sinks.

V2
U3 U1
U3 Vo
V2 Vo V1

Figure 2.5: The bow and the eye.

AN

1. The out-degree of both v; and vs is two. Then the edges {v1, v}
and {vg,vs} are both directed towards vs. Hence, vs is also sink
and ¢ is not a unique sink orientation. See the picture to the right

in [Figure 2.4

2. One vertex has out-degree 1 and the other vertex has out-degree
2. Without restriction vy is the vertex with out-degree 1. Then
the edge {v1,v3} is directed towards v;. In particular, vs is not a
sink. Thus, ¢ is a USO. See the picture to the left in

3. Both vertices have out-degree 1. Then both edges {vi,v3} and
{v9,v3} are outgoing in vs. Again vg is the only sink and ¢ is a
USO. See the picture to the right in

To construct a 2-dimensional USO we can either use the second case
or the third case of the above enumeration. In the second case we first
choose vg € {uo,...,us} and then ve from the two neighbors of vy. The
edges incident to vy we orient towards vy and the edges in v we direct
away from vy. This leaves one edge undirected, namely the edge between
the other neighbor vy of vy and the vertex vs antipodal to vg. By the
first case we have to orient this edge towards v; to obtain a USO. A

15

2 Basics

Figure 2.6: Only bows but no global sink.

USO of this type is called a bow. Since we have four choices for vy and
then two choices for vs, there are eight bows.

In the third case we again choose vg. Then we orient the edges incident
to vy towards vy and the edges incident to the antipodal point vz away
from wz. This type of USOs is called an eye. Since we only have four
choices for vy, there are four eyes.

Definition 2.3
An orientation ¢ of the d-dimensional cube €% is called 2-USO if every
2-face has a unique sink.

In other words, 2-USOs are the orientations which can be composed
of eyes and bows. It is not too surprising that there are 2-USOs which
are not USOs. See e.g. the orientation in |[Figure 2.6 However, the
class of 2-USOs is not much larger than the class of USOs. As is shown
by Matousek [27], the number of 2-USOs and the number of USOs are
asymptotically of the same order of magnitude in the exponent:

22(2losd) - < # d-dim. USOs
< # d-dim. 2-USOs < 90(27 log d)

Furthermore, for acyclic orientations the two classes coincide.

16

2.2 Unique Sinks

Theorem 2.4 ([17])
An acyclic 2-USO of a cube is a unique sink orientation.

For proving we need the following lemma.

Lemma 2.5
Let ¢ be an acyclic 2-USO. Then a sink in ¢ has a neighbor of out-degree
1.

PROOF. Let o be a sink of ¢ and N (o) the set of all neighbors of o.
Assume that every v € N(0) has at least two outgoing edges. By this
assumption, for every v € N (o), there is a label A, with v — v@® {\,} #
o. Since 0, v, v®{A, } and 0® {\, } form a 2-face in which o is the sink,
we have v @ {\,} = o® {\,}.

In particular, ¢ induces on N (o) U{v @ {A\,} |v € N(0)} a sink-less
orientation. Such a graph (and thus ¢ on the whole cube) contains a
cycle. This is a contradiction to ¢ being cyclic. Thus, at least one of
the neighbors of o has out-degree 1. [

PRroOOF OF [THEOREM 2.4l We show by induction on the dimension
that an acyclic 2-USO is a USO.

The statement is trivially true for dimension 2. Now assume the
statement is true for dimension d — 1. Let ¢ be an acyclic orientation
of the d-cube, such that every 2-face is a USO. By induction all facets
are USOs, since they are (d — 1)-dimensional. It remains to show that
there is exactly one global sink.

In particular, the lower and the upper facets along label d have unique
sinks o; and o, respectively. Since all other vertices have an outgoing
edge in their d-facet, o; and o, are the only candidates for a global sink.

If neither o; nor o, is a global sink, then all vertices have at least
one outgoing edge, hence ¢ contains a cycle. By assumption, this case
cannot occur, and at least one of the two vertices has to be a sink.

If 0; and o, are in a common A-facet, then, by induction, only one is
a sink in this facet, say o = ;. Since A # d vertex o is the unique global
sink.

The case remains that o; and o, are antipodal and at least one of
them is a global sink. We are done if we can rule out the possibility
that both are global sinks. Thus, assume o; and o, are both global

17

2 Basics

Figure 2.7: A cyclic unique sink orientation.

sinks. A neighbor v of o; is in a common facet with o,. In this facet,
0y, is a sink. So v has an outgoing edge different from v — o;. Thus, no

neighbor of 0; has out-degree 1 in contradiction to O

The following question arises: Are there cyclic USOs?
answers this question affirmatively.

2.3 Complexity Issues

Given a USQ, the goal is to find its sink. As there are 26(2"log d) USOs
of dimension d (see [27]), at least ©(2?logd) bits are needed to encode
a particular USO. Thus, if the USO is given explicitly as input to an
algorithm, we can find the sink in time linear in the input size by just
scanning through the vertices.

We will, however, adopt a different complexity model. A USO is given
implicitly by an oracle. Such oracle, when queried in a vertex, reveals
the orientation in this vertex.

Definition 2.6
Given a unique sink orientation ¢ on a cube €, the outmap s of ¢ is the
map assigning to every vertex the labels of outgoing edges, i.e.,

5:V(€) —204m¢ s N v —v@{\}}.

18

2.3 Complexity Issues

Any algorithm can access the outmap of a USO only via an oracle.
That is, the algorithm can ask for the outmap in one vertex at a time.
The task is to query the sink. The running time is measured in the
number of queries to the oracle.

As we will learn in the next chapter, many problems (such as linear
programming) can be transformed into unique sink orientations in such a
way that finding the sink of this orientation solves the original problem.
More concretely, given some problem P, we want to define an oracle for
a USO based on P. This oracle should be able to perform a vertex query
fast. Furthermore, after querying the sink of the USO, the solution to
P can be found fast. Hence, an oracle consists of two algorithms. One
algorithm computes s(v) from P. The other algorithm determines the
solution of P given the sink of s. If both algorithms have a polynomial
running time, the oracle is called polynomial-time unique sink oracle.
For such oracles, an algorithm finding the sink in a USO solves the
original problem with an additional polynomial factor.

Obviously, O(29) queries are enough to find the sink of a USO, since
after querying all 291 vertices of even cardinality, we know the entire
orientation. We aim for algorithms asking only o(2%) queries. In conse-
quence, we know only o(d2%) edges of the orientation. Such an algorithm
is unable to verify whether the oracle was based on a USO.

Let ¢ be a partial orientation on a cube, such that exactly two adja-
cent edges e; = {v ® {\1},v} and e3 = {v,v ® {A2}} are not oriented.
In the 2-face € spanned by the vertex v and the labels A1 and A3, only
the orientation in the vertex o = v @ {A\1, A2} antipodal to v is known.
Let ¢’ be an extension of ¢ such that

vov@{N} = -0 {\}

fori =1,2. A closer look at[Figure 2.5]shows that then € can neither be
an eye nor a bow, so ¢’ is not a USO. In consequence, it is undecidable if
an orientation is a USO as long as the orientation of less than (d—1)29~!
edges is known, since then there is at least one vertex for which the
orientation of two incident edges are unknown.

Definition 2.7
Given an outmap s on a d-dimensional cube, we consider the following
algorithmic problems:

19

2 Basics

e SINK is the problem of querying the sink of s provided that s is a
unique sink orientation.

o SINKORFALSIFY is the problem of either querying a sink of s or
finding a certificate for s not being a unique sink orientation.

If we know a bound on the number of queries for some algorithm
solving SINK, then this algorithm also solves SINKORFALSIFY: If the
algorithm needs too many queries on some orientation, the sequence of
queried vertices is a certificate that this orientation is not a USO.

Definition 2.8

For a deterministic algorithm A and a unique sink orientation s, let
t.a(s) be the number of queries of A until the sink is queried. The worst
case behavior of A is defined by

ta(d) := max {ta(s) | s d-dim. USO}.

Furthermore, let t(d) be the minimal t 4(d) over all deterministic al-
gorithms A solving SINK.

For randomized algorithms, in analogy to the deterministic case we
define t:

Definition 2.9

For a randomized algorithm A and a unique sink orientation s, let t (s)
be the expected number of queries of A until the sink is queried. The
worst case behavior of A is defined by

ta(d) == max {ta(s) | s d-dim. USO} .

Furthermore, let t(d) be the minimal t 4(d) over all randomized algo-
rithms A solving SINK.

In both definitions the algorithm has to query the sink in order to
terminate. For example, in dimension 0 any algorithm needs exactly
one query to find the sink, although we know the position of the sink.

20

2.4 Remarks

2.4 Remarks

The notation presented in this chapter follows [42]. To the best of our
knowledge, USOs in their full generality were first studied in [42] as inde-
pendent objects, even though the connection with linear programming
or linear complementarity problems has been made by other authors
before [40} [T]. The smaller class of acyclic USOs appeared much earlier
under several different names, e.g. pseudo-Boolean functions [16], ab-
stract objective functions [I], and completely unimodular numberings
[18].

Having in mind, one might hope that the acyclic USOs
can further be distinguished from general USOs. In fact, for acyclic
USOs there exists a randomized algorithm which requires a subexpo-
nential number of queries [9, [10]. For general USOs, no such algorithm
is known. In contrast, the question about the number of acyclic USOs
is still open.

Let us point out that the complexity model introduced in this chapter
has to be handled with care. Not only is it necessary that the transition
between concrete problems and USOs is polynomial. In addition, we are
only counting the number of vertex evaluations an algorithm requires.
Thus, in theory, between two vertex evaluations, an algorithm for finding
the sink in a USO can spend exponential time without increasing its
“running time”. However, so far, no algorithm for this problem actually
makes use of this additional power. The main reason is that we do not
know how to use it.

21

2 Basics

22

3 Sources

There was a red-haired
man who had no eyes or
ears. Neither did he have
any hair, so he was called
red-haired theoretically.

(Daniil Kharms)

23

3 Sources

In this chapter we will often consider R¢ as a vector space. From
now on we fix the standard basis {ej,...,eq} of unit vectors. In par-
ticular, linear functions and matrices are identified with respect to the
standard basis. Furthermore, we use the standard scalar product (,)
on R?. The symbol I denotes the identity matrix of the appropriate
dimension. Also 0 represents the origin of the appropriate space. If
not defined otherwise, operations are performed component-wise. For
instance, R" := {# € R" |2 > 0} is the set of all non-negative vectors
in R™, also known as the non-negative orthant.

3.1 Linear Programming

In linear programming, the aim is to maximize a linear function over a
polyhedron. A polyhedron is defined as the intersection of finitely many
half-spaces. A bounded polyhedron is called polytope. In the following,
we will restrict our attention to polyhedra of the form P = H N RY,
where H is an affine subspace of R". In this setup, a polyhedron is fully
determined by a matrix A € R™*™ and a vector b € R™, namely

H(Ab) = {zeR" |Axz=0b} (3.1)
P(AD) = HALNRY ={zcR" |Az =0, x2>0}.(3.2)

In fact, up to affine transformation every polyhedron can be described
by a P(A,b). For more details on polytopes and polyhedra see [44].
For a simple example, see

A linear program is defined by a matrix A € R™*™ and vectors b € R™
and ¢ € R™. The goal is then to solve the following problem:

max CT

such that Az
T

8

AVANI

b
0,
that is, we want to maximize the linear function x — ¢’z over the
polyhedron P(A,b). We denote this linear program by LP(A, b, c). The
function x — ¢’z is called objective function.

A polyhedron may be empty or may contain points with arbitrary
large values of ¢’ x. In these cases, the linear program is called infeasible,
respectively unbounded.

24

3.1 Linear Programming

{1,3,4 —4

{1,5}

{2,3,4,5}
~6

Figure 3.1: The above three-dimensional polytope P can be realized as
a subset of R®. It is the intersection of the non-negative
orthant and the affine subspace given by the two equations
x1+xot+a3—x4 =1 and x1+x2+x3+25 = 1/2. On the left
we see the J’s for some faces with respect to this realization.
On the right the same polytope is directed according to the
ascent of the linear function ¢ = (-2, -6, —8,0,0).

A face F of a polyhedron P = P(A,b) is defined by tightening some of
the non-negativity constraints: For J C [n], we require all coordinates
outside J to be zero, and define the face

FP,J)={zeR" |[Az=b2>0,Vid J:2,=0}.

By identifying R” with {x € R™ | Vi ¢ J : ; = 0} a face can be written
compactly as
F(P,J)=PNR’. (3.3)
A face F can have different J’s representing it. But if F(P,J;) = F =
F(P, Js) then also F = F(P,J; N Jz). Thus, there is a minimal .J
representing F.
The face lattice of a polyhedron P is the poset

({FP.) 17Sm}.C).
Two polyhedra are called combinatorially equivalent if they have iso-

morphic face lattices. As usual, the faces directly above @) are called

25

3 Sources

vertices, the faces directly above vertices are edges and facets are the
faces directly below P.

If a linear program has a finite optimal value, the optimum is always
attained in a vertex. Thus, from a combinatorial point of view, we can
abstract from the concrete values and consider only the ordering of the
vertices induced by the objective function. To avoid technical problems
we restrict ourselves in this section to polytopes. For polytopes any
objective function yields a finite optimum.

Definition 3.1
An abstract objective function on a (combinatorial) polytope P is a
partial order < of the vertices of P, such that every face has a unique
maximal vertex.

Abstract objective functions were first defined by Alder and Saigal
[1]. They provide the general framework in which the first combinatorial
subexponential algorithm RANDOMFACET [21] works.

In a sufficiently generic linear program, the linear function ¢ assigns
a different value to each vertex. (If two vertices have the same value,
a slight perturbation of ¢ resolves this problem.) Order the vertices
according to their values, i.e., set u < v if ¢"u < ¢’v. Then the relation
< is a finite linear order on the set of vertices. In particular, every set
of vertices has a maximum and < defines an abstract objective function
on P. Thus, abstract objective functions are a generalization of linear
programming.

Moreover, abstract objective functions are the link between linear pro-
gramming and unique sink orientations. Any abstract objective function
defines an orientation of the edge-graph of P: for an edge {u, v}, direct

U— V<= u <. (3.4)

With this orientation, a maximum of a face is a sink of this face. Con-
sequently, if we start with an abstract objective function, every face has
a unique sink.

Definition 3.2
A unique sink orientation of a polytope P is an orientation of the edge
graph of P, such that every face has a unique sink.

26

3.1 Linear Programming

As we have just seen, every abstract objective function induces a
unique sink orientation of P. A unique sink orientation induced by an
abstract objective function < cannot have cycles: A path u; — us —

. — u, induces u; < u,. Thus, in particular, u; # u,. On the other
hand, if a unique sink orientation is acyclic, we can find a linear order
< on the vertices, such that an edge © — v implies © < v. Since the
ordering is linear every face (even every set of vertices) has a unique
maximum and < is an abstract objective function. Therefore, abstract
objective functions and acyclic unique sink orientations describe the
same object.

Abstract objective functions are more general than linear program-
ming. shows two acyclic unique sink orientations which are
not induced by a linear program. In general, it is difficult to decide if
an abstract objective function can be obtained from a linear program.
Nevertheless, for the orientations in the following theorem by
Holt and Klee [19] is sufficient.

Theorem 3.3 ([19])

Let ¢ be a unique sink orientation of a d-dimensional polytope induced
by a linear program. Then every k-dimensional face (k < d) has a
unique source and a unique sink and k vertex-disjoint paths from source
to sink.

It is easy to check that in the two examples in there
exist only two vertex-disjoint paths from the global source to the global

sink. Hence, the orientations cannot be induced by a linear program. In
general, the Holt-Klee condition is not sufficient. For a four-dimensional
example of a USO which satisfies the Holt-Klee condition but is not
realizable see [32].

Definition 3.2| already defines unique sink orientations of cubes. But
it is misleading for all but this section to think of a cube as a geometric
object. Instead, unique sink orientations of cubes are rather orientations
of the Boolean lattice than a geometric cube.

27

3 Sources

Figure 3.2: Two acyclic USOs which are not induced by a linear pro-
gram. The two highlighted paths share the vertex v.

3.2 Linear Complementarity Problems

Given a matrix M € R™*™ and a vector ¢ € R", the linear complemen-
tarity problem LCP(M,q) is to find vectors w, z € R", such that

g

|

=

w
AVAR\VARNII
o o ow

is satisfied. Obviously, such vectors do not exist for all M and ¢. For
instance, w — Mz = ¢ might not be solvable. But if the vectors exist,
then for ¢ with w; > 0 the coordinate z; has to be 0 and vice versa
(since w, z are non-negative). In other words, the non-zero entries of a
solution to LCP(M, q) are complementary.

In the following discussion we will restrict our attention to so-called
P-matrices, i.e., matrices for which all principal minors are positive. P-
matrices are such that their corresponding LCP is always solvable, for

any q.

28

3.2 Linear Complementarity Problems

Theorem 3.4 ([37])
A matrix M € R™"™ is a P-matrix if and only if for all ¢ € R"™ the
linear complementarity problem, LC P(M, q), has a unique solution.

For a proof, see e.g. [6, Chapter 3.3].

If we knew the orthogonal coordinate subspaces RY" and RI™*" in
which the solution w*, z* of LCP(M, q) lives in, i.e., if we knew v* C [n],
such that w* € R¥" and z* € R"\?" | the vectors w* and z* would solve

w—Mz = q
w € RY (3.5)
z € RPN\,

For a P-matrix is a system of linear equations in 2n variables of
rank 2n. Hence, knowing v* solves the LCP (up to solving this system
of linear equations).

The equation system can be simplified in the following way:
For v C [n] and matrices A = (ai;)i jen) and B = (bi;)i jen define
(A | B), to be the matrix with the columns of A at position j € v and
the columns of B otherwise, i.e.

- ;5 JEV
(A]B).)ij = { AR (3.6)
For z € RY and y € R™\Y, we get

(A| B)y(z+y) = Az + By.

Let T represent the identity matrix (of the appropriate dimension).
Hence, for w € RY and z € R"\?, we want to solve:

g=w—-—Mz=1|-M),(w+ 2).

The determinant of (I | —M), equals (up to its sign) the determinant
of the [n] \ v-minor of M. Thus, for a P-matrix, the system of linear
equations has a unique solution, namely

z(v) = (I| M), 'q.

As w and z are complementary one can extract w and z from z by
setting w; = x(v);, z; =0 for j € v and z; = x(v),;, w; = 0 otherwise.

29

3 Sources

Find w, z € R3 with

1 2 0 1
w—| 0 1 2 |z = 1
2 01 1
w > 0

z > 0

wlz = 0

Figure 3.3: An LCP and its orientation. The vertices are labeled by
their z(v). The highlighted edges form a cycle.

Since z(v) is unique for all v’s, a strategy for solving LCP(M, ¢) would
be to guess v and calculate z(v). If z(v) is a non-negative vector this
solves the LCP. If not, proceed with a different v.

Definition 3.5
For a P-matrix M € R™*™ and q € R", define an orientation on €" by

v—=v®{\} = (I|-M);'¢q)r<0. (3.7)

As we just discussed, a sink of this orientation would yield the solu-
tion of LCP(M,q). Also, the matrix (I | —M), ', and therefore the
orientation in a vertex, can be computed in polynomial time. In other
words, if the orientation is a USO this introduces a polynomial-time
unique sink oracle for linear complementarity problems. See
for an example of a cyclic USO defined by an LCP.

Theorem 3.6 ([40])
For a P-matrix M € R™*"™ and q € R™ the orientation in|Definition 3.5
is a unique sink orientation of €".

The crucial observation for the proof of [Theorem 3.6]is that a subcube
[I,J] of €" corresponds to the problem of finding w € R’ and z € R\

30

3.3 Strong LP-type Problems

with w — Mz = ¢, wTz = 0 and w;, z; > 0 for i € J \ I, which again is
a linear complementarity problem. For details see [40].

3.3 Strong LP-type Problems

Let us look once more at the reduction from LCP’s to USOs, now from
quite far away. The reduction associates to each subcube [I,J] of €" a
problem by strengthening/weakening constraints not in J \ I. Namely,
for i € J we require w; = 0 but relax z; > 0 and for ¢ € I we require
z; = 0 and relax w; > 0. The key observation is that for I = J, i.e., for a
vertex of €™ the corresponding problem is a system of linear equations
and can be solved easily.

The goal of this section is to work out a framework under which sim-
ilar reductions for optimization problems over the non-negative orthant
yield a USO. Motivated by the LCP-reduction, a possible attempt to
transform such a problem to a USO is the following: To sets I C J C [d]
(i.e., faces [I,J]) associate a domain (by strengthening/weakening the
positivity constraints not in J \ I) and solve the optimization problem
over this domain. Then compare the solutions. We do this in the hope
that the case I = J again is easy. This way we assign to a face given
by I C J C [d] a value w(I,J). On an abstract level we order the set of
faces.

Definition 3.7

Let (O, <) be a poset and w a mapping from the pairs (I,J) of sets
I CJCId] toO. Then w is called monotone if for all I C J C [d] and
r'cJ Cld

IClandJCJ = wd,J)<wl,J). (3.8)
It is called local if for all I; C Jy C [d] and I C Jy C [d]

w(ly, J1) = w(lz, J2)

< w(h mIQ,JlmJQ):UJ(Il U127J1UJ2). (39)

If w is monotone and local, the tuple (d,w, O, <) is called a strong LP-
type problem. The value of a strong LP-type problem (d,w,O, <) is
w(®, [d]).

31

3 Sources

Monotonicity for w does not refer to the face structure of ¢?. For
ICJC[dland I' C J" C|[d] the face [I, J] is a subface of [I’, J'] if and
only if I' C I C J C J'. In contrast, w is monotone with regard to the
component-wise inclusion relation on pairs of sets

(I,J)C(I',J') < ICI andJC.J. (3.10)

For monotone w’s the <-direction of locality is already satisfied. For
I CJ; Cd] and Iy C Jy C [d], obviously (for k =1,2)

(Iin Iz, Ji N J2) C (I, Jx) € (11 U la, J1 U Jo)
and therefore, by monotonicity,

U)(Il mIQ,JlmJQ) Sw([k,Jk) S ’LU(IlUIQ,JlUJQ)
= u/(I1 NIly,Ji N J2)

In particular, all four values are equal. Thus, for strong LP-type prob-
lems we can (and will) use the following form of locality:

w(Il,Jl) = 'lU(IQ,JQ) -
w(I1 mIQ,JlﬂJQ) :w(Il,Jl) (311)
= w(IQ, JQ) = w(Il UJy, U Jz).

In general, the optimization problem corresponding to the value of a
strong LP-type problem will be difficult to solve. But for a vertex v the
value w(v, v) can be found easily. A generic case for an LP-type problem
is to optimize some function f over the non-negative orthant. Subcubes
[1,J] correspond to a strengthening of the positivity constraints on co-
ordinates not in J and a weakening on coordinates in I. In other words,
we drop all conditions on x;, ¢ € I and require x; = 0 for j ¢ J. For
I =0 and J = [d], we get the original problem over the non-negative
orthant.

For I = v = J the problem simplifies to optimizing f over R". Thus,
after restriciting f to RV, we have to solve an unconstrainted opti-
mization problem. For a well-behaving function f, this can be solved
efficiently. Hence, the aim of an abstract strong LP-type problem is to
find a vertex v with w(v,v) = w(0, [d]).

32

3.3 Strong LP-type Problems

Definition 3.8

Let (d,w,0,<) be a strong LP-type problem and I C J C [d]. A
vertex v, I C v C J, is called a basis of [I,J] with respect to w if
w(v,v) =w(l,J).

We want to find a basis of [I, J] to determine w([, J). In consequence,
even if we would find a basis we could not verify it by its definition. A
local condition is needed and can be provided by locality of w. Since

w(v,v) = w(l,J) for a basis v, |(3.11)| yields
w(l,v) =w{I Nv,JNv) =w{lUv,JUv) =w(v,J).

Furthermore, by monotonicity the w-value of an edge [v,v U {\}] with
A € J\ v is sandwiched between w(v,v) and w(v,J) = w(v,v) and the
w-value of [v\ {u},v], p € v\ I is sandwiched between w(I,v) and
w(v,v) = w(v,J). Therefore, all these values are equal and v is a basis
of all its incident edges in [I, J].

Lemma 3.9

For a strong LP-type problem (d,w,0,<), a vertex v is a basis of a
subcube [I,J] if and only if it is a basis of all edges [v \ {\},v U {\}],
reJ\ I

PROOF. As we just argued for a basis v of [I,.J], the incident edges
(i.e., all {v @ {A},v}, A € J\ I) have basis v.

Now assume v is a basis of its incident edges in [I, J]. We will distin-
guish between edges towards subsets and edges towards supersets of v
and show that w(I,v) = w(v,v) = w(v, J). But then, by monotonicity,

w(v,v) =w(l,v) <w(,J) <w(v,J) =w(,v)

and v is a basis of [I, J].

For the equation w(v,v) = w(I,v) we have to show that v is a basis
of [\ {A\},v] for A€ v\ I. Let v\ I ={\1,...\x}. By induction on k
and locality, the equations w(v,v) = w(v \ {\;},v) imply

”LU(”U,’U) = w(v \ {>‘1a e 'a)‘i}?v)a

hence w(v,v) = w(v\ (v\I),v) = w(l,v). The same arguments for the
edges [v,v U {A}], A € J\ v proves w(v,v) = w(v,J). O

33

3 Sources

So far, we cannot guarantee the existence of a basis. But, what if
there is a basis v of [I,J]? If we divide [I,J] along a label A € J\ I
then the A-facet of [I, J] containing v must have the same w-value as

[1,J]. This is a direct consequence of Therefore, a basis

has a chance to exist mainly in strong LP-type problems of the following
type:

Definition 3.10

A strong LP-type problem (d,w, O, <) is called reducible if for any two
sets I C J C [d] and XA € J\ I, the value w(I,J) is attained in the
Mfacets of [1,J], i.e.

w(I,J) e {wI U{A}, J),w(I,J\{\D}.

If w is reducible then recursively we can trace the w-value of a cube
[1,J] over facets, ridges and so forth down to vertices. Thus, reducible
strong LP-type problems have bases. Furthermore, for two bases v, and
vy of [I, J], by definition, w(vy,v1) = w(I,J) = w(ve, va). Therefore, by
locality in the form of we can conclude that w(vi Nve,v1 Nwg) =
w(vy,v1) = w(I,J) and v; Nwvg is a basis. Hence, the inclusion-minimal
basis is unique. This proves the following lemma.

Lemma 3.11
Let (d,w, O, <) be a reducible strong LP-type problem and I C J C [d].
Then there is a unique inclusion-minimal basis of [I, J].

For a reducible strong LP-type problem (d,w, O, <) the value of an
edge [v,v U {A}] is either equal to w(v,v) or to w(v U {A},v U {A}).
Furthermore, by monotonicity

w(v,v) <w(w,vU{A}) <wU{A}vU{A}).

It is possible that both v and v U {A} are a basis. But v is the inclusion-
minimal basis of [v,v U {A}] if and only if it is a basis. If v is not
basis, then w(v,v) < w(v,vU{A}) and v U {A} is the inclusion-minimal
basis. Thus, if we orient the cube such that an edge points towards its
inclusion-minimal basis then v — v U {A} hods if and only if w(v,v) <
w(v,v U {A}). This yields a unique sink orientation.

34

3.3 Strong LP-type Problems

Theorem 3.12
Let (d,w, 0, <) be a reducible strong LP-type problem. Then the ori-
entation of ¢% defined by

v—=vU{A} <= wv,v) <wlv,vU{A})

is a unique sink orientation. Furthermore, the sink of a subcube [I, J]
is a basis of [I, J].

PROOF. We orient the cube in such a way that edges point towards
their inclusion-minimal basis. Given a subcube [I,J] of €¢ and a sink
o € [I,J], then o is inclusion-minimal basis of all its incident edges in
[1,J]. In particular, by o is a basis of [I,J]. It is also
inclusion-minimal as basis of [I,J]: If o was not inclusion-minimal we
would find a basis o' C o with w(o’,0) = w(o,0). By locality we can
assume that o’ and o differ in only one element. Hence, o would not be
an inclusion-minimal basis of the edge {0, 0}.

On the other hand, by an inclusion-minimal basis v of
[1,J] is a basis of all its incident edges. If v is not inclusion-minimal on
one edge, say {v@®{A}, v}, then A has to be in v and w(v&{A},v®{A}) =
w(v,v). But then v @ {A} is also a basis of [I,J] and v not inclusion-
minimal.

In conclusion each sink in [I, J] is a inclusion-minimal basis of [I, J].

By |[Lemma 3.11| [/, J] has exactly one such basis, i.e., [I, J] has a unique
sink. O

In order to find the orientation in a vertex we need to compute if
w(v,v) < w(v,v @ {A}) for all A € [n]. This can also be done by
evaluating w(v @ {A\},v @ {A\}). Thus, a vertex evaluation in the USO
of corresponds to at most d 4 1 evaluations of the form
w(v,v).

For the remainder of this section, we study the reverse question: For
which USO s can we find a reducible strong LP-type problem inducing
s? Let s be a USO on €% induced by some reducible strong LP-type
problem (d,w, O, <). The w-value of a subcube [I, J] of €% is given by
the w-value of the sink of [I, J]. Denote with o(I, J) the sink of such a
subcube [I,J]. Then s is induced by w if and only if

w(l,J)=w(o(I,J),o(I,J)). (3.12)

35

3 Sources

We can interpret o as a mapping from the pairs of sets I C J C [d] to
V(€). What if we set w = ¢? Can (d, 0, V(€), C) be a reducible strong
LP-type problem?

For any s, the function o is reducible. For a subcube [I, J] and a label
X € [I,J], its sink 0 = o (I, J) is either in the lower or the upper A-facet
of [I,J] and in this facet a sink. But then the o-value of this facet is
o=o(l,J).

Also o is local. Let [I1,.J;1] and [I2, J2] be two subcubes which have
the same sink o = o(I1,J;) = o(I3,J2). This sink is vertex of both
subcubes. In particular, [y Ul C v C J; N Jy and o is vertex in
[Iy NI, J; N Jo] as well as in [[; U Iz, J; U J3]. We have to show that o
is sink in both subcubes.

A label A € (J1NJ2) \ (I1 NI3) is not in I; or not in Ip. In the
first case A is in Ji \ I3, thus the edge {0 ® {\}, 0} is directed towards
o as o(I1,J;) = o. The second case is analogous. This shows that
o(ly NIy, J1 N J2) = o. Similarly, a label A € (J; U Ja) \ (I3 U I2) is in
Jy or Jy. Hence, A € J; \ I or J2 \ I and the A-edge in o is incoming.
In consequence, o(I; U Iz, J; U J3) = o.

As shows, o does not have to be monotone. On the other
hand, we will not find 7 C J C [d] and I’ C J' C [d] with (I,J) C
(I', J') such that o(I’,J") is proper subset of o(I,.J). That is, o is not
directly contradicting monotonicity: Let I C J C [d] and I' C J' C [d]
with (I,J) € (I, J') and o(I',J") C o(I,J), then o(I',J') = o(1,J).
Observe that

ICI Co(l',J)Co(l,J)CJ,

thus o = 0(I,J) and o’ = o(I’, J') are both in the subcube [I’, J]. Since
J\ T is a subset of J'\ I" as well as J \ I, for any A € J\ I’ the A-edge
incident to o as well as the A-edge incident to o’ are incoming. Hence,
o and o are sink of [I’, J] which can only be the case if o = o’.

We just argued that for any USO s the tuple (d, o, V(€), C) is nearly a
reducible strong LP-type problem. It fails to be monotone only because
of some missing relations. Namely, for I C J C [d] and I’ C J' C [d]
with (I,J) C (I, J') the sets o(I’, J') and o(I, J) have to be compara-
ble. If we add all resulting relations to the subset-relation and still have
a poset, we get a reducible strong LP-type problem. Otherwise, we fail
not only for o, i.e., no other (d, w, O, <) will have s as its USO.

36

3.3 Strong LP-type Problems

{1,2,3}

{2,3}

{1}4 {3}

Figure 3.4: The map o might be not monotone. The highlighted sub-
cube [0, {2, 3}] has sink {2} whereas the whole cube has sink

{1}.

Proposition 3.13
A unique sink orientation on € with outmap s is induced by a reducible
strong LP-type problem if and only if the digraph on V(&)

u~v <= u\vC[d\ (s(u)Us(v)) (3.13)
is acyclic except for loops.
PROOF. Let < be the transitive closure of ~-, i.e.
USRSV <= U, ..., U DU~ UL~ -~ U~ V.

Since for u C v the set u\ v is empty, ~ and therefore < is a refinement
of C. In particular, < is reflexive. It is transitive by definition. Finally,
it is antisymmetric if and only if (V(€),~~) has no other cycles except
loops.

If the relation < is antisymmetric, (d, o, V(€), <) can be shown to be
a reducible strong LP-type problem. As we argued above, o is already
reducible and local. For monotonicity, let (I,.J) C (I',J"), J' C [d] and
o=o(l,J), o =a(l',J). We have to show that o < o’. Since o is
the sink in [I,J] for A € J\ I the A-edge incident to o is incoming,

37

3 Sources

ie, A & s(o). Hence, J\ I
Furthermore, since o C J C
not in I’, we conclude

[d] \ s(o). Similarly, J'\ I' C [d] \ s(o).
and ICI'Co,al€o0\0 isin J but

-
JI

o\ CJI\NI'CJI\NINJ' \I' C[d]\ s(o)n][d]\ s(c).

Thus, o ~ 0.

We just showed that (d, o, V(€), <) is a reducible strong LP-type prob-
lem if and only if < is a poset which is the case if and only if ~ is
acyclic besides loops. Furthermore, for an edge {v,v U {A}} the value
o(v,v U{A}) # v = o(v,v) if and only if v — v U {A}. Hence, s is the
orientation defined by (d, o, V(€), <).

On the other hand, let (d,w,O,<) be a reducible strong LP-type
problem which induces s as its USO. For the relation < defined by s let
us first prove

u=v=wluu) <w,v).

As < is the transitive closure of ~-, it is enough to show the statement
for pairs u ~» v. For such a pair by definition u\ v is a subset of [d]\ s(u)
and [d] \ s(v). In particular, u\ (v Nv) = v\ v is disjoint from s(u) and
(uUw)\v=u\wvis disjoint from s(v). Hence, u is a sink in [u N v, u]
and v is a sink in [v,u Uv]. As s is the USO corresponding to w, by

and monotonicity of w we get
w(u,u) =w(uNv,u) <wl,uwUv) =w(,v).

We will show that < is antisymmetric. Take three vertices u,v,v’
with u ~ v 2 v/ < u. As we just showed, for such u, v and v’ the
inequality

w(u, u) < w(v,v) < w(v,v') < w(u,)
must hold. Therefore, w(u,u) = w(v,v) and by locality the two values
w(uNov,uNv) and w(uUv,uUv) are equal. Assume thereisa A € u\v.
Since u ~~ v, this label A is not in s(u). Thus, the edge {u \ {\},u} is
directed towards u. As the orientation s is defined by w the vertex u
is a sink of {u \ {A},u} if and only if w(u \ {A},u\ {A\}) <w(u\ {A}).

Hence

wuNv,uno) < wu\{A}Lu\{r})

38

3.3 Strong LP-type Problems

{1} ‘
{3}
0

Figure 3.5: Being reducible strong LP-type problem is not preserved by
isomorphism. Both pictures show (up to isomorphism) the
same (cyclic) USO. In the picture to the left the boxed num-
bers define a strong LP-type problem via w([, J) =[o (I, J)]
In the picture to the right the shaded arrows form a cycle
{12} ~ {1,3} ~ {2,3} = {1,2}.

A

w(u\ {A}, u)

w(uUv,uUv)

IN

= wuNuv,uNv),

a contradiction. Thus, u \ v = () and because of symmetry v \ u. But
then u and v have to be equal. This proves that < is antisymmetric.
Hence, ~~ has to be acyclic besides loops. [

shows two examples. For the USO on the left side ~~
is acyclic. It therefore can be defined by a reducible strong LP-type
problem. In the USO on the right side we have {1,2} ~» {2,3} ~»
{1,3} ~ {1,2}. Hence, this USO cannot be achieved by a reducible
strong LP-type problem. The two USOs are isomorphic, i.e., whether
or not a USO comes from a reducible strong LP-type problem is not
preserved under isomorphism.

39

3 Sources

3.4 Strictly Convex (Quadratic) Programming

A function f : D — R over a convex set D C R? is strictly convex if for
any z,y € D and 6 € [0, 1] the inequality

f0z+ (1 =0)y) <0f(x)+ (1 -0)f(y)

holds with equality only for 8 = 0,1. Laxly speaking, the line segment
connecting two points on the curve {(z, f(x)) | z € D} is always above
the curve. If a strictly convex function f attains its infimum over D, it
does so in a unique minimizer z*(D). If there would be two minimizers
x1 and z9 in D the line between these two would be above the curve of
f and therefore either f(z1) or f(z2) is not minimal.

In the following we will restrict to continuously differentiable strictly
convex functions f. For such f the gradient

(32

8:61 B 8xd
not only exists but determines minimizers:

Lemma 3.14 ([35, Chapter 2, Exercise 10])
Let D C RY be a convex set and f : D — R a continuously differentiable
strictly convex function. Then a point x* minimizes f over D iff

Ve e D: Vf(x*)(z—1a")>0. (3.14)

For an inner point 2* the conditionis equivalent to the equation
Vf(z*) = 0. Thus, the statement is mainly interesting for boundary
points. In particular, if D is not full-dimensional, every point in D is a
boundary point.

PROOF. For a unit vector u € R?, ||u|| = 1, the (one-sided) direc-
tional derivative of f along u at a point z € D is

Vo f(x) = lim fla+eu) — f(z)

e—0Tt €

We consider only the limit from above, as the points we are interested
in very well can be on the boundary of D. In particular, V, f(x) is not

40

3.4 Strictly Convex (Quadratic) Programming

defined for all w. The limit only exists if z+eu € D for sufficiently small
€.

By the chain rule applied to f and g : ¢ — x 4 tu, the directional
derivative and the gradient are connected by

Vuf(z) =V f(z)- u.

We use directional derivatives to show that z* is a minimizer of f.
By scaling with ||z — z*||, can be equivalently formulated as:
Vuf(x*) > 0 for all unit vectors u for which it is defined. Here we need
convexity of D. By convexity, V, f(z*) is defined if there exists some z
with @ — z* = ||z — z*||u.

First assume there is a unit vector u with V, f(z*) < 0. Then for
sufficiently small €, the vector x* + eu is in D and

fla" +eu) = f(z7)

€

< 0.

In particular, * + eu proves that x* is not minimal.

Now assume that * does not minimize f. Then there is a point x € D
and some A > 0 with f(z) = f(z*) — A. Since f and D are convex for
any 0 € [0,1] the point (1 — 8)a* + 0z is in D and has f-value

F(L=0)z" +0x) < (1—0)f(2") +0f(z) = f(z") — OA.
Hence, for all €, 0 < € < ||z — 2*|| and u = (& — z*) /|| — z*|| we get

St e —fa) A

€ e —ax| =7
which shows V,, f(z*) < 0. O

The problem of strictly convex programming is to minimize a strictly
convex function f over the non-negative orthant, i.e., we want to find
x* with

f(@) = min {f(z) | = > 0} (3.15)
which if exists, is unique. The main problem for such programs is caused
by the non-negativity constraints. The unconstrained variant to mini-
mize f (even over some linear subspace IRY) is considerably easier and
(for suitable f) can be solved using analytical methods.

41

3 Sources

Again we have the situation that the problem we are interested in
is difficult, but modifying the constraints we end up with a solvable
problem. This suggests to connect to strong LP-type problems. For
I C J C [d] consider the set

C(I,J)={zeR |a;>0forigl, z;=0forigJ}. (3.16)

In other words, starting from the non-negative orthant we drop the
conditions in I and strengthen the conditions outside J. Such a C(I,J)
is a convex cone, i.e., it is a convex set such that for any « € C(I,J) and
a positive a € R the point ax € C(I, J). From that point of view C(I, J)
is the smallest convex cone containing {—e; |i € I} U {e; |i € J} and
the origin (where e; is the i-th unit vector). In particular, a cone C(I, J)
is contained in C(I',J’) if and ounly if (I,J) C (I',J').

Theorem 3.15

Let f : R* — R be a continuously differentiable strictly convex function,
such that for any I C J C [d], a unique minimizer x*(I,J) over C(I, J)
exists. Then for w: {(I,J) | I C J C [d]} — R with

w(I, J) = (— F@(1,.0), 2 (I, J)) (3.17)

the tuple (d,w, R4, <i.,) is a reducible strong LP-type problem.

PROOF. For sets I C J C [d] and I' C J' C [d] with (I,J) C (I, J")
the cone C(I, J) is contained in C(I’, J'). As a*(I’,J’) is minimizing over
a larger set than z*(I,J), for y = f(z*(I,J)) and ¢’ = f(z*(I',J"))
the inequality ¥’ < y holds. Furthermore, if ¥/ = y, uniqueness im-
plies «*(I',J') = «*(I,J), that is w(I’, J') = w(I,J). If on the other
hand ¢y’ < y, then lexicographically w(I,J) = (—y,...) is smaller than
w(l’,J") = (—y,...). Hence, w is monotone.

For locality take sets Iy C J; C [d] and Iy C Jp C [d] with w(Iy, J;) =
w(ls, J3). In particular, the minimizer

.’17*(]1, Jl) = LL'*(IQ, JQ) = $*

is in both cones C(I1, J1) and C(Is, J2). But then af >0 for i € Iy N I,
and 7 = 0fori &€ JiNJa, so z* € C(I1NI2, J1NJ3). As z* is minimizing
the larger cone, C(I, J1) this proves z*(I; N I, J; N J3) = x*.

42

3.4 Strictly Convex (Quadratic) Programming

For z*(I; U Iz, J; U J2) = z* we use [Lemma 3.14] Take some point

x € C(Iy U Iy, Jy UJs). We decompose x into two parts mx € C(I, J1)
and mex € C(Ia, Ja). For such decomposition of « we get by [Lemma 3.14

Vi) (x—2%) = Vf(@*)(me—a*+mz—2" +2%)
= Vf(@*)(mz—z*)+ Vf(z")(mx —) +
Vf(a®)(22" — %)
> 0

since x* is optimal in C(I;, J;) and 2z* € C(I1, J1). Such decomposition
can be achieved by e.g. the orthogonal projection 7 onto R(/1\/2)UN
and Ty = id —77.

It remains to show that w is reducible. For I C J C [d] and X\ €
J\ I the coordinate z*(I,J)y is either 0 or positive. In the first case
x*(I,J) € C(I,J\ {\}) and optimal in this cone (since C(I,J \ {A\}) C
C(1,J)). In the second case z* = x*(I, J) is optimal in C(I U {A}, J): If
there would be a better point & € C(IU{\}, J) then for sufficiently small
€ the point z. = (1 — €)x* + €& would be in C(1,J) and f(z.) < f(z*)
by convexity, which contradicts optimality of x*. [

The proof of only once referred to the d-dimensional

suffix of w. If we only require that two subcubes have the same optimal
value, locality fails. We have to assure that subcubes with the same
w-value have the same minimizer. In that spirit, the last d coordinates
of w are a (huge) symbolic perturbation.

allows us to apply and reduce a strictly
convex program to a USO. In the next three corollaries we will give
reformulations of the orientation in [Theorem 3.12] in terms more suit-
able for strictly convex programs. In particular, we want to eliminate
references to w(v,v U {A}).

Corollary 3.16

Let f : R* — R be a continuously differentiable strictly convex function,
such that for any I C J C [d] a unique minimizer x*(I,J) over C(I,J)
exists. Then the orientation

v—=vU{A} <= 2*(v,v) is not optimal in C(v,v U {A})

43

3 Sources

defines a unique sink orientation on the cube ¢?. Furthermore, for the
sink o the point x*(0,0) minimizes f over the non-negative orthant.

PROOF. By [Theorem 3.15|the tuple (d, w, R4, <o) with w defined
as in |(3.17) is a reducible strong LP-type problem. Thus, by
e orientation v — v U {\} <= w(v,v) < w(v,v U {\})
defines a USO on €.

As z*(v,vU{A}) is minimizing over a larger set than z*(v,v), for the
f-values f(z*(v,v)) > f(z*(v,vU{A})) holds. In the case f(z*(v,v)) =
f(z*(v,vU{A})) the points z*(v,v) and x*(v,vU{A}) have to be equal,
as they both minimize C(v,v U {\}). But then w(v,v) = w(v,v U {A}).

In particular, w(v,v) < w(v,v U {A}) is equivalent to the inequality
f(z*(v,v)) > f(z*(v,v U {A})). The latter can only happen if z*(v, v)
is not optimal in C(v,v U {A}). O

Corollary 3.16| implicitly still refers to w(v,v U {A}). The following

two corollaries only consider the knowledge we have in v. Let us first
describe how to derive the orientation of an edge to a larger set.

Corollary 3.17

Let f : IR* — R be a continuously differentiable strictly convex function,
such that for any I C J C [d] a unique minimizer xz*(I,J) over C(I,J)
exists. Then the orientation

v—=vU{A} = (Vf(z"(v,v))), <0

defines a unique sink orientation on the cube €?. Furthermore, for the
sink o the point £*(0,0) minimizes f over the non-negative orthant.

PRrROOF. Let v C [d] and X € [d] \ v.

If v — v U{\} by [Corollary 3.16| * = x*(v,v) is not optimal in
C(v,v U {A}). Thus, blyLTm we find some = € C(v,v U {A})
with V f(z*)(z —2*) < 0. Since z € C(v,vU{A}) the M-entry o = x) is
non-negative and ' = x — aey, is in C(v,v). Thus

V(@) (2 —z*) +aVf(z*)er = Vf(z")(z — 2*) <O0.
By applied to C(v,v) the first expresion V f(x*) (2’ — z*) is

non-negative. Hence, (Vf(z*))x < 0.

44

3.4 Strictly Convex (Quadratic) Programming

Now assume (V f(z*))x < 0 and consider 2* + ey € C(v,vU{A}). We
get
V(") (x"+ex—z") =Vf(z")ex <0

and by [Lemma 3.14] z* is not optimal in C(v,v U {\}).

In summary, z* is not optimal in C(v,v U {A}) if and only if the
A-coordinate of V f(z*) is negative and

v—ovU{A} < (Vf(z*(v,0))), <0.

A

O

For the edges towards smaller vertices it suffices to know the corre-
sponding entry of z(v).

Corollary 3.18

Let f : R* — R be a continuously differentiable strictly convex function,
such that for any I C J C [d] a unique minimizer xz*(I, J) over C(I,J)
exists. Then the orientation

v\ {A\} = v <= z"(v,v)y >0

defines a unique sink orientation on the cube €?. Furthermore, for the
sink o the point £*(o0,0) minimizes f over the non-negative orthant.

PROOF. Again we want to know whether or not 2*(v\ {A}, v\ {\}) is
optimal in C(v\ {A},v). Since C(v\{\},v\{A}) C C(v\{A},v) C C(v,v),
we will distinguish the three cases z*(v,v)x > 0, z*(v,v)x = 0 and
x*(v,v) < 0.

If *(v,v)x > 0 then z*(v,v) is also optimal in the smaller domain
C(v\ {A\},v). For z*(v,v)y the point z*(v \ {A},v \ {A\}) cannot be
optimal in C(v \ {A\}, v).

In the case z*(v,v)x = 0 all three optimizers z*(v,v), z*(v \ {A\},v),
and z*(v\{A}, v\ {\}) have to coincide. In particular, z*(v\{A},v\{A})
is optimal in C(v \ {A},v).

Finally, if z*(v,v), is negative, for any point € C(v \ {A},v) the
segment between = and z*(v, v) intersects C(v \ {A}, v\ {A}), say in the
point xg = (1—0)z*(v,v)+60x. The function value f(xy) is by convexity
bounded by (1 — 0)f(z*(v,v)) + 0f(z). As f(x) > f(z*(v,v)) we can

45

3 Sources

bound f(xg) < f(z). In particular, the minimizer for C(v\{A},v) has to
be in C(v\{A},v\{A}). Hence, z*(v\{A}, v\{\}) minimizes C(v\{\},v).

In summary, z*(v\ {A},v\ {\}) is not optimal in C(v \ {\},v) if and
only if x*(v,v)x > 0. This proves the claim. O

As an example, let us consider strictly convexr quadratic functions.
Such a function f is given by a positive definite matrix Q € R¥¢, a
vector u € R? and a scalar o € R, namely

fx)=2TQx+uTz + a.

A strictly convex quadratic program is the problem of finding the min-
imizer of a strictly convex quadratic function f over the non-negative
orthant, i.e finding the unique z* with

f(@®) =min{f(z) |2>0}. (3.18)

As the name indicates such f is strictly convex. Also it is continuously
differentiable with

Vi) =27 (QF + Q) +u”. (3.19)

If every cone C(I,J) has a minimizer strict convex quadratic program-

ming can be transformed to a reducible strong LP-type by[Theorem 3.15
and to a USO by [Corollary 3.17] and [Corollary 3.18|

Lemma 3.19

Given a positive definite matrix Q € R4*?, a vector u € R?, a scalar
a € R, and I C J C [d] then the function f(x) = 27 Qxz +uTz + o has
a unique minimizer x*(1,J) in the cone C(I,J).

PROOF. As we already noted since f is convex it is enough to show
that there exists a minimizer in C(I, J).

Define § = inf {uTx ’ ||| = 1} and v = inf {xTQx ’ ||| = 1}.
Since the sphere {x | ||z|| =1} is compact both § and ~ are not in-
finite and since Q is positive definite v > 0. Now for r € R and x € R?
of norm one

ferz) =227 Qx4+ rulz + a > 2y +rf + o

46

3.5 Linear Programming Revisited

In particular, for any K > 0 there exists a ball Ly around the origin
such that f(x) > K for « ¢ L. Thus, for a large enough ball L around
the origin

inf{f(z) |z eCI,J)} =inf{f(z) |z €C(I,J)NL}.
Since C(I,J) N L is compact the infimum is attained. 0O

The advantage of strictly convex quadratic functions is that the gra-
dient is a linear function. In particular, we can test the conditions in
[Corollary 3.17] and [Corollary 3.18| efficiently.

Theorem 3.20
Let f: R% — R be a strictly convex quadratic function. For v C [d] let
x*(v) be the unique minimizer of f over R” and

swy={Aev [z"(v)x <0}U{re[d\v ‘ (Vf(x*(v))))\ <0}.
(3.20)
Then s : 2[4 — 2[4 defines a polynomial-time unique sink oracle for the
strictly convex quadratic program defined by f.

Proor. By [Corollary 3.17 and |Corollary 3.18] s is the outmap of
the strong LP-type problem defined by f. It remains to show that a
vertex evaluation can be done in polynomial time. To calculate s(v) it
is enough to find z*(v) and V f(z*(v)). Since C(v,v) = R” is a linear
subspace by x*(v) is the solution to

xy = 0 forAdwo
(Vf(x)x = 0 forrew

As Vf is a linear function this is a system of linear equations and can
be solved in polynomial time. Therefore, z*(v) and V f(z*(v)) can be
determined in polynomial time. []

3.5 Linear Programming Revisited

As we explained in every linear program LP(A,b, c) which
maximizes ¢Iz over the polyhedron P = P(A,b) = {x >0 | Az = b}

47

3 Sources

induces a unique sink orientation on P as long as P is bounded. But
only if P is a cube we are in the original setup of USOs on cubes. By
now we collected the ingredients to show that we can define a USO
capturing LP(A, b, ¢) for arbitrary A € R™*" b€ R™, ¢ € R™. We will
do so by viewing a linear program as a limit of quadratic programs. The
USO we define has nothing in common with the orientation defined in
In particular, if we start with an LP over a combinatorial
cube, the USO we get will be of much higher dimension than the original
cube.

For the sake of simplicity fix some notation. In this section, A will be a
matrix in R™*" b € R™ and ¢ € R™. Furthermore, P := P(A4,b) is the
polyhedron defined by {z € R™ | Ax = b,z > 0}. It is the intersection
of the affine space H := H(A,b) = {x € R" | Az = b} with the non-
negative orthant C* := C(@,[n]). Any face F of P can be described
by

F=Fwv)=PNR’ =HNR"NC*

for a v C [n]. As we start with a general matrix A, all of the above sets
are potentially empty. In the normal setting this is not a problem as ()
is a polyhedron and therefore a face of any polyhedron. Only for H = ()
we would have lied calling H an affine subspace.

One might already guess that we construct a USO by setting up a
correspondence between a vertex v of € and F(v). For this to work
it is crucial that for any v € V(€") we assign F(v) some meaningful
object. In other words, for all the vertices v for which we do not find a
corresponding face in P we have to fake a face.

Consider the Gram matrix A7 A. It is a symmetric matrix and for any
x,y € R"™ we know (Az, Ay) = <ATAx, y> The latter fact is enough to
show

ker ATA = kerA (3.21)
ImATA = ImAT (3.22)
kerATA®Im ATA = R" (3.23)

We will use Gram matrices to fake faces. Given a vertex v C [n] of
¢" we want to construct an affine subspace H(v) of R” which expresses
somehow the behavior of P relative to R”. If PNRY is non-empty, i.e.,

48

3.5 Linear Programming Revisited

F(v) is a proper face, we want to capture F(v). In this case H(v) is
best set to H(v) = HNRY. But what if H NRY is empty?

The set H N RY is given by the system of linear equations Ax = b
together with x; = 0 for 7 € v. Using the notation fromfor rz eR,
we get Ax = Ax + 0x = (A | 0),2z. Thus, if we define

Ay = (A]0), (3.24)

we can write HNRY = {z € R" | A,z = b}. So far, we just reformulated
the problem. But for the Gram matrix AT A, of A, the set

Hw):={z eR" | AJ A,z = Alb} (3.25)

is always an affine subspace of RV: By ATbh € Tm AT A,,. Thus,
we find some z € RY with ATA,x = ATb. Since the non-v-entries of
do not affect the value of A,x, we even find some z € R".

Furthermore, if H NIRY # () we can write H N RY as xg + ker A,, for
some g € HNRY. This xq satisfies AT A,z = ATb. Thus, H(v) =
z, + ker ATA,. Since ker AT A, = ker A,, in this case the two spaces
H(v) and HNIRY coincide.

In other words, for all v C [n] for which P N RY is a non-empty
face F(v) = H(v) N CT holds. We call such v feasible. Whenever v is
infeasible, i.e., P NIRY = 0, the set

F(v) :==H@)NC*T

will be called fake face. Even fake faces can be empty if H(v) does not
contain a non-negative point. But H(v) is always a well-behaved affine
subspace.

Definition 3.21
Let ACR™ ™ be R™ and ¢ € R". For v C [n] set

H(v) = {zeR’| AT Az = Alb} (3.26)
F(v) = H)nC . (3.27)

Furthermore, let x(v) be the orthogonal projection of the origin to H(v)
and c¢(v) the orthogonal projection of ¢ to ker ANRY.

49

3 Sources

The vector ¢(v) captures the influence of the objective function given
by ¢ inside H(v). That is, for two vectors x1,x9 € H(v) the difference
in the objective value according to ¢ and according to c¢(v) agrees:

cry —crg =c(xy —x2) = (c—c(v))(x1 — 22) + c(v)(z1 — 2)

= c¢(v)r1 — c(v)za.

(Remember that ¢ — c(v) is orthogonal to z; — x5 € ker ATA,.) In
particular, for a face F(v) an optimal solution with respect to ¢ can be
found by considering ¢(v) instead.

The point z(v) is a canonical reference point for H(v). In particular,
we can write

Hw) = z(v) + ker ANR".

Both z(v) and c(v) can be computed efficiently. As Im AT A, is or-
thogonal to ker AT A, and thus orthogonal to H(v), z(v) is the unique
vector in Im AT A, NH(v). Expressed by a system of linear equations a
solution (z,y) to

ATA, 0 2\ ATh
I —AT A, y) 0

determines xz(v) = z. Similarly, one can calculate c(v). As c¢(v) is the
projection of ¢ to ker AT A a solution (z,y) to

AT A, 0 - 0
0 (ATA,)? () _ | are
I AT A, Y c
yields ¢(v) = x.

Definition 3.22

For A C R™*"™ b € R™ and ¢ € R™ define an orientation ¢(A,b,c)
on €" by directing the edge between v C [n] and v \ {A\}, A € v the
following way:

v\ {A} = v <= c(v)x >0or (c(v)r =0 A z(v)y >0).

50

3.5 Linear Programming Revisited

:'E c(v) c(v)
T O\

Figure 3.6: The situation above illustrates the influence of ¢(v). The
gray area is F(v) and we look at the edge {v\ {\},v}. On
the left side we direct v — v \ {A} and on the right side

v\{A\} =

We direct v — v\{A} if and only if ¢(v)y < 0and c(v)y Z0V z(v)) <
0 which can be equivalently written as

v\ {A} —v <= ¢(v)x <0or (c(v)y =0Az(v)) <0).

The intuition behind this orientation is the following: Assume we have
two feasible faces F(v \ {A}) and F(v). If ¢(v)y > 0 then no point
in F(v\ {A}) can be optimal in F(v). On the other hand, if ¢(v) <
0 and = € F(v), the intersection point of F(v \ {\}) with the half-
line {z + ac(v) | @ >0} exists and has a better objective value than
x. Thus, optimality of F(v) is already attained in F(v \ {A}). See
Figure 3.6}

A feasible v with ¢(v) = 0 potentially is optimal. If it is not optimal
one of the v U {\} will reveal this. For instance, in the picture on the
right side of[Figure 3.6| 7 (v\ {\}) is not optimal, since ¢(v) has a positive
A-coordinate. But ¢ does not distinguish between optimal faces. A USO
capturing the LP has to tag a special face among the set of all optimal
faces and mark the corresponding v as sink. The orientation proposed
in does so by taking z(v) into account. The reasoning
behind this is the following: First of all z(v) is a generic point in H(v),
in particular, it can be computed efficiently. But even more important,

51

3 Sources

2(v)] F\ (A 2(0)®
> >

Figure 3.7: The situation above illustrates the influence of x(v). The
gray area is F(v). The vector ¢ is assumed to be orthogonal
to H(v). On the left side z(v) has a negative A-coordinate.
Thus, z(v) is not a feasible solution, but z(v\A) is. We direct
v — v\ {A\}. On the right side x(v) is feasible. In particular,
the A-entry of z(v) is positive and we direct v \ {A} — v.

x(v) is a potential optimizer. If we search for the face for which z(v) is
a non-negative point, the sink will not only reveal an optimal face but

also a solution in the optimal face. See

Let us now state the main result of this section:

Theorem 3.23
For ACR™ ™ be R™ and ¢ € R™ the orientation ¢(A,b,c) defines a
unique sink orientation on €.

We do not claim that this orientation is a unique sink oracle! A
minor obstacle is, that a vertex evaluation is only polynomial in n and
m rather than in n alone. But the core problem lies in the fact, that
the orientation has the unique sink property for arbitrary A, b and ¢,
even if the original problem LP(A,b,¢) is infeasible. Especially in the
case of infeasible LP’s we cannot provide a unique sink oracle. It is not
clear to what “optimal” solution the sink should correspond to.

The main idea for the proof of is to approximate the
linear program by a sequence of strictly convex quadratic programs.
Remember that for strictly convex quadratic programs the outmap of

52

3.5 Linear Programming Revisited

an edge is determined by the solution of a system of linear equations.
In consequence, at some point we will need to consider sequences of
systems of linear equations. The technical lemma in the background is
the following:

Lemma 3.24

Let M be a symmetric matrix over R%, k the orthogonal projection
onto ker M and ¢ the orthogonal projection onto Im M. Furthermore,
let y,z € R®. For € > 0 consider the system of linear equations

Mz + 2z = My + gz (3.28)

Then there is an ¢y = €y(M,y, z), such that for all ¢, 0 < € < € there
exists a unique solution x(¢) to and the sign pattern of z(¢) at

coordinate i is

Sgnx(e) = { sgn(wy); for (kz); =0

i sgn(kz); otherwise

For the proof we will only need that R? = ker M @ Im M. This is the
case for symmetric M.

PROOF. As det(M + €2I) is a non-zero polynomial in e there exists
some € = €'(M), such that for € with ¢ > € > 0 the matrix M + €I is
invertible. For these e there exists a unique solution z(°) to

MJ;—FeQx:My—F%z.

We will consider ¢(2(9)) and s(z(9)) separately.

Mz© + 220 = Z(2) + My(2) + 22
——

cker M €lm M

For the x-component since KMy = 0 the equation is rewritten as

Er(2'9) = w(My + %z) = %ﬂ(z)

Hence, r(z(9)) = %f)

53

3 Sources

The t-component case is a bit more involved. The corresponding
equation reads:

Mu(z'9) + u(2'9) = o (My + %z) = Mu(y) + %L(z)

(Since «(My) = My = M (k(y) +(y)) = M(y).) Basically, we have the
same equation for +(x(®)) as before projecting to Im M for z(¢). The only
difference is that now all vectors are in Im M which allows us to invert
M. More precicely, consider the linear functions g : ImM — Im M,
g(z) = Mz and g. : Im M — Im M, g.(z) = Mx+€x. Since ker M and
Im M are orthogonal, g has a trivial kernel. Furthermore, the g.’s are
restrictions of bijections. Thus, all maps are invertible. Furthermore,
ge — g (as elements of the normed algebra of automorphisms on Im M),

thus g-' — g~!. Applying this convergence to the equation above we
get
w = g7 (ge(x))
_ € _
= g9 (9(w) + 597 (1(2)

= g (9(t) + 0 =(y).
For a coordinate i € [n] with k(z); = 0 the sign pattern of zge) only
depends on ¢(z(9)). Since 1(z()) — 1(y) we find an ¢; = €;(M,y), such
that for e € (0,¢;) the point +(x(9)) has at most distance |¢(y);]/2 from
t(y). In particular, sgn xz(e) = sgn (y);.
For ¢ € [n] with k(2); # 0 we find an ¢; = ¢;(M,y,z), such that
for € < ¢; on the one hand [|¢(z(9) — ¢(y)|| < 1 and on the other hand

|(”2(:))i| > 1. For such e the sign pattern of mge) is determined by (52(5))i
Collecting all ¢; and € for ¢¢ = min{€,e1,...,€64} the statement of

the lemma holds. [
Proor oF [[THEOREM 3.23 As already indicated we will reduce the
LP to a sequence of strictly convex quadratic programs. For ¢ > 0 let

Q. = AT A + €21. This matrix is positive definite since for z € R

2TQex = 2T AT Az + 2aTx = || Az|| + €2z

54

3.5 Linear Programming Revisited

which is non-negative and equals 0 only for the O-vector. Therefore, the
function

f(@) = (Az—b)T(Azx —b) —ec’x + Eala
eT(ATA 4 ET)x — (20T A+)z +07b

is a strictly convex quadratic function. The idea behind f, is that for e —
0 the part (Az — b)T (Az — b) dominates ec’z and the latter dominates
e2xTx. Thus, minimizing f. over C* is similar to maximizing ¢’z over
P. In fact, we will show that for small € the USO defined by f. equals
$(A,b,).

To distinguish the USO defined by f. and ¢(A, b, ¢) let us write u —, v
if u is directed to v according to f.. For u = v\ {A} according to
[['heorem 3.20)

v\ {A} =cv = (@ 9D0)r>0

where x(é)(v) is the unique minimizer of f. over R, i.e., the solution to

z;, = 0 foridw
(Vf(x)); = 0 forienw.

As the gradient is Vf.(z) = 227 (AT A+€°T) — (2b7 A+ec™’) the equation
system is equivalent to

AT Ay + e = ATh+ %cv (3.29)

over RY (where (¢,); = ¢; for i € v and (¢,); = 0 otherwise).

Let M = ATA,, y = z(v) and z = ¢,. As 2(9(v) is the solution to
Mzx + €2x = My + €/2z, yields some €y = €g(M,y,z) =
€o(A, v, c), such that for € < ¢g and A € [n] the sign of 2(¢) (v), is positive
if and only if (kcy)x > 0, or (ke)y = 0 and (exz(v))x > 0.

For the rest of the prove let € < €. Per definition v\ {A\} —. v if and
only if 2(9)(v)y > 0 for A € v. Hence,

V\{A} mev <= (kep)a > 0o0r ((key)r =0A (Lz(v))y > 0).

It remains to show that k(c,) = ¢(v) and «(x(v)) = z(v). Since z(v)
is the minimal norm point in H(v), it is orthogonal to ker AT A4, i.e., in
(ker ATA,)t =Tm AT A,. This establishes ((z(v)) = z(v).

55

3 Sources

For k(c,) = ¢(v) it is enough to show that ¢ — k(c¢,) is orthogonal to
ker AT A,. In other words, we have to show that for all x € ker AT A,
the scalar products (z,c) and (z,k(c,)) are equal. We already know
that (z,c,) = (x,k(cy)) (as k(cy) is the orthogonal projection of ¢, onto
ker ATA,) and (z,¢) = (c,c,) (since ¢, is the orthogonal projection of
c onto R and « € R?). Hence, the desired equality is shown. [

With [Theorem 3.23| we established a reduction from any LP(A,b,c)

with n variables and m constraints to a USO of dimension n. Fur-
thermore, the reduction is polynomial in n and m. But as long as we
cannot relate the sink of the USO to an optimal solution of LP(A4,b,¢)
the reduction is useless.

Proposition 3.25
If the linear program LP(A, b, ¢) has an optimal solution then it attains
its optimum in x(0) of the unique sink o of ¢(A,b,c).

PROOF. If the linear program has an optimal solution the set of all
optimal solutions forms a face F = F(v). Let «* be the minimal norm
point in F and o := {\ | 2§ # 0}. We prove that o is a (and therefore
the) sink of ¢(A,b, ¢) and z* = z(0).

Since z* € H(o) NP we are in a feasible vertex. In particular, F(o)
is a nonempty face of P. Furthermore, o C v and in consequence F (o)
is a subface of F = F(v).

Since z* as an element of R? is strictly positive for small € the point
x* + ec(o0) is still in F(0). As a point in F(o) C F the objective value
of * + ec(0) equals the value of z*, so

0 =cl'(a* +ec(0)) — c'a* = ec’'c(0) = €||c(0)]?,

which shows ¢(0) = 0.

We use to show that * = z(0). Consider the norm
function g : z + ||z||. The gradient of g is Vg = 22T. For x € H(o) we
thus have to show that 227 (x — 2*) > 0. Since z* is strictly positive
in R° and z € R° we find some 6 > 0, such that 6(z — 2*) is strictly
positive in R°. This 6(z — z*) is in F(0). In F(o) we know that z* is
minimal norm point. Hence, 20z (z — z*) > 0.

In particular, for all A € o we know that ¢(0)y = 0 and z(0)x > 0,
ie, o\ {A\} —o.

56

3.5 Linear Programming Revisited

It remains to show that for A € [n] \ o we have o U {\} — o. For this
to happen either c(oU{A})x <0, or c(oU{A})x = 0 and z(ocU{A})» <0
has to hold. We will rule out all other sign patterns for ¢c(oU{A}), and
(o U {A})x.

First assume ¢(o U {A})x > 0. Choose € > 0 small enough, such that
zy, + ec(o U {A}), is still non-negative for p € o. For such e the point
x* 4+ ec(oU{A}) is in P. Furthermore

@* +eclou{N}) = cla* +eclcloU{N})
= o +ellcloU{AD)? > Lo

in contradiction to z* being optimal. Hence, c(o U {A})) < 0.

Now assume c(o U {A\})x = 0 and x(o U {A})» > 0. In this case
c(oU{A}) is not only in ker ANR"IM but in ker ANRY. Furthermore,
¢ —c(oU{\}) is orthogonal to ker ANTRY as well as to ker A N ROVIA
Thus, c(o U {A}) = c¢(o) = 0. But then F(o U {A}) is an optimal face,
i.e., subface of F. In particular, z(vU{A}) € H(oU{A}) C H(v). Since
x* is strictly positive in R” and we assumed z(o U {A\})x > 0, for some
6 € [0,1] the convex combination (1 — 0)z* + Ox(o U {\}) is still non-
negative. Hence, (1—0)z* +0x(oU{\}) € F. Furthermore, x(oU{\}) is
of smaller norm than z*, as 2* € H(oU{A}) but 23 = 0. In consequence,
by convexity of the norm function (1 — 0)z* + 6z(oU {A}) is a point of
smaller norm than z* in F. This contradicts the choice of x*. [

In contrast to the first reduction from linear programming to USOs in
this more general approach cycles can arise. See for example
The LP in is highly degenerate since the equation Az = b
has no positive solution. Ergo all faces are fake. In particular, the cycle
is found among the fake faces. So far, no example is known with a cycle
in the feasible region.

57

3 Sources

max Iy such that
0 0 1 47
0 3 -1]z = -33
1 -1 20 1
x > 0

O 37900
(0, —3491

1300

>~ 3191)

Figure 3.8: An LP with a cyclic USO. The matrix has full rank. Thus,
all H(v) are points and ¢(v) = 0. In particular, z(v) alone
decides the orientation. The vertices are labeled by their

2(v). The highlighted edges form a cycle.

o8

3.6 Remarks

3.6 Remarks

Abstract objective functions were first introduced by Adler and Saigal
[I]. They provide a general framework for the RANDOMFACET algo-
rithm. How exactly linear programming relates to the larger class of
abstract objective function is unknown up to now. In general, it is hard
to decide whether or not an abstract objective function can be realized
as linear program. The Holt-Klee condition is only a weak indication.

Recently, Develin [8] proved that the number of orientations induced
by linear programs compared to the orientations fulfilling the Holt-Klee
condition is vanishing as the dimension grows. His techniques can be
applied to all reductions to USOs where the orientation is decided ac-
cording to sign patterns of polynomials. In particular, all reductions in
this thesis are of such type.

The reduction from linear complementarity problems is historically
the first appearance of unique sink orientations. It was introduced by
Stickney and Watson [40].

The concept of strong LP-type problems was introduced by Gértner
[13] 11] to capture the combinatorial structure of quadratic programs. It
is called strong LP-type problem as by fixing one of the two parameters
one gets an LP-type problem. (For LP-type problems see [15]). The
definition of strong LP-type problems here is slightly more general than
Gértner’s approach, as here we allow arbitrary posets (O, <) whereas
originally O = R was assumed.

As it turns out this generalization allows us to capture strictly convex
quadratic programming as strong LP-type problem and thus is the more
natural definition.

The idea to view a linear program as a limit process of strictly convex
programs originates from Gértner [I3]. The reduction presented here is
particularly nice as the resulting USO can be described in terms of the
LP only.

The hope is that ¢(A, b, ¢) can be shown to be USO without the detour
via quadratic programming. In classical LP-theory one tends to assume
that an LP has a unique solution. The orientation ¢(A, b, ¢) has to deal
with degenerate cases and assigns some solution even to unbounded or
infeasible LP’s. The key to fully understand ¢(A,b,c) is a geometric
view to these solutions.

59

3 Sources

In the unbounded case ¢(A, b, c) answers a feasible ray as witness for
the unboundedness. Which ray? And how can one distinguish between
infeasible and unbounded cases? Both questions remain unanswered.

60

4 Structure

Viertes Geschoss: Hier
wohnt der Architekt. Er
geht auf in seinem Plan.
Dieses Gebaude steckt
voller Ideen! Es reicht von
Funda- bis Firmament,
Und vom Fundament bis
zur Firma.

(Einstlirzende Neubauten)

61

4 Structure

4.1 Outmaps

As we saw in the previous chapter, in the context of the optimization
problems that give rise to unique sink orientations of cubes, it is often
more adequate to look at an orientation in terms of its outmap

In the following, we will mostly take this latter point of view. How-
ever, the difference is linguistic, rather than structural and we do not
strictly distinguish between an actual unique sink orientation and its
outmap. In particular, we use the convenient shorthand USO for both.

The question then arises how one could discriminate unique sink
outmaps from ordinary maps. Simply using the definition for any sub-
cube [I, J] one needs to check wether or not there is a vertex I Cv C J
which is a sink in [/, J], i.e., for which the outmap satisfies s(v)NJ\I = ().
But as existence is in general difficult to verify or (even worse) falsify it
would be nice to find a more handy characterization of USOs.

The following basic but crucial observation provides us with such
a characterization: For a USO s on a cube € and a label A\ € carr €,
consider the two A-facets €; and €5. Since s is a unique sink orientation,
¢; and € have unique sinks o; and o9, respectively. Only these two
vertices have the potential to be the global sink, say o;. Then vertex
02 has to have its A-edge outgoing. After flipping all A-edges 07 is no
longer the global sink and oy takes over.

Lemma 4.1 ([42, Lemma 2.1])
Given a unique sink outmap s on a cube € and A C carr €. Then the
map

A®s:V(E) =20 s A@s(v) (4.1)

is a unique sink outmap on €.

The orientation A@s differs from s in exactly the A-edges. Thus, every
edge with label A € A is flipped. We will call A @ s the A-reorientation
of s.

PROOF. It is enough to prove the statement for A = {A}, as for
AN ={A1,..., ¢} one gets

Nas={M}D - {) Ds.

62

4.1 Outmaps

Split € into the two A-facets €; and €. A subcube €’ is either com-
pletely in one of the A-facets or divided into two faces. For the first
case the orientation in €’ is not affected by relabeling A (as € does not
contain A-edges), and thus has a unique sink.

In the second case €, = €' N ¢; are facets of €. Let o; be the sink
of €. Without loss of generality o; is the sink of € with respect to s.
With respect to {A\} & s the A-edge in 01 is outgoing, so o; is no longer
the sink. But now o3 is a sink. All other vertices in € have an outgoing
edge of label # . Thus, ¢’ has a unique sink. [

As a consequence of [Lemma 4.1] an outmap s of a USO is a bijection:
For a USO s consider a vertex v € V(€). It has outmap A = s(v). By

the map A @ s is a unique sink orientation. Its unique sink
isv (as A® s(v) = 0). Hence, in the original s no other vertex can have
the same outmap s(v), i.e., s is injective and therefore bijective.

Corollary 4.2 ([42, Lemma 2.2])
A unique sink outmap s on a cube € is a bijection from V(&) to 2¢%7 ¢,

Since a USO induces USOs on all subcubes not only is s bijective but
all its restrictions to subcubes are bijective as well. In particular, for
two vertices u, v their outmap values relative to the smallest subcube
containing v and v differ. The smallest subcube containing u and v
has carrier u @ v. The outmap value in w relative to this subcube is
s(u) N (u @ v) and the outmap value in v is s(v) N (u @ v). Hence, in
a USO for each pair of vertices u, v the set (s(u) ® s(v)) N (u ® v) has
to be non-empty. This turns out to be a complete characterization for
unique sink outmaps.

Proposition 4.3 ([42, Lemma 2.3])
Given a cube €, a map s : V(€) — 24" ¢ js a unique sink outmap on €
if and only if for all u,v € V(&) we have

(u@v) N (s(u) & s(v) # 0. (4.2)

PROOF. First assume s has property and fix a subcube €171 of
€. We have to show that ¢/>/] has a unique sink.

63

4 Structure

Consider the restricted map 5 : [I,J] — 27\
S(u) =s(u)NJ\I,

i.e., the outmap of the orientation on [I,J] induced by s. If § is not
injective there are u,v € [I,J], u # v, with §(u) = §(v). For these
vertices we get

(s(u) ds()NJ\IT=0

and since u @ v C J \ I this contradicts the assumption Ergo s is
injective, i.e., bijective. In particular there is exactly one sink o € [I, J].

Now assume s does not have the property and let u,v witness
its failure. But then, since (u @ v) N (s(u) & s(v)) = B, in the subcube
[uNwv,uUwv] both u and v have the same outmap A = s(u) N (v ®v) =
s(v) N (u® v). Thus, A & s has two sinks in [u N v, u U], i.e., is not a

USO. By [Cemma 4.1] s is not a USO either. O

Given a cube € and a € V(€) consider the map
D : V(E) = 2997¢ s v @a.

By @, is a USO. In a vertex v an edge is outgoing if the Hamming-
distance to a is decreasing along this edge. The orientation @, is called
uniform orientation towards a. See for an example of a
uniform orientation.

A uniform orientation is fully described by a and carr €. Furthermore,
up to isomorphism there is exactly one d-dimensional uniform orienta-
tions: The map @, itself is an isomorphism between the cube € with
the orientation €, and the cube 27" ¢ with the orientation id = ®y.
Whenever we write the uniform orientation we refer to ®y.

Using uniform orientations one can nicely write down isomorphisms
between USOs. Let s; and so be two USOs on €; and &, respectively.
A (digraph-)isomorphism ¥ : V(€;) — V(&) has to map the sink o; of
s1 to the sink o0 of so. Furthermore, the neighbors 01 ® {\}, A € carr &
map to neighbors oo ® {u}, p € carr €. Thus, ¥ induces a bijection
7 : carr € — carr € with U(o; @ {A}) = 02 @ {r(N\)}. But then for
A C carr €; the equation

V(o1 ®A) =02 ®T[A]

64

4.1 Outmaps

Figure 4.1: A uniform orientation. The vertices are labeled by their
Hamming-distance to the sink.

holds. Here 7[A] = {7(\) | A € A} is the image of A under 7.

As U is a digraph-isomorphism the edge {01 ® A0 @A ® {A}} in &
and its corresponding edge {02 ® T[A], 00 ® T[A] ® {7(A\)}} are oriented
the same way. For the outmaps this implies

T[s1(01 ® A)] = s2(02 © T[A]).

On the other hand, if we find such a 7 the corresponding ¥ is a digraph-
isomorphism.

Lemma 4.4

Two outmaps s; on € and s; on €y describe isomorphic orientations
if and only if there exist a; € V(€1), az € V(€2) and a bijection 7 :
carr €; — carr €o, such that for all v € V(&)

T[s1(v ® a1)] = s2(7[v] @ az) (4.3)

Given two isomorphic USOs s; and sy, we can rewrite the above
equation, such that s, is expressed in terms of s;. Set a = 7[a1] & as.
Then for all v € V(€3) we have sz(v) = 7[s1(771[v @ a])]. If we denote
the image-map A — 7[A] by 7’ then

so=7o0s10(7) " o@®,.

65

4 Structure

Given a USO s on €¢ the set of isomorphic USOs on €< has at least
2% members. Let o be the sink of s and a € V(€?). The map s o @,
has its sink in o @ a. Furthermore, as there are d! possible choices for 7
there are at most 2¢d! isomorphic USOs. Both upper and lower bound
are tight.

4.2 Algebraic Excursion

In the following we will mainly consider USOs on the standard cube 2[4

since an arbitrary cube € is isomorphic to 24 ¢ By |Corollary 4.2| a

USO s on €4 is a permutation of 2l4. The inverse s~! is a map from
gearr € — y7(gd) to V(€?) = 247" For vy, vy € 219 and 9; = s(v;) we
get

(01 ®D2) N (s7H(01) © s~ (02)) = (s(v1) B 5(v2)) N (01 B w2) # 0.

Hence, s~! satisfies and thus is a USO. This suggests to study the
set of all USOs on €“

USO(d) = {s :2ldl ., old] ’ s is a unique sink orientation} (4.4)

as a subset of the symmetric group Sya. In particular, one might ask
how USOs behave under the group operation o on the symmetric group.
We will study the following two questions:

1. Which subgroups of Sya operate on USO(d)?
2. What is the subgroup generated by USO(d)?

An easy example regarding the first question is given by the subgroup
({®a |a€29} o) = (21 g). This group operates on USO(d) from
the left as well as from the right: for any s € USO(d) the maps s o @,
and @, 0s are USOs (which is a direct consequence of . Both maps
we already saw, s o @, is the isomorphic image of s with sink in 0 ® a
(where o is the sink of s). And @, 0 s = a @ s is the a-reorientation of
s. shows how both operations perform on a USO.

Except for this rather simple group (and its subgroups) no other group
operates on USO(d).

66

4.2 Algebraic Excursion

Figure 4.2: A USO s (in the middle), so @y oy (left) and @y ,2) 0s. The
left orientation is the mirror image of the middle one along
the gray axis. In the right orientation the flipped edges are
highlighted.

Proposition 4.5
For a map g : 219 — 29 the following statements are equivalent:

(i) g = @, for some a C [d],

(ii) for all unique sink orientations s, s o g is a unique sink orientation
and

(iii) for all unique sink orientations s, go s is a unique sink orientation.

PROOF. We just argued that so @, and @, 0 s is a USO for all USOs
s and all a. This establishes (i)=-(ii) and (i)=>(iii).

In the following we proof (ii)=-(i) and then (iii)=(i) using (ii)=(i).
By g has to be a bijection for (ii) or (iii) to hold. For
(ii)=(i) we argue that for any u € V(&) the set g~!(u) ® g~ 1(0) equals
u. In fact, the main ingredient is that u C g=1(u) ® g~ ().

Assume s o g is a USO for all USOs s. Fix u C [d]. For A € u choose
a USO s = sy.z, such that s(u) = {A\} and s(@) = 0. Such an s reveals
AegTHu) @ g7 (0):

b # (sog(g 1(U))@SOQ(iU
(s(u) @ (@)ﬂ(Hu) ® g~

)N (g™ (u) ® g~ (0))
) 1
Mg (w e g ().

@)

67

4 Structure

If we find s, for all A € u, we get u C g~ (u) ® g~ 1(0). Such s,
exists, e.g.

_) Ao
= Loy Aes

is USQO, as one can easily verify by checking the USO-property.

Thus, the mapping h : u — g~ *(u) ® g~ (D) is bijective and for all
u € V(€) we have u C h(u). By induction on |u| we can conclude that
wand g~ (u) ® g~1(0) have to be equal. Hence

9 =@

and g = g~!. This proves (ii)=(i).

For (iii)=>(i) observe that if g o s is a USO then s~ o g~1 is a USO.
In particular, if (iii) holds for a map g, then (ii) holds for g='. Since
we already know that (ii) implies (i), we find an a with g~! = @,. But

theng=¢g'=®, O

The answer for the second question is that the smallest group con-
taining USO(d) is the symmetric group. Even worse, already the trans-
positions in USO(d) generate Sy(a.

Proposition 4.6
The group generated by all d-dimensional unique sink outmaps is the
symmetric group Syia).

PROOF. As a first step we characterize the transpositions of Sy
which are also in USO(d). For a C [d] and A € [d] consider the uniform
orientation towards () and in this orientation flip the edge between a and
a®{A}. Inevery vertex v C [d], v # a,a®{A} the corresponding outmap
is still s(v) = v. The outmap value of a in the uniform orientation
is a, now since the A-edge changed, it is s(a) = a @ {\}. Similarly,
s(a @ {\}) = a. Therefore, s is the transposition that exchanges a and
a ® {\}. We will prove that this is the only type of transposition in
USO(d).

Consider a transposition s = (a,b) € Sya. Then for all u,v € 2[4,
u,v € {a,b} is satisfied trivially and so is for the pair a,b. Only the

68

4.3 Phases

pairs a,u and b,u for u € 219\ {a, b} are interesting. Choose \ € a @ b.
If b # a® {A} then

(adad{A\})N(s(a)@s(adN)={ANnbead{\})=0
and s is not a USO. On the other hand, for b = a @ {A\} and u # a,b
(a®u)N(s(a)®s(u)=(adu)N(ad{\du)#£0

and symmetrically (b @ w) N (s(b) & s(u)) # 0, hence s is a USO. Thus,
a transposition is in USO(d) if and only if the two transposed sets have
Hamming-distance 1.

To show that USO(d) generates Sy it is enough to show how to
generate a general transposition (a,b) by transpositions flipping two
sets of Hamming-distance 1. The core observation is that for a, b, c we
have

(a,0)®) = (b, ¢)(a,b) (b, c) = (a,c).

Enumerating a @ b = {\1,...,\;} and setting a1 = a ® {\}, a;41 =
ai & {Ait1} we get
(a, b) = ((],7 al)l_[(amaul).

O

4.3 Phases

Given a USO s and a label A, how can one modify the A-edges of s? As
shown in flipping all M-edges simultaneously preserves the
USO-property. But what if we want to flip only a few edges? For in-
stance, the transposition (a,a®{\}) differs from the uniform orientation
in exactly the edge {a,a @ {\}}. Why was this edge flippable?

Let e be a A-edge incident with the sink o of a USO s. Flipping e
makes o a non-sink. To maintain the USO-property a new sink has
to be found. The only possible candidate is the sink o’ in the A-facet
antipodal to 0. Thus, the A-edge adjacent to o’ must be flipped too. As
s is a bijection the same argument goes through for all outmap-patterns.
Extending this further to subcubes leads to the following definition:

69

4 Structure

<
<
AN
<
<
Y A
((@)
Y
—<

Figure 4.3: A USO and its phases. Edges in phase are connected by a
shaded line.

Definition 4.7

Let s be a unique sink orientation of dimension d and A € [d]. Two
A-edges e; and e are in direct phase (which we denote by ey || es) if
there are vy € eq, Vs € eg, such that

(v ®v2) N (s(v1) ® s(va)) = {A}. (4.5)

Let e; and ey be two A-edges in direct phase. In particular, for the
witnesses v1 € e; and vy € ey the label A\ has to be in v @ vo. Hence,
v1 and wvg are in different A-facets. Furthermore,e; and ey have to be
directed towards the same A-facet: Since A € s(v1)®s(va), say A € s(v1),
the edge e; is leaving vy, i.e., pointing towards the A-facet containing
ve. The edge e is entering vo, i.e., also pointing towards this facet. See
for an example.

Consider a USO s with A-edges e and es in direct phase. Let v € e
and vy € ey witness that they are in phase. If one flips e; but not e
the resulting orientation s’ has a new outmap s'(v1) = s(v1) ® {A\} in v,
whereas in vo nothing changed, i.e., s’(ve) = s(vg). But then

(v1 ®w2) N (8" (v1) B ' (v2)) = (v1 B v2) N (s(v1) B s(v2)) ®{N} =10

and s’ is not a USO.

70

4.3 Phases

In consequence, to preserve the USO-property one has to flip edges
in phase simultaneously. As an edge is directly in phase with itself
and being directly in phase is symmetric, the transitive closure is an
equivalence relation.

Definition 4.8

Given a unique sink orientation s, let ||| be the transitive closure of ||.
The phase of an edge e is the set of all edges in phase to e, {e’ | e || € }.
A phase of \-edges is called a A-phase.

As ||| is an equivalence relation the set of edges is partitioned into
phases. Every phase is a A-phase for some A since edges in phase are of
the same label.

Proposition 4.9

Let L be a set of non-adjacent edges in a unique sink orientation s. The
orientation s’ one obtains by flipping all edges in L is a unique sink
orientation if and only if L is a union of phases.

PROOF. The set L is a union of phases if and only if it is closed under
Il

First assume L is closed under |||. We will verify that s’ is a USO
by checking i.e., for pairs u,v of vertices we show that the set
(u®v) N (s'(u) ® s'(v)) is not empty. The sets s'(u) and s(u) differ at
most in one element as u is incident to at most one edge in L.

If neither of v and v are incident to edges in L, s(u) = s'(u) and
s(v) = §/(v) and there is nothing to prove.

If exactly one of the vertices is incident to an edge in L, say e =
{u,u®{A}} € L, then s'(u) = s(u)®{A} and s'(v) = s(v). Furthermore,
since the A-edge in v is not in L, the two edges e and {v,v ® {A}} are
not in A-phase. In particular, (u ® v) N (s(u) ® s(v)) # {A}. Hence,
(u®v)N(s'(u) @ s'(v)) is not empty.

If v and v are both incident to A-edges in L we flip both edges. That
is, ' (u) ® s’ (v) = (s(u) ®{A}) @ (s(v) B {A}) = s(u) B s(v) and this case
is also good.

Finally, consider two vertices u and v incident to edges in L of different
label, say e, = {u,u®{A\}}, e, = {v,v®{p}} € L. H{\ u}nudv =10,

71

4 Structure

the values (u®v) N (s(u) ® s(v)) and (v dv) N (s'(u) D s'(v)) are equal,
hence nonempty.

For A € u® v and pu & u @ v the edge e, and the A-edges incident
to v cannot be in phase. If they were, the A\-edge incident to v would
be in L. But then L would contain two adjacent edges. Thus, the set
(u®v) N (s(u) @ s(v)) contains a label different from A. This label is
also in the set (u@v) N (s'(u) ® s’ (v)). The case A ¢ udv and p € udw
is resolved symmetrically.

If A\, € u® v consider the vertex w in [u N v,u U v] with outmap
s(w)N(udv) = (s(u) ®{A}) N (u@v). Such a vertex exists since s
induces a bijection on [uNwv,uUv]. The A-edge incident to w is in phase
with e,.

Assume (u @ v) N (s'(u) @ s'(v)) = 0. This can happen only if the set
(u®v) N (s(u) ® s(v)) is equal to {A, u}. But then the p-edge incident
to w is in phase to e, with respect to s. This cannot be since then both
the A- and the p-edge incident to w would be in L.

For the back-direction assume L is not closed under |||. We will show
that then s’ is not a USO. In this case one finds edges e and €’ being in
phase and e € L but ¢’ ¢ L. As ||| is the transitive closure of || we find
a sequence of edges eq, es, ..., e, with

e=ej|lea] | ex=¢.

Along this sequence at some point we will leave L, i.e., for some i the
edge e; is in L but e;y; is not. Let v; € e; and v;y1 € e;41 Wwitness
€ || eit1- Then (v; ® viy1) N (s(vi) ® s(viy1)) = {A}. Since e; € L we
have s'(v;) = s(v;) @ {\} and since e;11 ¢ L the outmap values s'(v;11)
and s(v;41) agree. But then (v; ® v;41) N (s’ (v;) B 8’ (vi41)) is empty,
i.e., s’ is not USO. O

In the uniform orientation every edge is only in phase to itself. If one
chooses two edges incident to the sink then flipping the edges in L gives
a 2-face with two sinks. This shows that we cannot drop the condition
that L contain only non-adjacent edges.

The simplest way to find a set L without adjacent edges is to take only
edges of the same label. In particular, is applicable to
the set of all \-edges. Thus, [Cemma 4.T|can be seen as a simple corollary

of (We heavily used [Proposition 4.3} i.e., [Lemma 4.1|

72

4.3 Phases

< <
N N
N A N
< <
N N
Y N A A
y 2 ¢ < ¢
Y
—=< <

Figure 4.4: Flipping a phase affects other phases. Both USOs differ in
one phase.

in the proof of |Proposition 4.9]) Flipping a set of A-edges will not affect
the A-phases. But it highly affects the phases of other labels. See for

example

Proposition 4.10
Every unique sink orientation can be obtained from the uniform orien-
tation by successively flipping at most d sets of edges.

Proor. We will argue backwards, i.e., starting from a USO s we
describe how to flip edges, such that after d flips we get the uniform
orientation.

Let s;1 = s. Let Ly be the set of all A-edges in s, pointing towards
the upper A-facet. The orientation syy1 is obtained from sy by flipping
Ly. Since edges in phase are directed the same way L) is a union of
phases and can be flipped.

After at most d flips all edges point towards the corresponding lower
facet and therefore s4 is the uniform orientation. [J

The construction in [Proposition 4.10f gives rise to a random process.
For a USO s, first choose a label A uniformly at random. Now choose
a set L uniformly at random from the set of all unions of A\-phases and

73

4 Structure

flip L. Call this USO sp. As sy, differs from s exactly in the edges in L,
the A-phases of s and s, agree and (s.)r = s.

For a d-dimensional USO s let ph,(s) be the number of A-phases.
The above random process is described by the following transition-
probability:

Zi:l 2-P() for 5 = ¢
Pss’ = 27 Pha(s) for s’ = sp, L collection of A-phases
0 otherwise
(4.6)
The set L is the unique set of edges in which s and s’ differ and therefore
Ds,s is well-defined. These probabilities define a Markov chain.

We recall the definition of a Markov chain. For a detailed discussion
see [B]. Let (Xi)iew be a random process, i.e., a sequence of random
variables. For the sake of simplicity we assume that the range of all X, is
finite. We interpret ¢ as time and X; as a random experiment conducted
at time t. Suppose now that the experiments at time 0,...,r — 1 have
been conducted with outcomes Xog = xg, ..., X;_1 = x;_1. These events
may influence the next experiment, i.e., for each possible outcome xy,
the probability

PI‘[Xt = Tt | X() = l‘o,Xl = T1y.-- ,Xt,1 = Qit,l]

may depend heavily on the past results xg, ..., x:—1.
The random process (X;)ten is called a Markov chain if the outcome
only depends on the last result, i.e.,

PI‘[Xt = Tt | X() = ZQy--- 7Xt—1 = Tt—1 = PI‘[Xt = Tt | Xt—l = xt—l}

for all t and all zg,z1,...,zs. A Markov chain is homogeneous if all X;
have the same range of positive values and for all x,y the probabilities
Pr[X; =z | X¢—1 = y|] do not depend on ¢. For a homogeneous Markov
chain the (common) range is called the state space and its elements are
the states of the Markov chain. Furthermore, a homogeneous Markov
chain is fully described by its state space, the transition probabilities

Pz,y = Pr[Xt =Y | thl = l‘],

and Pr[Xy = z].

74

4.3 Phases

The main fact we are interested in, is that a Markov chain can simu-
late the uniform distribution. For this we need three more definitions.
Consider the digraph G on all possible states of the Markov chain. A
state = has a directed edge to y if the transition probability p,, > 0.
The Markov chain is called symmetric if p, , = p, . for all states and
y. The chain is irreducible, if the digraph G is strongly connected, i.e.,
for all states x and y we find directed paths from x to y and from y to
x. Finally, the chain is aperiodic if we do not find a state z and k£ € N,
k > 1, for which all cycles in G containing x have length congruent to 0
modulo k.

A Markov chain is said to converge to the uniform distribution on
the state space S if the k-th powers of the transition matrix (ps,y)z,yes
converges to (1/]S])z,yes. In other words, a Markov chain converges
to the uniform distributions if the outcome of an experiment is nearly
uniform distributed over S as t — oo. For aperiodic, symmetric and
irreducible homogeneous Markov chains the following is known:

Theorem 4.11
Any aperiodic, symmetric and irreducible homogeneous Markov chain
converges to the uniform distribution on the state space.

A Markov chain is aperiodic if every p,, > 0. Furthermore, for
symmetric Markov chains the digraph G can be simplified to a graph
and strongly connected can be replaced by connected.

Applied to the situation of d-dimensional USOs the Markov chain
described in is a random walk on the graph Gy with

V(Gq) =USO(d) and {s1,s2} € E(Gyq) <= ps,.s, > 0. (4.7)

Proposition 4.12 ([30])
The homogeneous Markov chain defined by the transition probability in
(4.6)| is aperiodic, symmetric and irreducible.

PROOF. As p, s > 0 the Markov chain is aperiodic.

For symmetry let s # s’ be two USOs and L the set of edges in which s
and s’ differ. If L contains edges of different labels then p, ¢ = 0 = py s
since flipping only edges of one label will not destroy all differences in
L. For the case that L consists only of A-edges L has to be a collection

75

4 Structure

of A-phases, since flipping all edges in L transforms s into s’ and s’ into
s. Furthermore, as flipping one A-phase does not change the set of all
A-phases the numbers ph,(s) and ph,(s’) agree. Thus, ps s = psr.s-

By|Proposition 4.10} there is a flip-sequence transforming a given USO
s to the uniform USO. Each flip in the sequence has positive probability.
Thus, there is a path in G4 from s to the uniform USO. Hence, G is
connected. Since the Markov chain is symmetric this implies that the
chain is irreducible. [

In a more concrete form |Proposition 4.12|says that we can generate a
random USO (drawn uniformly at random from USO(d)) the following
way: Choose an arbitrary d-dimensional USO. Then repeatedly choose
a random A together with a random set of A-phases and flip this set.
After some while the resulting orientation will be “sufficiently random”.
The core problem here is that we do not know how often we need to
repeat. So far, we have not been able to resolve this problem.

Nevertheless in the following we start a discussion about the graph
G4. The results we are able to achieve are a (weak) indication that
the Markov chain has a reasonable mixing rate. The diameter of G4
is at most 2d by [Proposition 4.10] Furthermore, we will show that its
connectivity is not too small. Obviously, G4 is closely related to the
numbers ph, (s).

The easiest example for a d-dimensional USO with exactly one d-phase
is the following: take some (d —1)-dimensional USO s and 5 = @©[q_1j05
the orientation differing from s in every edge. Then there are only two
USOs having s in the lower d-facet and s in the upper d-facet, namely
the one with all d-edges directed downwards and the one with all d-edges
directed upwards. If there were two d-edges with different orientation,
there would be a 2-face containing a d-edge pointing upwards and a d-
edge pointing downwards. In this 2-face the other two edges would be
in phase, but s and § differ in them.

Similarly, to have 29! d-phases we take some (d — 1)-dimensional
USO and place a copy of it in the lower and upper d-facet of a d-cube.
Then the d-edges in this d-cube can be directed arbitrarily. This is the
only construction achieving 2¢~! d-phases. Call an edge which is in
phase with no other edge flippable. The next lemma shows that an edge
e is flippable if and only if the outmaps of the two incident vertices differ

76

4.3 Phases

in the label of e only. Consequently, if all d-edges are flippable we must
have the same orientation in the upper and lower d-facet.

Lemma 4.13
For a unique sink outmap s an edge {v,v @ {\}} is in phase with no
other edge if and only if

s(v@{A}) = s(v) @ {A}.

PROOF. If {v,v® {A}} is only in phase with itself, then in particular
no vertex other than v @ {A} has the outmap value s(v) @ {\}. (Oth-
erwise, this vertex would be in phase with v). But since s is a bijection
v @ {A} takes the value s(v) @ {A}.

Now if there is an edge in phase with {v,v @ {A}} there has to be a
vertex v/ with (v @ v") N (s(v) ® s(v')) = {A}. Thus

(e {Ayev)n (sv) @ {A\t @ s()) =0,
and s is not a USO. O

Let us now consider the overall number of phases of a USO s, i.e.,
ph(s) = > yc(g Pha(s). By the observations above ph(s) is bounded
from below by d and from above by d2¢~!. The upper bound cannot be
improved, since by in the uniform orientation every edge is
flippable. In dimension 2 the eye has 4 phases and the bow has 3 phases.
In particular, the lower bound of d is not tight even in dimension 2.

Lemma 4.14
For d > 2 a d-dimensional unique sink orientation has at least 2d phases.

PROOF. Let s be a counterexample of minimal dimension d > 2.
More precisely, s is a d-dimensional USO with less than 2d phases and,
if d > 3, all USOs of dimension d — 1 have at least 2d — 2 phases.

In particular, we find a label A\ for which s has only one A-phase. For
this A all edges have to be directed towards the same A-facet (as they are
in phase). Now consider two p-edges e; and ez, p # A, in the different
A-facets. Assume e; and es are in phase. The witnessing vertices v; and
vg then agree in the orientation of their incident A-edge. Hence, one of

7

4 Structure

the A\-edges points towards the upper A-facet, whereas the other points
towards the lower A-facet. But then there is more than one A-phase.

In other words, for such s we have one A-phase and all other phases
are phases of one of the A-facet. For the overall number of phases we
therefore can count the number of phases in the lower and in the upper
A-facet independently.

For d = 3 both A-facets have at least 3 phases. Hence, the number
of phases in s is at least 3+ 3 + 1 = 7 > 2d, which contradicts the
assumption.

For d > 3, by assumption the two A-facets have 2d — 2 phases each.
Altogether this would give 2d — 24 2d — 2+ 1 = 4d — 3 > 2d phases for
s, a contradiction. [

The numbers ph, (s) are closely related to the degree of s in the graph
(G4 defined in The M-edges of s can be oriented in 2PP(5) ways.
One of the orientations is s itself, the others are neighbors in GG4. Hence,
the degree of s in Gy is

deg(s) = 3 2o (e)

A€ld]

Let ph(d) = min {ph(s) | s € USO(d) }. In terms of ph(d) [Lemma 4.14
proves 2d < ph(d). We will now relate ph(d) to the minimal degree §(d)
of Gd.

Lemma 4.15
d(2P2(D/d _ 1) < §(d) < 2°h(D 1

Thus, by the minimal degree of G4 has to be at least
d(22%/4 — 1) = 3d.

PrOOF. First consider a USO s which is tight in the number of
phases. For this s we get

> phy(s) = ph(d)

Ae(d]

S 1 > 5(a).

A€[d]

78

4.3 Phases

Without knowing how ph(d) distributes over all labels, we want to
bound the latter sum from above. In general, the following holds:

max 22’%—1 kizo,Zki:K =9oK _1.
i€[d) i€ld]

We prove this by induction on d. The statement is clearly true for d = 1.
Now assume it is true for d—1. Then for a fix k4 the sum Zie[d_” oki _1
has maximal value 25 ~%4 — 1. Thus, we need to maximize the function
kg — 2K—ka _ 1 4 2k gyer 0 < ky; < K. The maximum is attained at
kq = 0. Applied to our situation this proves the upper bound on §(d).

For the lower bound on 6(d) consider a USO s’ with minimal degree
in G4. For such s’ we know

S 1 = 5(d)
A€[d]

Z phy (')

A€[d]

V
ko)

=%

&
~—~"

Again we prove a upper bound for the latter sum:
maxq > ki |k >0, 2% —1=1L 3 =dlog(L +d) — dlogd.
1€[d] i€[d]

The statement is true for d = 1. Now fix k4 and assume the statement
is true for d — 1. Thus, we aim to maximize

kaq i+ kq+ (d—1)log(L —2F +1+d—1) — (d—1)log(d — 1).
The first derivative of this function is kg +— 1 —(d—1)2k¢ (L — 2k 4-d) =1,
which is 0 for k4 = log(L + d) — log d. In fact, this is the maximum for
kq > 0 and for this value of kg we get

kg+(d—1)log(L—2%+1+d—1)—(d—1) log(d—1) = dlog(L+d)—dlogd.

O

79

4 Structure

The (edge-)connectivity of G is trivially bounded by d(d) from above.
For a lower bound the number ph(d) is of much more use.

Lemma 4.16
The graph G4 is 2(d + 1)-connected for d > 2.

PROOF. Since there are 2¢ uniform orientations, after deleting 2d + 1
orientations there is still one uniform orientation left. Without loss of
generality, it is the orientation towards the empty set. We will show
that even if 2d + 1 USOs are forbidden we can find a path from a given
USO to the uniform orientation. For the rest of the proof fix a USO s.

We want to successively comb edges until everything is uniform. De-
fine for a label A the set

Ly={v,oU{A}} [Ao, 0= 0U{A}},

which is the set of all A-edges differing from the uniform orientation.
Along a path we want more and more labels to agree with the uniform
orientation, i.e., Ly = () for progressively more labels A. Call such A
combed (as all edges are ”combed downwards”). Let k& be the number
of combed labels, i.e., without loss of generality L1, ..., Ly are empty.

The goal is to comb one more label (and then proceed inductively).
One way to achieve this is to flip a Ly. The resulting orientation s is
combed in 1,...,k and A. (As already argued, L is closed under phases
and therefore flippable.)

For k = d—1, flipping Ly will end in the uniform orientation (which by
assumption has not been deleted). For the rest of the proof let k < d—1
and assume that for k + 1 there is a path to the uniform orientation. In
particular, it is enough to show that there is a path from s to a USO
with k& + 1 combed labels.

Every sy, A € {k+1,...,d} is combed in k 4 1 labels and connected
to s by an edge. Thus, if we can choose one of these orientations we are
done. For the rest of the proof assume that all these d — k direct paths
via the s)’s are deleted.

We proceed in an indirect way. First we move ”horizontally” to a new
USO with k combed labels and from there ”go up” to a USO with k+1
combed labels. If we find more than d — k + 1 such detours not all of
them can be blocked.

80

4.4 Local Changes

Decompose s into 2F subcubes 0---0 % ---x to 1---1%---%. As s is
combed in the labels 1,..., k no two edges in different subcubes can be
directly in A-phase, A = k+1,...,d. (The outmap values of the incident
vertices differ at least in one of the labels 1,...,k.) For k < d — 2,
applied to each subcube yields 2(d — k) phases per subcube.
For k = d—2 the subcubes are 2-dimensional and have at least 3 phases.
Hence, the {k + 1,...,d}-edges split into at least 2¥2(d — k) phases for
k<d—2and3-2972for k=d— 2.

The first term 2¥2(d — k) is at least 2d i
k = 0, which is the case for k < d — 2. The second term 3 - 2¢1 is at
least 2d for d > 2. In particular, the {k +1,...,d}-edges partition into
at least 2d phases. For such a phase P deﬁne P If P# L) set P=rpr
otherwise let P be the set of all - edges. By this choice no two P are
equal and all p can be flipped without ending in an sy.

For any such P one can first flip P. Choose afterwards some \ €
{k+1,...,d} different from the edge-labels in P and flip L. This
results in a USO sp which has k& + 1 combed edges.

Altogether there are d — k direct routes via s)’s and at least 2d routes
via sp’s. Hence, one has to delete 2d+d —k >2d+d—d+ 2 =2d+ 2
vertices from G to kill all these routes. In particular, G is still connected
if one deletes only 2d + 1 vertices. [

Virtually the same arguments go through for all bounds f(d) < ph(d),
as long as f(d) has the following property:

o>)

fd—1)
In particular, every polynomial lower bound on ph(d) yields a polyno-
mial bound on the connectivity.

4.4 Local Changes

To be in phase is more a global than a local property. Even edges
which are far away potentially can be in the same phase. This makes
the concept hard to handle in general. In contrast, it can be decided
locally whether a given edge is in phase with any other edges at all by

In the following we want to generalize

81

4 Structure

Figure 4.5: A USO with a hypersink (marked with hs) and a hypervertex
(marked with hv).

According to[Lemma 4.13|an edge {o, 0®{A}} in the sink o is flippable
if and only if s(o ® \) = s(0) ® {\} = {A\}. In other words, the 1-
dimensional subcube {o0,0 & {A}} is flippable if and only if all edges
incident to (a vertex of) the subcube are incoming.

Definition 4.17

For a cube € and a subcube €, an edge {u,v} is called incident to
o if u € V(&) and v &€ V(&). The subcube €y is a hypersink in a
unique sink orientation s if all incident edges are incoming, i.e., directed
towards the vertex in €y. It is a hypervertex if there is a A C carr &y,
such that &y is a hypersink in A @ s.

In other words, for a USO s on a cube € a subcube € is a hypervertex
if and only if all incident edges of the same label are oriented the same

way. For an example see With this new notation

claims that every 1-dimensional hypervertex can be oriented arbitrarily.

Lemma 4.18 ([39, Lemma 3])
Let s be a unique sink outmap on a cube € and &, be a hypersink. For

82

4.4 Local Changes

a unique sink outmap so on €y, define s’ : V(&) — 2 ¢ by

iy | s(v) forv¢g V(&)
s'(v) = { so(v) forv e V(Qﬁg).

Then s’ is a unique sink outmap on €. Furthermore, if s and sg are
acyclic then s’ is acyclic.

PRrOOF. The map s’ is well defined since carr €5 C carr €. Further-
more, since an edge incident to &y is directed towards €y the outmap s’
orients every edge only once.

If a subcube ¢’ is a subcube of € then its orientation is determined
by sg. As sg is a USO there is a unique sink in €'. If ¢’ is disjoint from
¢y the orientation is determined by s and again there is a unique sink.

Now assume V = V(€') N V(&) # @ and €’ is not a subcube of €.
Then V spans a subcube € in €. With respect to s the unique sink of
¢’ has to be in € as € is a hypersink. For s’ the vertices outside V'
do not change their outmap. In particular, if €’ has a sink with respect
to ' it lies in €. As s’ on € is given by so and sg is a USO there is
exactly one unique sink in €} which is then the unique sink in €.

Now let s and sy be acyclic. No directed path in € can leave €.
Therefore, a potential cycle of s’ is contained either in € and therefore
is a cycle w.r.t. sp or in €\ €y, in which case it is a cycle w.r.t. s.
Consequently, if sg and s are acyclic, s’ is acyclic as well. [0

At first sight it seems that is of more generality than

as we could apply it not only to 1-dimensional hypersinks
but to all 1-dimensional hypervertices. By the definition of a hyperver-

tex it is rather obvious how to extend [Cemma 4.1t

Corollary 4.19 ([39, Corollary 6])

Let s be a unique sink outmap on a cube €, €y a hypervertex of s and
so a unique sink orientation on €y. Let A be the set of labels of edges
leaving €y. Then the orientation

S (v) = { s(v) for v & V(&)
so(v)UA for v e V(&)

is a unique sink orientation.

83

4 Structure

PROOF. The label set A equals s(v)\ carr €, for any v in €y. Consider
§ = A®s. In § the subcube € is a hypersink and by [Lemma 4.18|can be
replaced by sg. Call the resulting USO §’. Finally, the USO s’ = A @ &
has outmap s'(v) = AG A @ s(v) for v € V(&) and s'(v) = A B sp(v) =
AU sp(v) for v € V().

By one can replace A® s in €y by A @ sg. Relabeling the
resulting USO with A yields s’. O

Unlike in here acyclicity does not necessarily carry over
to s’. Only in a hypersource the arguments for acyclicity go through as
well.

Furthermore, |[Corollary 4.19| is best possible in the following sense.
Assume that for a USO s, a subcube €y and a label A & carr €, the
A-edges incident to €y are not homogeneously oriented, in particular, we
find two neighboring edges {u,u ® {A}} and {u @ {p},u @ {\, p}} with
opposite orientation. Then the edges {u,u ® {u}} has to be directed
towards the same facet as {u @ {\},u ® {\,u}}. In particular, the
orientation in €, cannot be chosen arbitrarily.

4.5 Products

So far, we have discussed ways to modify a USO. In the following section
we describe how to generate new USOs from smaller ones. Given 2%
USOs of dimension ds the idea is to combine these to a (d; + da)-
dimensional USO. In other words, given a d;-dimensional USO we want
to blow up the vertices to de-dimensional subcubes.

For cubes such a product is easily defined. For two cubes ¢; and
¢, with disjoint label sets the set {uUv | u € V(€3),v € V(€2) } is the
vertex set of a cube with label set carr €; U carr@;. Call this cube
¢ x &

Lemma 4.20 ([39, Lemma 5])

Let € and €y be two cubes with disjoint label sets. Then for a unique
sink orientation 5 on € and unique sink orientations s, on Cg, v €
V(€F), the map s on € X € defined by

s(uUv) = s,(u) Us(v)

84

4.5 Products

&

Figure 4.6: A 1-dimensional frame and 2-dimensional hypervertices.

is a unique sink orientation. Furthermore, if 5 and all s,, are acyclic,
then so is s.

Figures and illustrate the construction. In particular,
[Figure 4.6] and [Figure 4.7] suggest two different readings of
In |[Figure 4.6R% USOs of dimension dy are glued together with a d;-
dimensional frame. On the other hand, in we replace the
vertices of a dyj-dimensional USO by ds-dimensional hypervertices.

PROOF. Any vertex u in € x €g is a disjoint union v = uy U up,
ug € €g and up € €r. Thus, it is enough to show that for ugy,vy €
V(€y) and up,vp € V(€p) we have

(ug Uup) @ (vg Uvp)) N ((Sup (ug) US(up)) @ (Sop (ver) US(vp))) # 0.

(4.8)
Taking into account that all unions are unions of disjoint sets the left-
hand side simplifies to

((urr ® vr) N (Sup (ur) @ v (ve))) U ((up @ vp) N (5(ur) @ 5(vr))).
For w = up = vp the set (ug ® vyg) N (sw(ug) ® sw(vy)) # O since

Sw is a USO. If up # vp the second set (up @ vp) N (S(up) B 5(vE)) is
non-empty because 5 is a USO. In both cases |(4.8)| holds.

85

4 Structure

¢

Figure 4.7: A 2-dimensional frame and 1-dimensional hypervertices.

For the second part of the lemma observe that a path uyUv, . . ., ugUvy
in €r x €4 w.r.t. s induces a walk v1,...,v; in € w.r.t. 5. If the
vertices u; U wvy,...,ur U v, formed a cycle, i.e. uy Uwvy = ug U vy,
then the induced walk vy, ..., v, either would contain a cycle in § or
v] = v = --- = v = v. Since § is acyclic, we must have the second
case. But then wuq,...,u; forms a cycle in €y w.r.t. s,. This is a
contradiction to s, being acyclic, i.e., s has to be acyclic. [J

For dim€p = 1, says that we can combine two arbitrary
(d—1)-dimensional USOs to a d-dimensional USO by placing them in two

disjoint facets and directing all edges in between in the same direction.
An example for this case can be seen in

The other extreme case dim€y = 1 shows that if a cube contains
two opposite facets with the same (d — 1)-dimensional USO s, the edges
between these facets can be directed arbitrarily. illustrates

this case. By we already know that such USOs are the
only ones in which all edges of one label are flippable. But in addition

guarantees them to be acyclic if s was acyclic.

86

4 Structure

4.6 Examples

In the following we collect USOs that can be obtained by local changes
and/or a product construction. Even if the examples are rather simple
and straight-forward applications of |Corollary 4.19|or [Lemma 4.20| they
provide us with a good base. In fact, most concrete USOs used in the
literature belong to one of the following types.

4.6.1 Partial Unique Sink Orientations

Given a partial orientation on a cube €, under what circumstances can
this orientation be extended to a USO? We address this question in two
different ways. In the spirit of this chapter a USO is given by its outmap.
Hence, a partial USO would be a partial outmap. We will consider such
partial outmaps first. Afterwards we widen our view and consider partial
orientations. In difference to partial outmaps such orientations do not
have to determine all edges in a vertex.

Let sg : V(€) D D — carr€ be a partial outmap. If sy can be
extended to a USO s, this s must satisfy In particular, for all
u,v € D we need

(u®w) N (so(u) @ so(v)) # 0.

It is not surprising that this condition is not sufficient for the existence
of s. shows an example of an orientation which is partially
good but cannot be extended.

The set D for which sy from is defined consists of four
vertices. Hence, for |D| > 4 the map sy might not be extendible. We
will show that this is best possible. For |D| = 2 there is always an
acyclic USO extending sg and for |D| = 3 one can extend but might get
a cycle. (Since sg already can have a cycle, see [Figure 4.10)).

Lemma 4.21 ([39, Corollary 4])
For two vertices v1,vs in a cube € and sets Ay, Ay C carr € with

(1}1 @’Ug) N (Al EBAQ) =+ 0

there exists an acyclic unique sink orientation s with s(v;) = A;, 1 =1, 2.

88

4.6 Examples

Figure 4.9: A non-extendible partial USO. None of the given vertices
(marked with a black dot) contradict [(4.2)] But the gray
edges cannot be oriented without creating a 4-cycle.

Figure 4.10: A partial map with cycles. This map can be extended to a
USO by placing the global sink to the vertex o.

89

4 Structure

PROOF. Choose A € (v1 ®vz)N (A1 @ Az). Without restriction we can
assume A € Aq. Let €; be the A-facet containing v;. On €; let s; be the
uniform orientation towards v; & (A; \ {A}). According to
if we orient all A-edges towards €; the resulting orientation s is a USQO.

In s the vertex vy has the outmap s(vi) = s1(v1) =v1 B DA = Ay
and vg has s(ve) = sa(v2) & {A\} = Aa. As s; and s are acyclic s is
acyclic. [

Lemma 4.22
For three vertices vy, vq,v3 in a cube € and sets A1, Ay, A3 C carr &€ with

(vi ®vj) N (A @A) #0,

for i,57 = 1,2,3, i # j there exists a unique sink orientation s with
S(UZ') = Ai, 1=].,2,3.

PROOF. Choose A € (v1 @ v3)N (A1 & Ag). Without loss of generality
v1 and vy are in the lower A-facet €; and v3 is in the upper A-facet €;. By
the previous lemma we find a USO s; on €; with s1(v1) = A1\ {A\} and
Sl(Ug) = AQ\{)\} On @2 there is a USO S92 with SQ(UQ@{)\}) = AQ\{)\}
and sa(vs) = As \ {A}. By one can furthermore orient all
M-edges according to the A-edge in v; and get a USO s'.

By construction s’(v1) = Ay and s'(v3) = As. Furthermore, for vy
only the A-edge might be oriented in the wrong direction. But this edge
is flippable, since s'(va2) @ {A\} = s'(v2 @ {A\}). After possibly flipping
this edge we found the desired orientation. [J

We now consider general partial orientations. That is, we drop the
restriction that the orientation is given by a partial outmap. In partic-
ular, we are interested in sets of edges, such that any partial orientation
on this set can be extended to a USO.

Definition 4.23
A set of edges X in a cube € is called extendible if for any orientation
¢ on X there is a unique sink orientation extending ¢.

Let x(d) be the maximal cardinality of an extendible edge set in a
d-dimensional cube.

90

4.6 Examples

For instance, in dimension 2 any edge set of size 3 is extendible. Such
set X consists of two edges of the same label, say label 2, and one edge
of different label, say label 1. No matter how the two edges of label 2
are oriented, if we choose for the 1-edge not in X the same orientation
as for the 1-edge in X, the resulting orientation is USO. Since not every
orientation of €2 is USO, the set of all edges is not extendible. Hence,
z(2) = 3.

Lemma 4.24
z(d) > 24 — 1.

PROOF. The claim is trivially true for dimension 1. Now assume X,
is an extendible edge set in €¢ with 2¢ — 1 edges. In ¢?*! consider

Xap1 = XaU{{ue{d},ve{d}} [{u,v} € Xa} U{{0,{d}}}.

The set X441 consists of a copy of Xy in the lower d-facet, a copy of Xy
in the upper d-facet, and one d-edge.

Any orientation of X411 can be extended to a USO with the help
of Since X, is extendible we find USOs s; and sy on
the lower and upper d-facet extending the two copies of Xy. Now we
connect s; and sy by combing all d-edges according to the orientation

of {0,{d}}. O

The bound is tight in dimension 3. It is also tight for d > 3 if we only
allow edge sets for which (V(€), X) is connected.

Lemma 4.25
Let X be an extendible edge set in €¢, such that (V(€), X) is connected.
Then |X| < 29— 1.

PROOF. Let X be a set of at least 2¢ edges for which (V(€), X) is
connected. We will show that such X is not extendible. A spanning tree
of (V(€), X) has 2¢ — 1 edges. If we add an additional edge from X to a
spanning tree, the resulting subgraph X’ contains exactly one cycle C.
On C place a cyclic orientation. Edges not in C' orient towards C'. The
resulting orientation ¢ cannot be extended to a USO. For instance, see

Figure 211

91

4 Structure

Figure 4.11: An edge set with 2¢ edges. The cycle is depicted by bold
lines. The orientation drawn in the picture is not ex-
tendible, since every vertex has an outgoing edge.

If a vertex v € V(€) is in C it has an outgoing edge in C. If v is not
in C, choose some u in C. Since X' is connected, there is a path from v
to u. We are only interested in the first edge of such a path. This edge
is directed towards C, hence it is outgoing from v. In particular, every
vertex in V(&) has at least one outgoing edge according to 1. Hence,
no extension of ¢ has a sink. [J

We will use[Lemma 4.25|as the main ingredient to prove that 2(3) = 7.

Nevertheless, for dimension 3 an exhaustive case distinction over all pos-
sible X can still be done, either by computer or by a smart way of enu-
merating the possible X. For dimension 4 the number of configurations
is already too high.

Lemma 4.26
z(3)="T1.

PrOOF. Let X be a set of 8 edges and assume that X is extendible.
Since z(2) = 3, every facet has at most 3 edges. Let x&l) be the number

of edges in X and the upper A-facet. Correspondingly, x&o) is the number

of edges in X and the lower A-facet. Double-counting yields

3
Sl + 2 =2/X| = 16.
A=1

92

4.6 Examples

This can only be achieved if four of the six facets have 3 edges. In
particular, for some A\ both A-facets each have 3 edges in X. Thus, the
vertices of the upper A-facet are in the same connected component of
(V(€), X), as well as the vertices of the lower A-facet. Furthermore, two
A-edges are in X and connect the vertices in the two A-facets. But then

(V(€), X) is connected in contradiction to [Lemma 4.25{ [J

The arguments in the proof fail for dimension 4. The double counting

from above yields
4

S ol +aY =32,
A=1

which can be achieved by z{"” = 29 = 4.

4.6.2 Combed and Decomposable Orientations

Definition 4.27
A unique sink orientation s on a cube € is \-combed if all A-edges are
directed the same way, i.e.

Vu,v € V(€) : A € s(u) @ s(v) <= A€euduw.
An orientation is combed if it is A-combed for some X\ € [d].

By flipping all A-edges pointing upwards (downwards) we can comb
any label A in a USO downwards (upwards). On the other hand, a \-
combed USO is product of its two A-facets with a 1-dimensional frame.
It can be decomposed into two USOs of one dimension lower.

Definition 4.28
A unique sink orientation is decomposable if every subcube is combed.

See[Figure 4.12|for a decomposable USO and [Figure 4.13|for a combed
but not decomposable USO.

4.6.3 Klee-Minty Cubes

The most famous representative of the class of decomposable cubes is
the so-called Klee-Minty cube. Every one-dimensional USO is a Klee-
Minty cube. A d-dimensional cube is a Klee-Minty cube if it is combed

93

4 Structure

Figure 4.12: A decomposable 4-dimensional cube together with its de-
composition.

Figure 4.13: A combed 4-cube which is not decomposable.

94

4.6 Examples

along a label A and the two \-facets are opposite d — 1-dimensional Klee-
Minty cubes. More precisely a USO s on €¢ is a Klee-Minty cube if we
find a d — 1-dimensional Klee-minty cube s’ and a label A, such that s’
defines the orientation in the lower A-facet, the complete reorientation
5’ of s’ defines the orientation in the upper A-facet and all A-edges are
directed towards the same facet.

Up to isomorphism there is exactly one cube satisfying the definition.
A Klee-Minty cube cannot be combed in two labels, since on the opposed
facets along a combed label the orientations differ in every edge. We
therefore can relabel, such that the Klee-Minty cube of dimension d is
d-combed.

Based on this standard labeling one can explicitly write down the
outmap kmy of the d-dimensional Klee-Minty cube:

kmg(v) ={A | {A,...,d} Nv| =1(mod2)}.

For two vertices w,v and A = maxwu @ v the sets u N {A,...,d} and
vN{A,...,d} differ in A only. Thus, exactly one of the two sets is even
and A € kmg(u) @ kmg(v). This shows that kmy is a USO.

We will show that kmy is a Klee-Minty cube. Trivially, km; is a Klee-
Minty cube. Now assume kmg,_; is a Klee-Minty cube. We want to
show that kmy is a Klee-Minty cube. For kmy the label d is combed:
d € kmg(v) if and only if d € v, i.e., all d-edges leave the upper d-
facet. Now for a vertex v in the lower d-facet the sets {A,...,d}Nv and
{A\,...,d=1} Nv are equal. In particular, km4(v) = kmg_1(v). On the
other hand, for a vertex u in the upper d-facet the two sets {A,...,d}Nu
and {A,...,d — 1} Nu differ exactly in the element d. Thus, the parity
changes by one for any A and kmg(u) = [d] \ kmg_1(u \ {d}).

Since by assumption kmgy_; is a Klee-Minty cube, kmy is combed in d,
has a Klee-Minty cube in the lower d-facet and the opposite orientation
in the upper d-facet. Hence, kmy is a Klee-Minty cube.

An alternative way of constructing the d-dimensional Klee-Minty cube
is to place the d — 1-dimensional Klee-Minty cube in both 1-facets (after
relabeling ¢ — i+ 1) and then orient the 1-edges according to the parity
of their lower vertex. It is easy to check that this yields km, again.

The prominence of the Klee-Minty cubes is based on the simplex algo-
rithm. In a vertex v choose an outgoing edge follow it. This describes a

95

4 Structure

simplex algorithm as soon as we give a pivot rule, i.e., a decision rule for
which outgoing edge to choose. Such simplex algorithms are normally
studied in the set-up of linear programming. Although they are fast
in practice, for nearly all deterministic pivot rules examples are known,
on which the rule needs exponential many queries to find the optimum.
(See [3] for a survey.)

We will discuss only a combinatorial simplex rule. Let SIMPLEX be the
simplex algorithm which chooses the edge with minimal label. Formally,
SIMPLEX in a vertex v will proceed with v & {min s(v)}.

Proposition 4.29
The SIMPLEX algorithm needs 2¢ queries to find the sink of the Klee-
Minty cube kmy if it starts in its source.

PROOF. The statement is trivially true for dimension 1.

The crucial observation is that the source of the lower d-facet is di-
rectly below the sink of the upper d-facet. The global source is the
source in the upper d-facet. By induction SIMPLEX needs 2%~1 queries
until it queries the sink in the upper d-facet. Only then it will choose
a d-edge and proceed to the source of the lower d-facet. Again it needs
249=1 queries to finally reach the global sink. Overall this adds up to 2¢
queries. [

4.6.4 Matching Flip Orientations

In the uniform orientation on a cube € every subcube € is a hypervertex

and by can be replaced by an arbitrary USO s. If after-
wards one chooses a subcube €” disjoint from ¢ €” is a hypervertex
again and can be replaced. In general, this yields the following;:

Lemma 4.30

Let s be the uniform orientation on € towards a € V(€). For a family of
pairwise disjoint subcubes (&;);=1,.. , of € and unique sink orientations
s; on €, v = 1,...,k the orientation one obtains by replacing s on €;
with s; is a unique sink orientation.

PROOF. As already mentioned by[Corollary 4.19|we only have to show
that every €; is a hypervertex. But as the €; are mutually disjoint the

96

4.6 Examples

edges incident to a €; are determined by s. As s is combed in all labels
¢; is a hypervertex. [

A family of disjoint cubes of dimension 1, i.e., a set of disjoint edges is
a matching on €. In particular, every matching on € gives a USO on € by
flipping the matching edges in the uniform orientation. Furthermore, all
these orientations are mutually different. Such an orientation is called
matching flip orientation for obvious reasons. As there are 4z perfect
matchings on a d-dimensional cube this shows:

Proposition 4.31 ([27])
The number of unique sink orientations in dimension d is bounded from

below by d*(2").

97

4 Structure

rientation is un

Figure 4.14: The upper o

flipped.

the gray subcubes are

98

4.7 Remarks

4.7 Remarks

The lower bound in |Proposition 4.31] is sharp in the sense that the
number of USOs in dimension d is 2°2"1069) (cf. page [16| and [27]).
Thus, the simple proof of |Proposition 4.31]is rather surprising. We will
see in the next chapter that matching flip orientations are very special.

In connection with isomorphisms the flippable edges of a USO play an
important role. Obviously, one has to check all flippable edges in order
to know if two USOs are isomorphic. In particular, whether a USO
is uniform cannot be checked without knowing all edges. From this
point of view the number of flippable edges is an interesting invariant
for checking isomorphy. Nevertheless, in high dimension nearly no two
USOs are isomorphic. The size of an isomorphism class is at most d!2¢
whereas the overall number of USQs 20(2* logd)

The question arises if there are USOs without flippable edges. The
answer to this question is closely related to a conjecture by Keller [22]:
A tiling of R? by unit cubes is a collection of (geometric) unit cubes,
such that each point z in R? is in one of these cubes and if z is in
more than one cube it is on the boundary of all cubes containing z.
Keller conjectured that in any such tiling we find two cubes, such that
their intersection is a facet of both of them. Szabé [41] showed that
Keller’s conjecture can be decided on a much smaller class of tilings.
The class introduced by Szabd is in one-to-one correspondence to d-
dimensional USOs and a tiling falsifies Keller’s conjecture if and only
if the corresponding USO has no flippable edge. For d < 6 Keller’s
conjecture is true [36], but it gets false starting in dimension 8. (For a
counterexample in dimension 8 see [26], for dimensions 10 and 12 see
[25].) In particular, each USO of dimension less or equal 6 has a flippable
edge, whereas starting in dimension 8 there are USOs with no flippable
edge. The question remains open for dimension 7.

A flippable edge in a hypervertex is globally flippable. In particular,
neither [Corollary 4.19| nor [Lemma 4.20| can construct a USO without
flippable edges from USOs with flippable edges. Thus, we cannot con-
struct all d-dimensional USOs from lower-dimensional USOs using these
two construction schemes only.

The phase-concept is general enough to generate all USOs. Unfor-

99

4 Structure

tunately, it is too general to be used for concrete constructions. In
the following we will study algorithms for finding the sink. To achieve
lower bounds one often needs to extend a partial outmap to a USO. As
new vertices can produce new phase-dependencies such constructions
are hard to obtain using phases. In contrast local changes and products
turn out to be very useful for this purpose.

The Markov chain was first suggested by Valtr and Matousek [30].
Unfortunately, its mixing rate is unknown. Still, it is the only known
method to produce a random USO with approximate uniform distribu-
tion.

100

5 Algorithms

Sink him!

(Stubb)

101

5 Algorithms

5.1 Complexity Model

The main interest in USOs is to solve SINK or SINKORFALSIFY: By
accessing the outmap the goal is to find the sink (i.e., query it) or to
give a certificate that the underlying orientation is not a USO. The
characterization of unique sink outmaps suggests certificates of
the form u, v with (u@®v) N (s(u) ®s(v)) = 0. Nevertheless we still allow
for (much) longer certificates. Consider an algorithm A for which it is
known that A needs at most t4(d) queries on a d-dimensional USO to
find the sink. Then, for an outmap s, a sequence of queries longer than
ta(d) is a certificate for s not being USO.

Since in the complexity model for USOs we only count the number
of vertex evaluations, the problem does not directly relate to classical
complexity theory. As seen in we use USOs to solve other
problems via a well-behaved outmap. In the following we reformulate
this connection in the setting of formal languages.

Definition 5.1
For a language L C ¥* x ¥* over the alphabet ¥, the problem F (L) is
to find for any x € £* a y € ¥* such that (z,y) € L, or to decide that
no such y exists.

The class of languages for which (x,y) € L can be decided in polyno-
mial time is called FNP. The subclass of L € FNP for which F(L) can
be solved in polynomial time is called FP.

The names FNP and FP are not chosen arbitrarily. In fact, every
problem in NP has a variant in FNP. For instance, SAT is equivalent to

{(z,y) | y satisfying assignment for formula x }.
On the other hand, for F' € FNP the language
mL:={x |Jy: (z,y) € L}

is in NP. Thus, P = NP iff FP = FNP. The notions of polynomial re-
ducibility, completeness and hardness carry over to the functional vari-
ants. For a more detailed description, see [34, Chapter 10].

In the problems studied in Chapter 3 we always had a parameter
which fixes the dimension for the corresponding USO. In the setting of

102

5.1 Complexity Model

general languages it is more convenient to describe USOs in a way which
does not depend on the dimension.

For the rest of the chapter, we assume without loss of generality ¥ =
{0,1,*}. In particular, we can describe cubes and subcubes as words in
3*. Let

2<% = {y CN | v finite}.

As before, we embed 2<° into {0,1}* except now we do not fix the
dimension. More formally, a set u € 2<% is represented by the word w
of length maxu with wy =1 <= X € u. In particular, w ends with 1.

A map s : 2<% — 2<% is a unique sink outmap iff for all u,v € 2<>°
condition holds. We say that such an outmap s has dimension
d if it is uniform outside 29, i.e., s(v) = v for all v € 2<%\ 2[4, In
particular, for a d-dimensional USO the cube € is a hypersink of s in
2<% This enhanced definition captures the original definition of USOs:

By we can embed any USO into the uniform orientation

on 2<%,

Definition 5.2
For a functional language L C ¥* x ¥* a unique sink oracle is a tuple
(8,T) of functions

S Z*—>(2<°°—>2<°°)
T Y*x2°®° L ¥%*

(called oracle S and interpreter T), such that for any x € w1 L, the map
S(x) is a unique sink orientation, and for the sink o of this orientation,
the interpretation y = 7 (x,0) satisfies (z,y) € L.

A unique sink oracle is called polynomial if S(x)(v) and T (z,v) can
be calculated in polynomial time in |x| and |v|, and the dimension of
S(x) is polynomial in |z|.

For instance, let L be the language, such that the first argument
encodes a feasible, bounded linear program LP(A, b, ¢), and the second
argument encodes a solution to LP(A, b, ¢). Thendeﬁnes
an oracle S by Furthermore, [Proposition 3.25 yields an

interpreter 7. In particular, (S,7) is a polynomial unique sink oracle
for linear programming.

103

5 Algorithms

Oracle and interpreter are allowed to do anything on « ¢ m L. In
most cases, oracles are only meaningful on 71 L. It might even be that
an algorithm for § or 7 does not terminate outside 7y L.

Assume for a moment that there is an algorithm for SINKORFALSIFY
which needs polynomial time to find the sink. Furthermore, assume
that there is a polynomial unique sink oracle for FSAT. Given some
x € mFSAT, by assumption, the sink o of the corresponding USO can
be found in polynomial time. The interpretation y of o solves FSAT
x. Hence, such an oracle for FSAT implies that SINKORFALSIFY is not
polynomial provided P # NP.

Theorem 5.3
Given an NP-complete problem L and its functional variant F L. If
there exists a polynomial unique sink oracle for F'L, then NP = coNP.

PROOF. We will construct a polynomial time non-deterministic algo-
rithm which decides « ¢ L. This proves L € coNP. As a consequence
NP = coNP.

Let (S,7) be the polynomial oracle for F L. Consider the language

Ls = {(z,0) |S(z)(0) =0} U
{(z, ustv) | (u@0) N (S(2)(u) © S(x)(v)) =0}

With the conventions above, Ls is a language over ¥. Furthermore, for
any ¢ € ¥* the outmap S(z) is either a USO (and thus we find z,0
with S(z)(0) = 0) or has two vertices failing[(4.2)}] Thus, the projection
m1Ls equals ¥*. In other words, Lg is total.

The relation (x,y) € Ls can be checked in polynomial time. The
dimension of S is polynomially bounded in |z|, say by p(|z|). After
scanning the first 2p(|z|) + 1 symbols of y, we can distinguish three
cases:

(i) y is too long,
(ii) y is of the form y = o, o € 2P(=D] or

(iii) y is of the form y = u#v, u,v € 2P=D],

104

5.2 A Lower Bound on Deterministic Algorithms

In the first case, (z,y) cannot be in Ls. In the second case, we have
to check if S(z)(o0) is empty. And in the third case, we have to check
S(z)(u) ® S(z)(v) = 0. Both can be done in polynomial time.

Let = ¢ L. Consider the following algorithm: For y € X*, first
check if # appears more than once in y. If so, y is rejected. If #
appears exactly once in y, say y = u#v, we can check in polynomial
time whether S(z)(u) & S(x)(v) = 0. If not, reject y, otherwise y is
a certificate for S(x) not being a USO. Thus, y certifies « ¢ L. If
¢ y and S(z)(y) # 0, reject y. Otherwise, calculate § = 7 (z,y). If
(x,9) € FL then x € L, otherwise ¢ L. All steps can be done in
polynomial time by assumption.

Thus, the procedure just described decides in polynomial time if y is
a certificate for x ¢ L. This establishes L € coNP. [

5.2 A Lower Bound on Deterministic Algorithms

The setup for this section is the following: We are given an arbitrary
deterministic algorithm 4 for SINK and want to construct a USO on
which A needs “many” queries. Rather than exploiting structural as-
pects of such algorithms we do this in a game theoretic fashion. We play
a game against 4. In every move the algorithm queries a vertex and we
reveal the orientation in this vertex. We have to answer according to
the outmap of a USO s. This outmap will be constructed in an on-line
fashion depending on the queries of the algorithm. At the end of the
game we have a concrete (acyclic) USO s for which A needs nearly a
quadratic number of queries.

Given a deterministic algorithm A for finding the sink, we construct
an acyclic unique sink orientation of dimension d for which the algorithm
needs an almost-quadratic number of queries. For the first d — [log, d]
inquiries, we maintain a partial outmap s : W — carr€? on the set
W C V(&%) of queried vertices, containing the answers we gave so far.
We also maintain a set A of labels and an acyclic unique sink outmap
5 on €. This smaller dimensional outmap 3 is our “building block”
which enables us to extend our answers to a global USO at any time.

Before the first inquiry, we set A = W = (). After each inquiry we
answer by revealing the value of the outmap s at the requested vertex.

105

5 Algorithms

Then we update A and 3, such that the following conditions hold.
(a) [A[< [W],

(b) w' NA#w'NA for every w' # w” € W and

(¢) s(w)=58wNA)UId]\ A for every w € W.

Informally, condition (b) means that the projections of the queried
vertices to € are all distinct. This we shall achieve by occasionally
adding a label to A if the condition would be violated. Condition (c)
exhibits two properties of our answers to the inquiries of the algorithm.
First, that our answers are consistent with § on A-edges, and second,
that all ([d] \ A)-edges, i.e., the edges leaving the cube spanned by w
and A are outgoing.

Suppose now that the algorithm requests the evaluation of the next
vertex u. We can assume that u ¢ W. Depending on whether there is
aw €W with u N A =wnN A we have to distinguish two cases.

Case 1. For every w € W, we have w N A £ unNA.

Then we answer s(u) = §(u N A) U [d] \ A and leave A and 5§ un-
changed. (a) — (¢) all hold trivially by the definition of the updates and
the assumption of Case 1.

Case 2. There is a v € W, such that uN A =vNA.

By condition (b), there is exactly one such v € W. The assumption
of Case 2 and u # v imply that we can fix a label A € A such that
AEudw.

We answer s(u) = s(v) \ {\}. As A & A, the label A is in s(v).

Now we have to update A and 5. We get our new A by adding A.
To define the new orientation §, we take two copies of the old § on the
two facets determined by A. Then, by we can define the
orientation of the edges going across arbitrarily, so we make them such
that the condition (c) is satisfied. More formally, let

S(vNA) if z=un(AU{A})
SwnNAU{A} ifz=wn(AU{A})

for some w € W, w # u
5(z) U(zn{A}) otherwise.

106

5.2 A Lower Bound on Deterministic Algorithms

Next, we have to check conditions (a)—(c) for our new W, A and 3.
Condition (a) still holds, because we added one element to each of W
and A. Since A just got larger, we only need to check condition (b) for
the pairs of vertices containing u. By the uniqueness of v, it is actually
enough to check (b) for the pair u,v. Since A was chosen from u @ v and
now is included in A, u N A # v N A. Condition (c) is straightforward
from the definitions.

We proceed until [W| = d — [log, d], and then change the strategy.
By condition (a), |A| < d—[log, d]. We choose an arbitrary superset A’
of A such that |A’'| = d—[log, d]. The set of labels [d]\ A’ determines at
least 24714l > d disjoint subcubes generated by A’. As |[W| < d, we can
select one of them, say €y, which does not contain any point evaluated
so far.

Our plan is to apply a local change with €; and an orientation s,
which is consistent with the outmaps of the vertices evaluated so far.
then will enable us to reveal s on V(€%)\ V(&) to the
algorithm and still be able to start a completely “new game” on €y, a
cube of relatively large dimension. To construct s satisfying the condi-
tions of we use the product construction of
twice.

First we define an orientation 5 of ¢/’ using the product construction
for 5 on the frame ¢* and outmaps s, on the hypervertices along A\
with the property that for every w € W, the map s,,na has its source at
wN (A"\ A). This last requirement can be satisfied because of condition
(b). For v ¢ W the map s, can be arbitrary.

Thus, the resulting outmap 5 is consistent with the evaluated vertices
in the sense that s(w) N A’ = §(w N A’) for each w € W.

Next, we use again the product construction with 5 on the frame @Al,
so we have to construct USOs s, of €4\A for every v € V(€). In
doing so, we only take care that the sinks of all these orientations are
in €, and if v = wN A’ for some w € W, then w \ A’ is the source of
$y. (By condition (b), there can be at most one such vertex w for each
v.) The appropriate s, exists according to Now apply
the product construction with frame s and the hypervertices s,. This
provides us with an orientation s which agrees with our answers given
for the evaluated vertices. Furthermore, &; is a hypersink w.r.t. s.

We can reveal s on V(€9)\ V(&) and still be able to place any orien-

107

5 Algorithms

tation on €p, a hypersink of dimension d — [log, d]. Therefore, we just
proved

tacyC(d) > d — [logy d] + tacyC(d — [logy d]) .

Theorem 5.4 ([39, Theorem 9]) ,
d

Any deterministic algorithm needs Q(@) many vertex evaluations to

find the sink of an acyclic unique sink orientation on a d-dimensional
cube.
PROOF. We prove by induction for d > 2
d? d
tac c d Z YT Y
veld) 2[log, d] 2

- %, the inequality

e}

Since taeye(2) > 1 = % — % and tgeyc(3) > 1 >
holds for d = 2, 3.
Now let d > 4. By induction for 2 < k < d we have tycyc(k) >

ﬁ — & Since d — [log, d] > 2 we get:
tucyc(d) Z d - |—10g2 d—| + tacyc(d - DOgZ d‘l)
> d—[logyd]| +
(d — [log, d])? 1
— —(d — [log, d
2Moga(d— [logy)]~ 24 11082 4)

1 1
> Zd_ =
2 3 QHng‘ﬂ +

d2 — 2d[log, d] + [log, d]?

2[log, d|
_ & _d
~ 2[logyd] 2’

and the inequality also holds for d. [J

5.3 Small Dimensions

For dimension 0, t(0) = 1, since there is no edge. This is a good oppor-
tunity to point out once more that we require the sink to be queried,

108

5.3 Small Dimensions

even if (as in this case) we know where it is. For dimension 1, obviously
t(1) =2.

After querying the vertices of even cardinality in a USO s, the position
of the sink is known. In fact, then we know the whole orientation.
In particular, this shows that #(2) < 2+ 1 =3 and t(3) < 4+ 1 =
5. In the following, we not only show that this simple algorithm is
best possible. In both dimensions, this bound is sharp even on the
set of acyclic orientations. Furthermore, we can forbid a vertex in the
beginning.

Proposition 5.5 ([39, Proposition 10])

Every deterministic algorithm needs three queries to find the sink of a
two-dimensional unique sink orientation, even if there is a fixed vertex
which is known not to be the sink. In particular, t(2) = 3.

PROOF. The strategy answers with the source for the first query of an
algorithm. Now, all remaining three unqueried vertices are still potential
sinks by Even if one of them is known not to be the sink,
there are two possibilities left. Therefore, no deterministic algorithm
can evaluate the sink in two steps. [

As in the general lower bound, the main tool in the following is pro-
vided by We will construct a partial outmap with a hy-
persink. Since the sink has to be located in this hypersink, we can then
proceed recursively, using

Proposition 5.6 ([39, Proposition 11])

Every deterministic algorithm needs five queries to find the sink of a
three-dimensional acyclic unique sink orientation, even if there is a fixed
vertex which is known not to be the sink. In particular, t(3) = 5.

PrOOF. Let A be some algorithm for SINK and u be the vertex which
is known not to be the sink. We construct an example s on ¢3 for which
A needs 5 steps at least.

The first query vy will be answered with the source, s(vy) = [3]. If the
second query vy is not antipodal to v1, both vertices are in a common
facet, say A\ & v; @ va. In this case set s(v2) = {A}. Combing all
A-edges towards the A-facet €y not containing v; and ve makes & a

109

5 Algorithms

2-dimensional hypersink. Any algorithm needs 3 more queries to find
the sink in €y, even if the non-sink « is in €.

If the second query wvs is antipodal to vy, choose some A € vy G u
if u # vy or A = 1 otherwise. Without loss of generality, vy = 000,
vg = 111 and A = 1. For all four edges %10, 1x0, 10« and %01, there is
an acyclic USO having the edge as hypersink (cf. . At most
one of the edges contains u (as u = vg or u € 0%x) and at most two
edges are blocked by the third query. Therefore, after 3 queries there is
a 1-dimensional hypervertex for which any algorithm needs 2 additional
queries to find the sink. [

One can prove even stronger statements. For instance, it is true that
even the knowledge about two fixed points of distance either three or
one that neither is the sink would not help an algorithm to find the
sink: it would still need to evaluate 5 vertices. Curiously, if it is known
about two vertices of distance two that neither is the sink, an algorithm
finding the sink in 4 steps exists.

Proposition 5.7 ([39, Proposition 12])
Every deterministic algorithm needs at least seven steps to find the sink
of a four-dimensional acyclic unique sink orientation.

PROOF. The first query v; of an algorithm A will be answered by
the source, s(vy) = [4]. For the second query v, choose a A € v1 & vg
and answer s(vy) = [4] \ {A\}. Without loss of generality A\ = 1 and
v1 = 0000.

If v; and ve are not antipodal, we comb label 4. Thus, the facet
¢’ along label 4 not containing v; and v is a hypersink. Since any
algorithm needs 5 steps to find the sink in ¢’ we need 7 steps altogether.

For the rest of the proof assume v, and vs are antipodal, i.e., v; = 0000
and vp = 1111. Our goal for the next two queries is to keep a 2-
dimensional hypersink unqueried. Since then we can force A into 3
more queries. In the following we fix two USOs s; and s3. Our answers
up to the fourth query rely either on s; or on ss.

We now construct s;. Let 5 be the bow on €%%** with sink in 0010 and
source in 0011. Construct a USO sy with frame s using
The hypervertices are Syx00 = S«x01 = Sxx10 = D11 and S.411 is the bow

with source in 0011 and sink in 1011 (cf. [Figure 5.2)).

110

5.3 Small Dimensions

v = 111
110
100 001
v = 111 v1 = 000 vy = 111
v1 = 000 vy = 111 v1 = 000
10
v1 = 000

Figure 5.1: The orientations forcing 5 steps in dimension 3.

111

5 Algorithms

0001

0000

Figure 5.2: The construction of s;.

In s; the subcube 00%x is a hypersource. We can replace this hyper-
source with the bow having its sink in 0010 and source in 0000. The
resulting USO s; is acyclic. See for a picture of s;. For s
flip the two edges 01x0 and 11x0 in s1. In fact, both edges are flippable.
Hence, s is a USO. See for a picture of s,.

We only need some facts about s; and s,. First of all, both orienta-
tions agree on all vertices outside the faces **10 and *10x. Furthermore,
for v; and vy the outmap-values coincide with the answers we gave. And
finally, for s; the face xx10 is a hypersink, whereas for sy the face *10x
is a hypersink.

We are now ready to deal with the remaining queries of A. For the
third query v3 there are six cases with respect to v; @ v3. So far we only
fixed label 1. All other labels can still be permuted without affecting
s(v1) or s(ve). According to the six cases we now decide on the other
three labels.

(1) v1 ® v = {1}. Then w3 is the vetex 1000.
(2) v1 ®vs ={u}, p# 1. Then set p =4, i.e., v = 0001.
(3) v1 ®vs ={1,u}, p#1. Then set u =4, ie., vg =1001.

112

5.3 Small Dimensions

Figure 5.3: The USO s;. The upper picture shows the whole USO,
whereas the lower picture depicts only the relevant facts.

113

5 Algorithms

0001 (0010
0100

0000 = vy

Figure 5.4: The USO s3. The upper picture shows the whole USO,
whereas the lower picture depicts only the relevant facts.

114

5.3 Small Dimensions

0010

Figure 5.5: The possible positions of v3. The gray shaded area covers
the subcubes where we still want to change the orientation
according to the remaining queries.

(4) vi®vs = {u, v}, p,v# 1. Thenset p =4 and v = 3, i.e., v3 = 0011.
(5) v ®wvs = [4]\ {u}, o # 1. Then set p =2, i.e., v3 = 1011.
(6) v1 ®vs ={2,3,4}. Then v3 is the vertex 0111.

See for the possible positions of vs. In no case the two 2-
faces *10% and *x10 contain a queried point. Answer to v3 according to
81(1}3) = 82(1}3).

If the fourth query vy4 is not in #x10 we fix s(v) = s1(v) outside *x10.
Since *x10 is hypersink in s1, we can replace the orientation in this face
arbitrarily and force the algorithm into 3 more queries to find the sink
in *xx10. This makes 7 queries altogether.

If on the other hand vy is in #%10, we fix s(v) = s2(v) outside *10x
and proceed as above. [

This proof provides us with a very small class of 4-dimensional USOs

on which every deterministic algorithm needs 7 queries at least. Fur-
thermore, the constructed USOs are rather simple. One would therefore

115

5 Algorithms

Figure 5.6: A possible choice for sy in the proof of

suspect that 7 is not the best lower bound and more sophisticated exam-
ples would give better bounds. However, the SEVENSTEPSTOHEAVEN
algorithm introduced by Szabé and Welzl [42] finds the sink of a 4-
dimensional USO in 7 steps.

For dimension five the correct value is still not known. The best upper
bound is 12 (see []). For the lower bound, there is a simple argument
for 9 which will be given below. Again, the underlying idea is that after
a small number of queries (in this case, four), there still remains a large
untouched subcube.

Proposition 5.8
Every deterministic algorithm needs at least nine steps to find the sink
of a five-dimensional acyclic unique sink orientation.

PROOF. As usual, we answer to the first query v; with the source,
i.e. s(v1) = 11111. For the second query va, we choose A € v1 @ v2 and
set s(vg) = 11111 @ {A}. If v; and vg are not antipodal, the algorithm
needs 2+¢(4) = 9 queries. For the rest of the proof, assume v; = 00000,
vy = 11111 and A = 3.

Our goal is to answer to the first four queries in such a way, that after
the fourth query we can fix a USO with a 3-dimensional hypersink, such
that no vertex in the hypersink is queried. In fact, all four queries will
be in two antipodal 3-dimensional cubes.

Fix an acyclic USO sg on €***90 with outmap s0(00000) = 11100 and
$0(11100) = 11000. That is, so is compatible with the answers to vy
and vy relative to €***00. See, for instance,

The third query vs has distance 2 to either vy or vg, say v;. If 3 €
v; @ vz we can relable the cube, such that vs is in the subcube spanned

116

5.3 Small Dimensions

by v; and the labels 2,3. Otherwise, we can assume that vs is in the

subcube spanned by v; and 1,2. See
We answer to vz either s(vs) = so(vs N {1,2,3}) U{4,5} if i =1 or
s(vs) = so(vs N {1,2,3}) U{b}if i =2.

If v; ® vs C {2,3}, we can always achieve that vy is in one of the
subcubes €***00 op @***11 GQee

For v; @ v3 C {1,2} after relabeling the fourth query vy is either in
one of the subcubes €**9%* and €**!1* or in one of the subcubes ¢***00
or ¢***11 Gee

If all four queries vy, ..., v, are in €**00% and ¢**11* we construct the
final answer s by using with a 2-dimensional frame and 3-
dimensional hypervertices. For the frame orientation 5 on €°9**? choose
the bow with source in 00000 and sink in 00100. For the hypervertices
@**00% and ¢**11* choose orientations compatible with the answers to vy,
vg, and vs. (Such USOs exist by) Answer to v4 according
to this construction. For the remaining hypervertices €**01* and @**10x

we can choose arbitrary acyclic USOs. In particular, we can force 5
more queries in €**01*_ See [Figure 5.10

If on the other hand all four queries vy, . .., v, are in €***00 and ¢***11,
we use |[Lemma 4.20], now with a 3-dimensional frame and 2-dimensional
hypervertices. The frame orientation is § = sg. For the hypervertices we
always choose the bow with source in **x00 and sink in #xx01, except
for the hypervertex in 11100. There we choose the bow with source in
xxx11 and sink in **x01. See The resulting orientation
is compatible with the answers so far. Answer to v4 according to this
construction. Furthermore, €***0! is a hypersink. Thus, we can force
five more queries.

O

The idea of the four proofs above looks promising at first sight: After
the first few queries, there are still untouched large subcubes. Unfortu-
nately, in general, for fixed k the number of vertices one has to query to
pierce every (d — k)-dimensional subcube is only logarithmic in d (see

21)-

117

5 Algorithms

Figure 5.7: The possible positions of v3. The gray shaded area covers
the subcubes where vz can be found.

118

5.3 Small Dimensions

U1

J
)
sy

Figure 5.8: The possible positions of v4 provided v; ® vs C 01100. The
dark gray shaded area covers the subcubes where v3 can be
found, whereas v4 can be found in the light grey.

119

5 Algorithms

S vy

00001
V1
10000 *x00%
V2
skx]1
00100
#%%00
00001
U1

10000

Figure 5.9: The possible positions of v4 provided v; ® vs C 11000. The
dark gray shaded area covers the subcubes where v3 can be
found, whereas v4 can be found in the light grey.

120

5.3 Small Dimensions

V2
EE N ES

h.s. *x10x*

U1

0000

Figure 5.10: The construction for vy, ..., vy € €00y gr*llx,

00

10000

Figure 5.11: The construction for vy, ..., vy € €00y gr*1l,

121

5 Algorithms

5.4 Fast Subclasses

A matching flip orientation s, as defined in Section 4.6.4, is given by a
vertex 0 and a matching M: s is obtained by flipping the edges in M
in the uniform orientation @&5. In B4 every vertex v fulfills the equation
@s(v) @ v = 6. In other words, if one knows that a USO s is uniform
then with two queries one finds the sink: First query an arbitrary vertex
vy and then v = s(v1) @ v1.

If s is a matching flip orientation given by 6 and M, then s(v) & v
must no longer be 6. But M has at most one edge adjacent to v and
therefore s(v) @ v has at most distance one to 6. Furthermore, the sink
o of s is either a neighbor of ¢ or 6 itself: If o # 0, there has to be an
edge adjacent to 6 in M. But then o is the other vertex incident with
this edge.

This observation allows us to find the sink with 5 queries. After
the first query we are already very close to the sink. FExploring the
structure near 6 we need 4 more queries in the direct neighborhood of
o independent of the dimension.

Proposition 5.9 ([39, Proposition 8])

In a matching flip orientation s, the sink can be found in at most 5 steps
(independent of the dimension of s). The value 5 here is best possible,
except in dimension < 2.

PROOF. Let s be obtained by flipping the edges of a matching M in
@s. After querying an arbitrary vertex vy, the vertex vy = s(vy) ® vy is
a neighbor of 6. Thus, vo has at most two outgoing edges.

Obviously, vg is our next query. If |s(vq)| = 0, we have found the sink
in two steps.

For |s(va)| = 1, we ask vz = va @ s(v2) next. If vy was 6, vs has to be
the sink. Otherwise, v3 = 6 and either v3 is the sink or vy = v3 ® s(v3).
Therefore, after at most four queries, we found the sink.

For |s(ve)] = 2 we know that ve is a neighbor of 6 and so is v3 =
ve @ s(v2). Either vs is the sink or vy = v3 @ (s(vs) N s(ve)) is the
original 6 and we need one more query to find the sink. This makes five
queries altogether.

On the other hand, after answering the first query v; the source, its
antipodal vertex o1, and all neighbors v € N () of 9; are potentially the

122

5.4 Fast Subclasses

sink. Until one of these vertices is evaluated we answer to all queries
according to @y,. (Since all edges of one label could be flipped, our
answers do not reveal any information on @y or N(#1).) To find the sink
among the vertices in N(o1)U{®; }, four queries are needed. This proves
the optimality. [

In the above algorithm, the first step made the most improvement, as
vy could have been anywhere and vo = s(v1) @ vy is close to the sink.
In general, v @ s(v) will not improve with respect to the distance to the
sink. (For instance, if source and sink are neighbors and v is the source.)
But if s is combed then v @ s(v) will be in the facet which is a hypersink
according to the combed direction.

Proposition 5.10 ([39, Proposition 7])

For a decomposable unique sink orientation of dimension d, one needs
at most d + 1 vertex evaluations to evaluate the sink. Moreover, d + 1
is best possible.

PROOF. Let s be a decomposable orientation and o its sink.

The observation above suggests the following algorithm: Start by
evaluating an arbitrary vertex v, then perform the following procedure.
For any 1, if s(v;) = 0 then stop: v; is the sink. Otherwise, set v;11 =
v; @ s(v;) and repeat.

We show by induction that for each ¢, both the sink o of the orientation
and v; are in a (d — i+ 1)-dimensional hypersink. This implies that v, 41
is the sink.

The claim is true for ¢ = 1 as the whole cube is a hypersink (no
outgoing edges). Suppose now that it is true for 7. Since the orientation
is decomposable, the hypersink €; containing v; and o is combed in
some label A\. Say €;,1 is the facet of €; with incoming A-edges. As €;
is a hypersink of dimension (d — i + 1) the facet €;11 is a hypersink of
dimension d — .

Furthermore, since v; € €;, only edges in &; can leave v;. If v; € €; 41,
then A € s(v;), otherwise A € s(v;). In particular, vi 1 = v; ® s(v;) €
Q:i+1.

For optimality, suppose an algorithm first requests the vertex v;. We
(the oracle) return the source, s(vy) = [d]. Let vy be the second request

123

5 Algorithms

and let A\ € v1Pvs. Thus, vy and vy are in different A-facets, say vy € €,.
We reveal to the algorithm that the first combed label is A, thus the sink
is in €. There we follow a strategy (which exists by induction) which
forces the algorithm to do d evaluations in €,. This adds up to d + 1
evaluations all together. O

5.5 Jump Antipodal

Let JUMPANTIPODAL be the following algorithm: In a vertex v with
queried outmap s(v) we jump to the vertex v = v @ s(v) and proceed
until we reach the sink. The name comes from the fact that v’ is the
vertex antipodal to v in the subcube spanned by v and all outgoing edges
in v. This is exactly the algorithm we described in [Proposition 5.10] At
first sight JUMPANTIPODAL looks promising, especially since it is fast
on the Klee-Minty cube.

Recall [Proposition 4.29] where we proved that the simplex algorithm
SIMPLEX needs exponential many queries to find the sink of the Klee-
Minty cube. JUMPANTIPODAL is only a slight modification of SIMPLEX
in the sense, that instead choosing one of the outgoing edges we now
consider all outgoing edges at once.

For the Klee-Minty cube this little twist makes a big difference. By
construction, the Klee-Minty cube is combed. Thus, JUMPANTIPODAL
needs only a linear number of queries to find the sink. This indicates,
that JUMPANTIPODAL might be a good algorithm. In the rest of this
chapter we will destroy this hope.

The behavior of JUMPANTIPODAL on a USO s can be described by the
following directed graph T,,(s): The vertex set of T,,(s) is the vertex
set of the underlying cube of s. Two vertices v, v’ form an edge v — v’
if v ® v’ = s(v). In particular, every vertex v has exactly one outgoing
edge v — v @ s(v). We call v’ the successor of v. The sink o of s is
special since it is the only vertex in T, (s) having a loop. For instance,
see [Figure 5.12| and |Figure 5.13|

The unique path starting in a vertex v in Ty, (s) will be called trace of
v. Obviously, the trace of a vertex v is the sequence of queries JUMPAN-
TIPODAL produces starting in v.

[Figure 5.13|shows that JUMPANTIPODAL can cycle. We will now show

124

5.5 Jump Antipodal

N,
X7
£

Figure 5.12: A USO s with a high graph T,,(s).

0

Figure 5.13: A USO s with a cyclic graph Ty (s).

125

5 Algorithms

that this can only happen in cyclic USOs. The vertex v is a source in the
cube spanned by v and v @ s(v). The following lemma provides us with
a path v —=* v @ s(v). Hence, the trace of JUMPANTIPODAL induces a
trail in s and if JUMPANTIPODAL cycles, the induced trail contains a
cycle of s.

Lemma 5.11
Let s be a unique sink orientation on € and v a vertex in €. Then there
is a path in the USO from the source of s to the sink of s via v.

ProoF. We will prove the statement by induction on the dimension
d of €. For d = 1 the statement is trivially true. Now assume, we known
that in any (d — 1)-dimensional USO there is a path from source to sink
via a given vertex v.

For a d-dimensional USO s and a vertex v we will split the USO into
two facets and apply induction to the facets. Let o be the sink of s and
w its source. Choose A € 0 @ w. Then o and w are in different A-facets
¢; and €5, say o € €; and w € €. Let w; be the source of €; and o9
the sink in €.

If v € €4, consider w} = wy & {A}. The vertex w] is in €5 and by
induction we find a path w —* w}. The A-edge {w],w;} is directed
towards wi, since w; is not the global source. Thus, we find a path
w —* wi. But now by induction applied to €; we find a path w; —*
v —* 0. See the picture on the left in

If v € €, we repeat the arguments from above with the interim vertex
oh = 02 @ {\}, that is, we find a path

w—"v =% 0y — 0y =" 0.
See the picture on the right in O

In the following, we only consider USOs for which JUMPANTIPODAL
does not cycle. For such USO s the graph T, (s) is a tree, the so-called
bottom-antipodal tree. This tree was first introduced by Kaibel [20] in
connection to randomized simplex algorithms. In particular, Kaibel
raised the question, how high such a tree can be. The height of a vertex
v in Ty, (s) differs by one from the number of queries of JUMPANTIPODAL
starting in this vertex. Thus, if we can construct a family of examples

126

5.5 Jump Antipodal

¢, A ¢, ¢, A ¢,

01

w1

Figure 5.14: How to find a path trough v. The picture on the left side
shows the situation when v and o are separated from w by
a label A\. The picture on the right side shows the reverse
situation, where v and w are separated from o.

for which the maximal height grows exponentially JUMP ANTIPODAL has
complexity (2%). We will even show, that the average height (that is,
the arithmetic mean of the heights of all vertices) grows exponentially.

Theorem 5.12
In every dimension d there is an acyclic USO, such that the height of

d
the corresponding bottom-antipodal tree is at least /2 and the average
height is (%)d.

ProoF. We will inductively construct acyclic USOs s(on ¢4 with
maximal height h(d) = 2h(d—2)+2 and average height h(d) > %ﬁ(d—2).

Fix some orientations s(?) and s®). For instance, we can choose the
orientations of height h(2) and h(3), repectively. That is, for s(2) choose
a bow and for s choose the orientation in

Now assume we have already constructed s(¢~2). Without restriction

we assume that s(?~2) has its sink in . Let T = Ty, (s(472) be its
bottom-antipodal graph, o its sink and vy,.x & vertex of maximal height.

Based on s(=2) we use [Lemma 4.20l and [Lemma 4.18 to construct s(4.

As an intermediate step we construct a d-dimensional s’ by applying

Lemma 4.20| with frame s(?=2). The hypervertices are one of the two

bows sg and s; with sink in () and source in {d—1} and {d}, respectively.

127

5 Algorithms

Vertices of s(?=2) with an even height in T are replaced by sq and vertices

of odd height by s;. Formally, for v € €?~2 with height congruent i
modulo 2 set s, = s; and let s’ be the product of all s, with frame
5(4=2) according to

Since sg and s; have the sink at the same vertex, by construction the
subcube *--- %00 is a hypersink of s’. In this hypersink replace s(?=2)
by s(4=2) o @, . That is, we change s(¢=2) in - %00, such that the
sinks of the other three copies in *---*01, *---%10, and *---*11 are
above the vertex vyax in *- - - x00.

The resulting USO is s = s(¥. As bows and s(?=2) are acyclic, so is
s.

Color the vertices of €2 according to their position in the {d — 1,d}-
hypervertices: a vertex is blue if it is in the sink of a hypervertex, it
is green if in a hypervertex it is antipodal to the sink, and it is yellow
if it is the source of a hypervertex. The remaining vertices are red. In
other words, the vertices in *---*00 are colored blue and the vertices
in x---%11 green. The remaining vertices are colored yellow if their
{d—1, d}-edges are outgoing and red otherwise. We will refer to the set
of blue vertices by B, the set of green vertices by G, the set of yellow
vertices by Y, and the set of red vertices by R.

For a vertex v define hr(v) as the height of v in the corresponding
copy of s(¥=2), Formally, for a non-blue vertex v the height hz(v) is the
height of v [d—2] in T. A blue v lives in a shifted copy of s(¢=2), thus
for such v the height hz(v) is the height of v N [d — 2] & vmax in T. In
the following we want to express the height h(v) in Thp(s?) in terms
of hr(v). The blue subcube is a hypersink. Thus, a blue vertex v has a
blue successor. In particular, h(v) = hr(v).

Next we study the height of the vertices 0---000, 0---010, 0---001,
and 0---011. By assumption, on s(¢~2), the vertices 0--- 010, 0--- 001,
and 0---011 are the sink in their corresponding copy of s(¢=2). We
exchanged the orientation in the subcube *--- %00, such that the sink
and vpax change position. Hence, 0---000 has height

h(0---000) = hy(0---000) = h(d — 2).

By choice of sg the vertex 0---010 has only the (d — 1)-edge outgoing.

128

5.5 Jump Antipodal

Thus, its successor is 0---000 and
h(0---010) =14 h(0---000) =1+ h(d — 2).

Similarly, the vertex 0---001 has outgoing edges of label d — 1 and d
and its successor is 0---010. Therefore

h(0---001) =14 h(0---010) =2+ h(d — 2).
Finally, the vertex 0---011 has the d-edge outgoing and
h(0---011) =14 h(0---010) =2+ h(d — 2).

The remaining vertices are classified by their color. In general, red
vertices have blue parents. Let v be a red vertex. It’s outmap s(v)
consists of two components, s(v) = 542 (vN[d—2]) @ s;(vN{d—1,d}).
Since v is red, s;(v N {d — 1,d}) has one outgoing edge which points
towards the sink of this hypervertex. Hence, v @ s(v) relative to the
corresponding hypervertex will be in the sink, i.e., blue.

A yellow vertex v # 0---010 has a yellow successor v with height
hr(v) = 1+ hp(v'). Again, we consider the two components s(v) =
sl (v N [d —2]) ® si(vN{d—1,d}). Relative to the frame s(?~2) the
vertex v N [d — 2] has a successor v}. Relative to the hypervertex s; the
vertex vN{d —1,d} has its antipodal vertex v} as successor. Hence, the
successor of v is v/ = v} @ v4. In particular, hr(v) = 1+ hp(v'). Since
v} has a different parity than vN{d—1, d}, we now are in a hypervertex
of different type s;. In s; the source is antipodal to the source of s;.
Hence, v' ® v" is yellow.

A green vertex v # 0---011 has a yellow successor. We can copy
the argument from above. Again, v = s;(v) is antipodal to the source
relative to s; .

Now consider the green vertex u = vpmax U {d — 1,d}, i.e., the green
vertex with hAr(u) = h(d — 2). The trace of u will consist of yellow
vertices, until we hit the yellow sink O---010. Hence, we get

h(d) > h(u) = hp(u)+ h(0---010)
= h(d—2)+1+h(d—2)=2h(d—2)+1.

This proves h(d) > \@d.

129

5 Algorithms

For the average height h(d) we forget about the red vertices (as we
don’t know their height) and get

Rd) = Qidzh(v)

1
> 2 <Z h(v) + Z h(v) + Z h(v))
veEB veY veG
1
= 2d<ZhT +ZhT)+ 1+h(d—2))+
veEB veY
+ > (hr(v) + 2+ h(d - z)))
veG
1 1 1 1
= ZWZ]}T(U)-FE 2 ZhT(U)+
veEB veY
1
_|_7 2(12th 72d 2+2d 1+2d 1h(d))
veG
3- 1
> - —2)+ = -2
> 4h(d)+ 2h(d)
5~
> = — 2).
> 4h(d 2)
This proves that a(d) > (%)d. O

130

5.6 Remarks

5.6 Remarks

In terms of classical complexity theory, relies on the fact
that a polynomial unique sink oracle induces a total relation. The class
of all total relations in FNP is called TFNP. It is known that a FNP-
complete problem in TFNP would imply NP = coNP (see [3I, Theo-
rem 2.1]). In this sense, the main part of is to show that
a polynomial unique sink oracle defines a language in TFNP.

The best known algorithms for solving SINK can be found in [42]: The
algorithm FIBONACCISEESAW needs O(1.61%) queries to find the sink in
a d-dimensional USO. The best randomized algorithm needs O(1.44%)
expected queries. If we restrict our attention to acyclic orientations, the
RANDOMFACET algorithm solves the problem in O(e2Y?) queries (see
[12)).

So far, there is no indication whether there is a superpolynomial lower
bound or a polynomial algorithm for SINK. There is still too little
structural insight into USOs. The crucial point is the global dependency
between vertices, i.e., the phases. On the one hand such global relations
make it difficult to construct examples. On the other hand, we do not
really know how to exploit these dependencies to speed up algorithms.

For instance, the SEVENSTEPSTOHEAVEN algorithm [42] heavily uses
dependencies between vertices to rule out possible positions of the sink.
Attempts have been made to repeat this in dimension five [4]. However,
already there the relations get very involved. It is believed that the true
value for ¢(5) is 10 or 11.

The simplex algorithm originates from linear programming. In this
setting there are many possible pivot rules even in the memoryless set-
ting. Still, for most pivot rules, variants of the Klee-Minty cube show
an exponential running time. From this point of view [Proposition 4.29|
is a reformulation of the classical result [24].

If we allow memory, there is one pivot rule which survived all attacks
over the course of 24 years. The running time of Zadeh’s rule [43] is still
not known. In the language of USOs Zadeh'’s rule reads: Leave the facet
you left the least number of times. Or from a different perspective: from
the outgoing edges, choose the label you chose the least often before.
Note, that on cyclic USOs Zadeh’s rule can cycle.

The randomized variant of SIMPLEX (called RANDOMEDGE) which

131

5 Algorithms

chooses among the outgoing edges one uniformly at random is known
to perform bad on USOs. On the Klee-Minty cube for RANDOMEDGE
the expected number of queries is O(d?) (see [I4]). For cyclic USOs,
cases are known where the expected number of queries RANDOMEDGE
performs is much higher than the number of vertices (see [33]). Finally,
a recent result by Matousek and Szabd shows that on acyclic USOs
RANDOMEDGE needs an exponential number of queries [29].

132

6 Data

If you prick me, do | not...
leak?

(Data)

133

6 Data

The best known algorithms for finding the sink of a USOs, FIBONAC-
CISEESAW and the (randomized) product algorithm both benefit from
knowledge about low-dimensional cases. The product algorithm uses an
optimal randomized algorithm in dimension three, whereas FIBONAC-
CISEESAW benefits from an optimal deterministic algorithm in dimen-
sion four.

In the following we concentrate on questions arising while studying
low dimensional USOs. In Section 6.1 we describe a format for storing
USOs. In Section 6.2 we address the two algorithmic problems of iso-
morphism test and generating all USOs of a given dimension. In the
remainder of this chapter we describe the data we have gained. A list
of all 3- and 4-dimensional USOs can be found at [38].

6.1 Storing Orientations

In this section we will describe a data structure for storing and/or de-
scribing unique sink orientations. Our main concern is not a space-
optimal encoding of USOs, but rather a human readable representation.

The data structure is given in the form of a primitive stack language.
The language itself include only five types of tokens:

1. (int) :=[0—9]"
2. (label) :="."[1 —9][0 — 9]*

3. commands product, flip, mirror, relabel, change, and
reorient

4. special USOs uniform, sw, km, eye, and bow

5. brackets {}’, ()", "(())’, and ’[1’

Tokens are separated by whitespaces. In addition, the stack can store
the following data types: (set), (cube), (perm), and (uso). The syntax
of the language will be highly context sensitive. Thus, we shall give the
semantics of the reduction rules rather than completely define a formal
grammar.

134

6.1 Storing Orientations

The primitive type (int) represents a positive integer. Nevertheless,
depending on the context we sometimes interpret a positive integer as
the characteristic vector of a set. That is, we have the reduction rule

(int) — (set)
n — {AeNt| |n/2*7!] = 0 (mod 2) },
which is triggered whenever a (set) is required and an (int) is given.
The primitive type (label) can be seen as syntactic sugar. It allows
to distinguish between sets and their elements. This gives us a second
possibility to write down a set of positive numbers:
'’ (label)” '} — (set)
{)\1)\k } - {)\17~-~7)\k}
For instance, the set {1,2,5} can be written as ‘{ .1 .2 .5 }” or as
‘19°.
The brackets '{}’ have a second semantics. If the first token inside
the brackets can be reduced to (set), the term is interpreted as a cube.

There are two possible ways to determine a cube. The first reduction
rule is

{” (set) (label)” '}’ — (cube)
{v . M X} — {u]|3AC{,. ., Atiu=vdA}.
That is, we give a base vertex v and the carrier {A1,...,Ax} of the
cube. In particular, the A-edge in a vertex v is denoted by “{ v .\ }”.
Alternatively,
{7 (set) (set) '}’ — (cube)
{uv} — {wlunvCwCuUv}
describes the minimal cube containing v and v. For instance, the terms
‘{0 .1 .2 .3} and ‘{1 6} both describe the standard 3-dimensional
cube.
A USO can be defined in terms of its outmap. An outmap of a d-
dimensional USO is given by
[(set)y - (set)ya_; 17 — (uso)

[t0'~~ t2d_1 1 — 822[d] *>2[d],’U*—>tX(U),

135

6 Data

s(7) =s(111) =001 =1

5(3) = 5(011) = 100 = 4 5(6) = 5(110) = 010 = 2
! - s(5) = s(101) =111 =7

5(2) = 5(010) =101 =5
s(1) = s(001) =011 =3 s(4) = s(100) = 000 = 0

5(0) = s(000) = 110 = 6

Figure 6.1: The orientation s = [6 3 564 0 7 2 1]. Each value is
denoted as a 0/1-word as well as the integer interpretation
of the word.

where x(v) = Y o, 2* 1. See|Figure 6.1] for an example. Syntactically
we cannot distinguish outmaps of USOs from arbitrary maps. Whenever

aterm “[vy ...v9a 17 does not reduce to a USO, the semantics will
be undefined. All USOs will be on a standard cube €.

The remaining elements of the language aim to manipulate USOs al-
ready defined. To define a relabeling manipulator, we have to formulate
permutations. Permutations can be given in two different ways. The
following rule defines a permutation in Sg:

"(C (int)--- (int), 1))’ — (perm)

(Ctr-+- tg)) — 7:[d—[d,\—ty,
provided 7 is a permutation, i.e., {t1,...,t4} = [d]. We use double
brackets to distinguish such an exhaustive enlisting of 7 from its cycle
decomposition. A cycle in Sy is defined by

"C (int)--- (int),)’ — (perm)
(ti--- tpy) — 7:[d—[d
A, A {t1, ...t}

A b, A=ty
tiy1, A=t 1<k

136

6.1 Storing Orientations

provided that k < d and {t1,...,t;} C ([Z]). The value of d will always
be clear from the context. Furthermore, two permutations following
each other are composed:

(perm) (perm) — (perm)
T T2 — T1 0Ta.

For instance, the terms “((2 3 1 4))”, “(1 2 3)”, and “(1 3) (1
2)7 all define the same permutation in Sy.

We are now ready to list the manipulation operations. Given a per-
mutation 7 € S, and a d-dimensional USQO s, the rule for the relabeled

USO s, =7/ oso7 " described in |[Lemma 4.4) is as follows:

(uso) (perm) 'relabel’ — (uso)

s 7 relabel — s, :v T[s(77 [v])].

The operations s — s o @, and s — @, o s from are
defined similarly. Let s be a d-dimensional USO and v C [d]. Then

(uso) (set) 'mirror’ — (uso)
s v mirror — Ssod,
and
(uso) (set) 'reorient’ — (uso)
s v reorient — @, 0s.

Let s be a USO on €% and ¢, a d’-dimensional hypervertex of s.
Futhermore let §o be a USO on €. In order to substitute the orientation
on €, by §p, we must rename the labels in §g. Let carr € = {\q,..., A\g}
with Ay < Ay < -+ < Agr and 7 : {\1,..., ¢} — [d'] the bijection
defined by 7(\;) = 4. Set so = 7' 0 g0 71 Then is
applicable to s and sg. The resulting USO s’ is denoted by

(uso) (uso) (cube) 'change’ — (uso)

s 89 €y change — &',

Let 5 be a USO on €4 and 3o, ...,8_; USOs on €4. To form a
product with frame orientation s and hypervertices s,, the carrier of

137

6 Data

5 needs to be different from the carriers of the s,’s. Let 7 : [d'] —
{d+1,...,d + d'} be the bijection 7(\) = d + \. For v € 2[4 and
i = Y sew 2A~1 define s, = 7/ 0 4; o7 '. Then all s, are USOs on
gldtl...d+d'} and we can apply [Lemma 4.20[to 5 and s,, v € 2[4, The
resulting USO s on €%+ is denoted by
(uso),--- (uso)yq_; (uso) ’product’ — (uso)
S0 -+ 89a_1 § product — s.

Finally, let s be a USO on ¢ and e an edge in ¢?. Let s’ be the USO

we obtain from s by flipping all edges in phase to e (cf. [Proposition 4.9)).

The rule for s’ is

(uso) (cube) 'flip’ — (uso)

seflip — .

We are now ready to define some special USOs. An eye is completely
determined by the position of its sink. The eye with sink in v is given
by

veye— [012 3] vmirror.

On the other hand, a bow is given by the position of the sink and the
label along which we find the source. The bow with sink in v and source
inv@{A}is:

v .\ bow — v eye { (v {1,2}) .\ } flip.
The uniform orientation can be defined recursively:

(d+1) uniform — d uniform d uniform [0 1] product

1 uniform — [0 1]1].
The same can be achieved for Klee-Minty cubes:

(d+1) km — d km d km (2% — 1) reorient [0 1] product
1km — [0 1]1].

We close this section by defining terms for the 3-dimensional USOs
described in [40]. Their relevance will become clear later. The cor-
responding reduction rules are defined in a sketch of the
orientations can be found in

138

6.1 Storing Orientations

SwW

sSwW

sSw

SwW

SwW

sSwW

SwW

SW

© 0 N O O > W NN

SwW

—
o

sSw

[
[y

SW

[
N

SwW

[
w

sSwW

i
S

sSw

[
(o]

SwW

[
(e}

SwW

[EEY
~

sSwW

=
(00]

sSw

[
©

SwW

Table 6.1: A definition for the 19 Stickney-Watson orientations.

L e e e T e e

.2 bow 3 eye [0 1] product
eye 3 eye [0 1] product

.2 bow 1 .1 bow [0 1] product
sw { 6 .1 } flip

.2 bow 2 .2 bow [0 1] product
eye 1 .1 bow [0 1] product

.2 bow 1 eye [0 1] product

.2 bow 3 .1 bow [0 1] product
eye 1 eye [0 1] product

.1 bow 1 eye [0 1] product

.1 bow 3 .1 bow [0 1] product
eye 3 .1 bow [0 1] product
eye 0 .2 bow [0 1] product

.1 bow 0 .2 bow [0 1] product
uniform

eye 1 .2 bow [0 1] product

.2 bow 1 .2 bow [0 1] product
.2 bow 2 .1 bow [0 1] product

uniform {1 .2} flip {2 .3} flip {4 .1} flip

139

6 Data

l 9 sw
l 13 sw

Figure 6.2: The 19 Stickney-Watson orientations. The gray area indi-
cates how they are constructed, i.e., of which subcubes they
are a product or which edges are flipped.

140

6.2 Implementational Aspects

6.2 Implementational Aspects

An implementation of the operations in the last section is straightfor-
ward. The only operation which is a bit more sophisticated is the f1lip,
since £1ip must know the phase of an edge. This problem is equivalent
to finding the connected component in the following graph G. The ver-
tices of G are the edges of the cube, where two edges of the cube are
connected if they are in direct phase. In the following we will study two
other natural problems: isomorphism test and enumeration.

6.2.1 Isomorphism Test

Let s be the uniform orientation on €4 and s, = (s e flip) for e €
E(€?). Let 51,82 € {s} U {s. | e € E(¢%)}. Any algorithm for testing
equality of s1 and sy can be forced to to query 247! vertices. In fact, as
long as the algorithm queried less than 29~ vertices there is one edge e
not incident to a queried vertex. Thus, the algorithm cannot distinguish
the case s1 = s and s = s, from the case s; = s = s5. In particular, we
cannot expect to perform an isomorphism test in 0(2¢) oracle queries.
We therefore assume in the following that we have full access to the
outmap of an USO.

according to[Lemma 4.4] two d-dimensional USOs s; and s on €; and
¢y are isomorphic if there exist a3 € V(€1), az € V(€;) and a bijection
7 : carr €; — carr €y, such that

/ /
T 08100Bg =820Dg, 0T .

A brute force approach would test all 2¢ - d! possible choices for as
and 7. Unfortunately, we are not able to improve much on this worst
case behavior. Note, that the brute force method performs at least d!
test for each pair of USOs.

In the following we introduce a heuristic which performs much better
in practice. We apply the usual trick and introduce a set of invariants.

Let s; and so be two d-dimensional USOs. If they are isomorphic an
isomorphism has to map sink to sink. Thus, as a first step we find the
sinks 01 of s1 and o0y of s5. The orientations 5; = s;0®,, are orientations
on ¢4 with sink in (). It is rather straight-forward to prove the following.

141

6 Data

Lemma 6.1

For i = 1,2, let s; be a d-dimensional USOs with sinks o; and define
3; = 8; 0 @,,. Then s; and sy are isomorphic if and only if there is a
permutation T € Sy, such that 7/ 05; = 530 7.

In the remainder of this section we will assume that all USOs are on
the standard cube and have their sink in (). Notice that by
for each USO s on ¢ the set

{7'0507"71 ‘ TESd}
contains all and only the USOs which are isomorphic to s.

Definition 6.2
Let s be a USO on ¢? with sink in (). Fori,j € [d] and) € [d] let

= |{oe (1Y)

Furthermore, set AE)\)(S) = (agf‘l) (s),... 7ag,);l)(s)).

5(0) @ (v @ (A} =j}|

For a USO s on €4 with sink in), the number agf‘l)(s) counts all
flippable A-edges between sets of cardinality ¢ — 1 and sets of cardinal-
ity 4. Any isomorphism test has to consider these flippable edges. In
particular, flippable edges have to map to flippable edges.

Lemma 6.3
Let s be a USO on ¢? with sink in), 7 € Sy, and i € [d]. Then for

S,—*’IIOSOT/ ! we have
T(A A

The proof, although technically a bit involved, is straight-forward and
will be omitted.
By|Lemma 6.3 Al(/\) (s) itself is not invariant under isomorphisms, but

the multi-set of all AZ(-)‘) (s), A € [d] is. Furthermore, an isomorphism has

to preserve the value of AE’\)(S).

142

6.2 Implementational Aspects

Definition 6.4
Let s be a USO on €% with sink in () and i € [d]. Let

Li(s) = {A%, . A0)

be the partition of [d] defined by
LN e AP 5 AP (s) = A (s) and
2. \ € A;?s), Ay € Agi’s),jl < jo = Ag)‘l)(s) ex AEAQ)(S)

Furthermore, for A € [d], the multi-set Z;(s) of all AE’\)(S), A€ [d] is
called the i-th iso-set of s.

As an easy consequence of we get the following:

Corollary 6.5

Let s; and sy be two isomorphic USOs on €% with sink in (), and let
T € Sq be a permutation with 7’ 0 81 = sg o 7'. Then, for all i € [d] the
two multi-sets Z;(s1) and Z;(s2) agree. Furthermore, for 1 < j < k;,,,

we have T[A;i’sl)] _ AY’”)'

Let M and N be two partitions of [d]. The set
MON:={MNN |MeM,NeN}\{0}

is a partition of [d]. It is the largest common refinement of M and N.
Furthermore, for a permutation 7 € Sy let

TM] = {r[M] | M € M},

which is a partition again.

Based on and the operations described above,
describes an isomorphism test, which seems to perform well in practice.
The use of Z;(s) often allows to decide that two USOs are not isomor-
phic. But even if two USOs have the same invariants, the algorithm
is able to cut down the number of possible relabelings by £;(s). For
example, in dimension four of the 14614 isomorphy classes 9930 classes
are uniquely determined by their iso-sets. Furthermore, for 10641 of the

143

6 Data

isotest(sy, s2)
Preconditions: s; and so are on ¢4 with sink in (.
Postcondition: returns true if s; and s are isomorphic,
false otherwise.
My —{[d]}
My — {[d]}
for each i € [d] do
compute iso-sets Z;(s1) and Z;(s2)
if Ii(Sl) 7é Ii(SQ) then
return false
compute £;(s1) and £;(s2)
My — M0 Li(s1)
My = Mo N Li(s2)
for each 7 € Sy with 7[Ms] = M,
if7"os; =s907
return true
return false

Table 6.2: A procedure to test if two USOs are isomorphic. The USOs
s1 and so are assumed to be on ¢ with sink in 0.

14614 isomorphy classes the lexicographic order of the iso-sets allows
only one relabeling.

Let s; and ss be two USOs on €%, both with their sink in . A
permutation 7 € Sy has to fulfill T[Ay’sl)] = A;z’”) forall 1 <j <k,
and all ¢. In many cases this narrows the choices of 7 down to one
permutation.

The procedure in needs only O(d?) storage in addition to
the outmaps of s; and ss. In particular, the algorithm can perform
an isomorphism test even in higher dimensions (say dimensions large
than 64E|); however we need to be willing to ask the oracle for a vertex

'In order to store the whole outmap of a d-dimensional USO we have to address 2¢
objects. This limits the dimension to the bus-size of a computer. Although there
are ways around this limitation, the solutions are highly impractical.

144

6.2 Implementational Aspects

repeatedly, rather than storing the outmaps.

6.2.2 Enumeration

Given a d-dimensional USO s, the induced orientations s; and s, on
the lower and upper d-facet are (d — 1)-dimensional USOs. The edges
inbetween partition into phases. Since edges in phase have to be ori-
ented towards the same facet, s is uniquely described by s1, s2, and the
orientation of one edge per phase.

This suggests the following procedure to generate all d-dimensional
USOs provided we know all (d — 1)-dimensional USOs. For each pair of
(d — 1)-dimensional USOs s; and s, apply:

1. Set s = (s1 s2 [01] product), i.e., s is the orientation which has
s1 in the lower d-facet, sy in the upper d-facet, and all d-edges
directed towards the lower d-facet.

2. Calculate the d-phases of s.

3. For each set of d-phases, flip the set and output the resulting
orientation.

This will enumerate all d-dimensional USOs.

The expensive operation in the above procedure is to compute all
d-phases. In the following we want to minimize the number of phase
calculations. We can do so by grouping USOs with essentially the same
set of phases. For instance, isomorphic USOs have isomorphic phases.
(So far, we have not proven this).

Definition 6.6
Two d-dimensional USOs s, and sy on €% are of the same o-type if there
exist a, A C [d] and T € Sq, such that

Tloslo@a:@AOSQOT/. (61)
As it will turn out later, USOs of the same o-type will produce essen-

tially the same orientation in the above procedure. But let us first show
that the o-types partition USO(d).

145

6 Data

Lemma 6.7
The relation “being of the same o-type” is an equivalence relation on

USO(d).

PrOOF. Obviously, a d-dimensional USO s is of the same o-type as
s. This implies that the relation is reflexive.

Now let 51 and s be of the same o-type, say 7/ os1 0@, = Gposg07’.
Consider A’ = 7=[A] and o’ = 7[a]. For v € 2l we get

7_/—1 0850 @a’(v) —

= @posior H(v).

Hence, 7' 0 890 @y = @y 081 07 and the relation is symmetric.

For transitivity let s, so, and s3 be USOs on €4, such that s; and sy
are of the same o-type and so are sp and s3. Choose a;,A; C [d] and
71 € Sq with 7{0810D,, = @, 0sgo7(. Furthermore, choose as, As C [d]
and 7 € Sy with 75 0 89 0 By, = ®a, 083075 Let Az = 1[A1] ® Ao,
az = a; ® 7 'as], and 73 = 75 o 7. Then for v € 2l we get

os1080(0) = m[nfnwew e)]

= [Al D so (7'1 [v @ Tz_l[ag]])]
= TQ[Al]@TQ[SQ(Tl[U] @a2)}
= Tg[Al] ® Ay B 83(7'2 [Tl[v]])
= @, 053073(0).
Thus, are s; and s3 of the same o-type. [
If two USOs are isomorphic, say 7/ 081 0@,, = S30®,, o7’, then they
are of the same o-type, namely 7/ 0 51 0 @y, g7 -1[a,) = Dg 05207
We now define a revised version of the above procedure. Given a set

U C USO(d—1) of USOs, let Generate (U) be the process in|Table 6.3
For U = USO(d—1), this is essentially the procedure from the beginning

146

6.2 Implementational Aspects

Generate (U)
for all s; € U do
for all s € USO(d — 1) do

s:=(s1 s2 [01] product)

compute the set £ of d-phases of s

for all L C £ do
s’ := orientation obtained from s by flipping all edges in L.
foralla C[d—1], AC[d—1] and 7 € S4 with 7(d) = d do

output Gp o7 08’ o 7o,

0 3O Uk W=

Table 6.3: A procedure to generate all USOs which have o-types given
by U C USO(d — 1) in the lower facet.

of this section. For U = {s}, Generate(U) will find all USOs which
have the same o-type as s on the lower facet.

Lemma 6.8

Let U C USO(d—1), such that for each s € USO(d—1) thereisa s’ € U
with the same o-type. Then Generate(U) generates all d-dimensional
USO:s.

PROOF. Let s be a d-dimensional USO, s; the induced orientation on
the lower d-facet and so the induced orientation on the upper facet. By
assumption, there exists s; € U, such that s; and s| are of the same
o-type. In particular, there exists A C [d], a C [d] and 79 € Sq_1 such
that

s1=®po01)08, 0 " o®a.
Extend 7, to 7 € Sy by setting 7(d) = d and 7(\) = 79(A\) for A < d.
Furthermore, set

56 =17 1069/\0820@@07'6-
Now consider the set of edges in s pointing towards the upper d-facet,
L={{o,0u{d}} [vCld—1],d e s(v)}.

Since s is a USO, L is closed under phases.

147

6 Data

Let L' = {{w,wU{d}} |{r[w]®a,7[w]DaU{d}} € L}. We will
show that L’ is closed under phases with respect to the orientation

s" =(s1 s2 [0 1] product).

In particular, let s’ be the orientation obtained by flipping in s” all edges
in L. For v € 2471 with {v,v U {d}} € L the edge {t v @ a],7 v @
alu{d}} isin L’ and s’ (17 [v@a]) equals to s} (r~{v®a])U{d}. Hence

EBAOT/OSIOT/_IO@Q(’U) = A@T[S/(T_l[v@a])}
= A@Tg[sl(Tal[U@a])}U{d}
= s1(v)U{d} = s(v).

Virtually the same argument works for v U {d}, as well as for the other
cases v € 2471 with {v,v U {d}} & L.

Therefore, s = @5 07 08 o7/~ ' 0 @,, which is produced by the call
Generate(U).

It remains to show that L’ is closed under phases. Let {w,wU{d}} €
L’ and {w’,w" U{d}} be in phase with {w,w U {d}} with respect to s'.
We have to show that {w’,w’ U {d}} € L. By definition of s’, the two
edges are in phase if and only if either s} (w) = s5(w’) or sh(w) = s} (w')
holds. For s} (w) = sh(w'), we get

THAS s (T[w] B a)] = 7 A S so(rw'] @ a)],

which can only be the case whence s1(7[w] & a) = so(T[w’] & a). Thus,
the d-edges in 7[w]®a and T[w']|@a are in phase and have to be oriented
towards the same facet. Since {r[w] @ a,T[w] ® a U {d} € L the d-edge
in 7[w'] @ ais in L. Hence, {w',w' U{d}} € L’ .

The remaining case sh(w) = s} (w’) is handled analogously. O

It will be convenient to fix some notation for the following discussion.
For two d-dimensional USOs s and s’ denote by ext(s,s’) the number
of d-phases of the orientation § = (s s’ [01] product), i.e., ext(s,s’) =

ph,(5). Let
ext(s) = Z gext(s,s")
s'€USO(d)

Furthermore, denote by iso(s) the number of USOs isomorphic to s and
with ocl(s) the number of USOs of the same o-type as s.

148

6.3 Dimension 3

Lemma 6.9
Let U be a set of representatives for the o-types in USO(d — 1). Then
the number of d-dimensional USOs is

| USO(d)| = Zocl -ext(s
seU

PROOF. For s,s" € USO(d — 1) denote by O(s,s’) the set of all d-
dimensional USOs inducing s on the lower d-facet and s’ on the upper
d-facet. Furthermore, set

O(s) J{O(s,8) | s € USO(d - 1)}
O(s) = U {O(s") | s’ same o-class as s} .

Observe, that {O(s,s’) | s,s’ € USO(d — 1)} forms a partition of the
set USO(d). For the cardinalities of the above sets we calculate

|O(S, S/)| = 2ext(s,s')
|O(S)| = eXt(s)
|O(S)| = OCl(s) . eXt(S).

Finally, USO(d) = J,c;; O(s) and hence

| USO(d)| = Zocl -ext(s
seU

O

6.3 Dimension 3

Remember that there are two isomorphy-types of 2-dimensional USOs:
The eye s, = (0 eye) and the bow s, = (0 .1 bow). (See [Figure 2.5])
Since a reorientation of an eye is an eye and the reorientation of a bow
is a bow, the isomorpy-classes and the o-types coincide. There are eight
bows and four eyes, i.e., ocl(sp) = 8 and ocl(s.) = 4.

We apply Generate({s.,sp}) to generate all 3-dimensional USOs.

depicts all 3-phases for the case that s, is in the lower 3-
facet. There is one orientation with four phases, four orientations have

149

6 Data

PERAR A
ath
Qi

Figure 6.3: Generate(0 eye): All 3-dimensional USOs with an eye
in the lower facet (schematic). For each choice for the upper
facet, the resulting phases are drawn. Edges connected by a
gray area are in 3-phase.

three phases, two have two phases, and five orientations allow only one
phase. Thus

ext(se) =2 +4-2%42.2? + 5.2 = 66.

is the corresponding picture for s,. Counting in this case
yields

ext(sy) =2t +2-28 +5.22 + 4. 2! = 60.
Altogether we get 466 + 8 - 60 = 744 USOs of dimension 3.

Among the 744 USOs on €3 744/8 = 93 have their sink in (. By
we find all possible isomorphy types among these 93 ori-
entations. As a first step we group the orientations according to their
iso-sets. There are 17 different iso-sets. Only in two cases do the iso-sets
not restrict the number of possible isomorphisms. Five of the iso-sets
allow only two permutations and the remaining ten iso-sets already fix
the permutation. That is, for these ten iso-sets the corresponding clus-
ters of USOs with the same iso-set are already isomorphism classes. Of
the remaining 7 clusters only two are not isomorphism classes. The two
clusters with non-restricting iso-sets are isomorphism classes.

150

6.4 Dimension 4

pmdly g
1O
ym s

Figure 6.4: Generate(0 .1 bow): All 3-dimensional USOs with a
bow in the lower facet (schematic). For each choice for the

upper facet, the resulting phases are drawn. Edges con-
nected by a gray area are in 3-phase.

oo
Qno

The result are 19 isomorphy classes. As it turns out, the orientations
in form a system of representatives of these 19 isomorpism
classes. If we further restrict to o-types, only ten o-types remain. See
For the distribution of all USOs over the isomorphism classes

and the o-types consult

6.4 Dimension 4

Based on the data in the last section, we can use Generate to generate
all 4-dimensional USOs. Since we have to check each of the ten o-types
in against all 744 USOs in USO(3), an enumeration as in
Figures[6.3 and [6.4] seems to be inadequate. In the following we just list
the resulting numbers. A list of all 4-dimensional USOs can be found
at [38].

See [Table 6.6] for the number of 4-dimensional USOs. To count
the number of non-isomorphic 4-dimensional USOs we first partition
USO(4) according to the iso-sets. There are 11525 different iso-sets. For
9337 iso-sets the corresponding classes are already isomorphism classes.

151

6 Data

’ o-type H orientations

sw, 6 sw, 10 sw, 12 sw
sw

sw, 8 sw, 14 sw, 18 sw
sw, 19 sw

sw

sw, 13 sw, 16 sw

9 sw

11 sw

15 sw

17 sw

NP |WIN| -

OO0 | O U = W[DN+~

—_

Table 6.4: The o-types in USO(3).

[sv | 1] 2] 3[4]5] 6] 7[8] 9]10]
iso. USOs 48 | 24| 48 | 48 | 48 | 48 | 24 | 48 | 48 | 48
same o-type || 196 | 24 | 196 | 64 | 48 96 48

[sw [mJ12] 13[14]15]16[17[18]19] |
iso. USOs 48 | 48 | 24 | 48 | 8| 48 | 24 | 48 | 16
same o-type 48 8 24

Table 6.5: The distribution of USO(3) over the isomorphism classes and
the o-types.

152

6.5 Dimension 5 and higher

o-type s H ocl(s) \ ext(s) H |Generate(s)] ‘
1 1 sw 192 7296 1400832
2 2 sw 24 7572 181728
3 3 sw 192 7322 1405824
4| 4 sw 64 5918 378752
5| 5 sw 48 6592 316416
6 7 sw 96 8868 851328
7 9 sw 48 8716 418368
8 | 11 sw 48 6592 316416
9| 15 sw 8 | 10586 84688
10 | 17 sw 24 7808 187392

| Total: I 5541744 |

Table 6.6: The number of 4-dimensional USOs.

The remaining 2188 iso-set classes split into 3089 isomorphism classes.
Overall, there are 14614 isomorphism classes in dimension 4.
6.5 Dimension 5 and higher

From dimension 5 on, the number of USOs is so large that an explicit
list of all USOs is not desirable. But even an implicit list as provided by
Generate is too large to be practical. We therefore only give estimates
for the number of USOs in dimension 5 and higher.

Lemma 6.10

| USO(d)| > 4-|USO(d — 1)|2.

PRrROOF. For each pair s; and s; of (d — 1)-dimensional USOs we get
two combed d-dimensional USOs

(s1 s2 [0 1] product)
(s1 s2 [1 0] product)

153

6 Data

This construction provides us with exactly 2 - |USO(d — 1)|*> combed
d-dimensional USOs. In fact, we obtain all combed USOs in this way.

Now choose s; € USO(d — 1) and a vertex vy € V(€471). Consider
the sets

X :={s€USO(d—-1) |s(vg) =t}

for t € 2471, The map s — @; o s establishes a bijection between X;
and Xg. In particular, each set X; has cardinality |USO(d — 1)|/29~1.
For each sy € X, (4, the constructions

s1 89 [011 product { vy .d } flip

and
s1 82 [1 21 product { vy .d } flip

yield non-combed USOs. (The edge {vg,vo ® {\}} is flippable.)
Repeating of all possible s1, vy, and so we have

2-|USO(d - 1)| oL

=2|USO(d — 1)|?
different non-combed USOs. Together with the 2| USO(d — 1)|?> combed
USOs we obtain the promised 4 - | USO(d — 1)|? orientations. [

A similar approach can be used for an upper bound. Let s be a
d-dimensional USO. The orientations in the lower and the upper d-
facet are (d — 1)-dimensional USOs. Obviously there are at most 22"
choices for the orientations of the d-edges. This gives an upper bound of
| USO(d)| < 22 '| USO(d — 1)|2. Since there are orientations for which
each d-edge is flippable, this bound cannot be improved. But if we
subdivide into (d — 2)-dimensional subcubes, we obtain a better bound.

Lemma 6.11
Let U be a system of representatives for the o-types of USO(d — 2).
Then

|USO(d)| < 3-2%7%-|USO(d — 2)|* - Y _ ocl(s) - ext(s)?.
seU

154

6.5 Dimension 5 and higher

PROOF. Let s be a d-dimensional USO. Consider the following orien-
tations on subcubes of €%:

e s is the orientation on €42

e 51 is the orientation on the lower (d — 1)-facet.

e 5o is the orientation on the lower d-facet.

e s3 is the orientation on the 3-dimensional cube antipodal to €42,
e For v € €92 let s, be the orientation on ¢-v®{d—1d}]

There are at most | USO(d — 2)| choices for sg and s3. Depending on
the choice of sy we have ext(sg) possible choices for s; and s3. After
the choice of s; and s3 we know two edges in each s, thus we have at
most 3 possible choices for each s,. Altogether we get

|USO(d)] < |USO(d—2)?- > ext(so)? | -3-2772
50€USO(d—2)
= 3.29°2.1US0(d - 2)|?- Z ocl(s) - ext(s)?.
seU
0

Corollary 6.12
The number of 5-dimensional unique sink orientations is between 1.23 -
10" and 7.47 - 104,

PRrOOF. The number of 4-dimensional USOs is 5541744, thus

| USO(5)| > 4 - 5541744% = 122843706246144 = 1.23 - 10**

by For the lower bound consult

|USO(5)] < 3-8-744%. Z ocl(s) - ext(s)?
seU
17856 - (192 - 72962 + 24 - 75722 + 192 - 73222 +

+ 64 - 59182 + 48 - 65922 + 96 - 88682 +

155

6 Data

+48 - 8716% + 48 - 65922 + 8 - 105862 +
+ 24 - 7808%) = 17856 - 41858776992
= 747430321969152 = 7.4743 - 104,

O

Two different experiments indicate that the true value is closer to the
upper bound than to the lower bound. The first experiment is based on
an implementation of the Markov-chain introduced in Section 4.3. Let
p be the probability that a 5-dimensional USO is combed in direction 1.
As already observed in the proof of the number of combed
orientations in USO(5) is

ne =2-| USO(4)|? = 61421853123072.

Let n = | USO(5)|. Then n, = n-p. If we run the Markov-chain defined
by [(4.6)| 7 times and count the number 7. of orientations combed in
direction 1, then we get 3

e,

n

since the Markov-chain converges to the uniform distribution. Thus,

n
Ne+ — — N

Ne

The Markov-chain was implemented in C++. Starting with the uniform
5-dimensional orientation we receptively choose a label uniformly at
random from {1,...,5}, calculate the phases along this label and flip
each phase with probability 1/2. An implementation can be found at
[38]. In an experiment with 109 iterations of the Markov-chain, where we
counted every 1000-st orientation, we observed n. = 9554 orientations
combed in direction 1. This gives an estimate of

100000

= 661421853123072 -
9554

= 6.4289 - 104, (6.2)

Ne -

=

Although the numbers seem to converge, and appear reasonable as com-
pared to our bounds, we want to point out that we have, in actual fact,
no guarantee that the Markov-chain is already converging.

156

6.5 Dimension 5 and higher

The second experiment is using Applied to the case
of dimension five, we have 1291 o-classes in dimension four. For each

of them we have to calculate the number of phases combined with all
5541744 USOs of dimension four. Even though this is not a trivial task,
it is something a computer program can do. An implementation of
this idea gave (after thee weeks calculation time) the following number:
638560878292512. Although we do not have an actual proof that this is
the right result (the implementation could be wrong), it is quite likely
that this is the actual number of five-dimensional USOs.

For higher dimensions, the upper bound from fails, since
we do not have access to ext(s). The lower bound from

yields:

|USO(6)] > 4-|USO(5)|*> > 64-|USO(4)[* = 6.04-10%
|USO(7)| > 4-|USO(6))* > 2. |USO(4)® = 1.46 - 10°®
|USO(8)] > 4-|USO(7)|? > 2% .| USO(4)[*® = 8.50 - 10*1¢

Since the number of atoms in the universe is estimated to be between
107 and 107?. This means that from dimension 8 on, any enumeration
of USO(d) will necessarily fail.

157

6 Data

158

Bibliography

1]

2]

L. Adler and R. Saigal. Long monotone paths in abstract polytopes.
Math. Oper. Res., 1:89-95, 1976.

N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction
of asymptotically good, low-rate error-correcting codes through
pseudo-random graphs. IEEE Transactions on Information The-
ory, 38:509-516, 1992.

N. Amenta and G. M. Ziegler. Deformed products and maxi-
mal shadows of polytopes. Contemporary Mathematics, 223:57-90,
1999.

M. Balmer and T. Szabd. Deterministic algorithms on unique sink
orientations of small dimension. Manuscript in preparation, 2003.

E. Behrends. Introduction to Markov Chains. Vieweg, Braun-
schweig, 2002.

R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Comple-
mentary Problem. Academic Press, 1992.

G. Dantzig. Linear programming: The story about how it began.
Operations Research, 50(1):42-47, 2002.

M. Develin. LP-orientations of cubes and crosspolytopes. Advances
in Geometry, 2002. To appear.

B. Gértner. A subexponential algorithm for abstract optimization
problems. SIAM Journal on Computing, 24:1018-1035, 1995.

B. Géartner. Combinatorial linear programming: Geometry can
help. In Proc. 2nd Int. Workshop on Randomization and Approxi-
mation Techniques in Computer Science, volume 1518, pages 82-96,
1998. Lecture Notes in Computer Science.

159

Bibliography

[11]

[12]

[13]
[14]

[18]

[19]

[20]

[21]

160

B. Gartner. Combinatorial structure in convex programs.
Manuscript, 2001.

B. Géartner. The random-facet simplex algorithm on combinatorial
cubes. Random Structure and Algorithms, 20(3):353-381, 2002.

B. Gartner. Strong LP-type problems. Manuscript, 2003.

B. Gartner, M. Henk, and G. M. Ziegler. Randomized simplex
algorithms on Klee-Minty cubes. Combinatorica, 18(3):349-372,
1998.

B. Gértner and E. Welzl. Linear programming — randomization
and abstract frameworks. In Proc. 13th Annual Symp. on Theoret-
ical Aspects of Computer Science (STACS), pages 669-687. Lecture
Notes in Computer Science 1064, Springer, 1996.

F. Granot and P. L. Hammer. On the use of boolean functions
in 0-1 programming. Methods of Operations Research, 34:154-184,
1971.

P. L. Hammer, B. Simeone, T. Liebling, and D. de Werra. From
linear separability to unimodality: a hierarchy of pseudo—boolean
functions. STAM J. Discrete Math., 1:174-184, 1988.

K. W. Hoke. Completely unimodular numberings of a simple poly-
tope. Discrete Applied Mathematics, 20:69-81, 1988.

F. Holt and V. Klee. A proof of the strict monotone 4-step conec-
ture. In J. Chazelle, J. B. Goodman, and R. Pollack, editors,
Advances in Discrete and Computational Geometry, Contempo-
rary Mathematics, pages 201-216. American Mathematical Society,
1998.

V. Kaibel. Bottom-top graphs. Manuscript,
http://www.ti.inf.ethz.ch/ew/workshops/01-lc/kaibel.html, 2001.

G. Kalai. A subexponential randomized simplex algorithm. In
Proc. 24th ACM Symposium on Theory of Computing, pages 475—
482, 1992.

Bibliography

[22]

[23]

[24]

O. H. Keller. Uber die liickenlose Erfiillung des Raumes mit
Wiirfeln. J. Reine Angew. Math., 163:231-248, 1930.

L. G. Khachiyan. Polynomial algorithms in linear programming.
U.S.5.R Comput. Math. and Math. Phys., 20:53-72, 1980.

V. Klee and G. J. Minty. How good is the simplex algorithm. In
O. Shisha, editor, Inequalities - I1I. Academic Press Inc., New York
and London, 1972.

J. C. Lagarias and P. W. Shor. Keller’s cube-tiling conjecture is
false in high dimensions. Bulletin of the American Mathematical
Society, 27(2):279-283, 1992.

J. Mackey. A cube tiling of dimension eight with no facetsharing.
Discrete & Computational Geometry, 28:275-279, 2002.

J. Matousek. The number of unique-sink orientations of the hyper-
cube. Combinatorica, 2002. To appear.

J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for
linear programming. Algorithmica, 16:498-516, 1996.

J. Matousek and T. Szabé. Random edge can be exponential on
abstract cubes. To appear in FOCS, 2004.

J. Matousek and P. Valtr. personal communication, 2001.

N. Megiddo and C. H. Papadimitriou. On total functions, existence
theorems and computational complexity. Theoretical Computer Sci-
ence, 81:317-324, 1991.

W. D. Morris. Distinguishing cube orientations arising from linear
programs. Submitted, 2002.

W. D. Morris. Randomized principal pivot algorithms for P-matrix
linear complementarity problems. Mathematical Programming, Ser.
A(92):285-296, 2002.

C. H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

161

Bibliography

[35]

[38]

[39]

[40]

162

A. L. Peressini, F. E. Sullivan, and J. J. Uhl. The Mathematics
of Nonlinear Programming. Undergraduate Texts in Mathematics.
Springer, 1988.

O. Perron. Uber die liickenlose Ausfiillung des n-dimensionalen
Raumes durch kongruente Wiirfel T & I1. Math. Z., 47:1-26, 161—
180, 1940.

H. Samelson, R. M. Thrall, and O. Wesler. A partition theorem
for Euclidean n-space. Proceedings of the American Mathematical
Society, 9:805-807.

I. Schurr. The unique sink orientations in dimension 3 and 4.
http://www.inf.ethz.ch/personal /schurr /uso.

I. Schurr and T. Szabé. Finding the sink takes some time. Discrete
Comput Geom, 31:627-642, 2004.

A. Stickney and L. Watson. Digraph models of bard-type algo-
rithms for the linear complementary problem. Mathematics of Op-
erations Research, 3:322-333, 1978.

S. Szabd. Cube tilings as contributions of algebra to geometry.
Beitrage zur Algebra und Geometrie, 34(1):63-75, 1993.

T. Szabd and E. Welzl. Unique sink orientations of cubes. In Proc.
42" IEEE Symp. on Foundations of Comput. Sci., pages 547555,
2000.

N. Zadeh. What is the worst case behavior of the simplex algo-
rithm? Technical Report 27, Dept. Operation Research, Stanford,
1980.

G. M. Ziegler. Lectures on Polytopes. Number 152 in Graduate
texts in mathematics. Springer, 1995.

Curriculum Vitae

Ingo Andreas Schurr

born on March 12, 1972 in Baden—-Baden, Germany.

1985-1992 high school in Baden—-Baden, Germany
Degree: Abitur

1993-2000 studies at Freie Universitat Berlin, Germany
Major: Mathematics
Minor: Computer Science
Degree: Diplom

2000-2004 Ph.D. student at ETH Ziirich, Switzerland

	Motivation
	Linear Programming
	The Object of Interest
	Outline of the Thesis
	Remarks on the Notation

	Basics
	The Cube
	Unique Sinks
	Complexity Issues
	Remarks

	Sources
	Linear Programming
	Linear Complementarity Problems
	Strong LP-type Problems
	Strictly Convex (Quadratic) Programming
	Linear Programming Revisited
	Remarks

	Structure
	Outmaps
	Algebraic Excursion
	Phases
	Local Changes
	Products
	Examples
	Partial Unique Sink Orientations
	Combed and Decomposable Orientations
	Klee-Minty Cubes
	Matching Flip Orientations

	Remarks

	Algorithms
	Complexity Model
	A Lower Bound on Deterministic Algorithms
	Small Dimensions
	Fast Subclasses
	Jump Antipodal
	Remarks

	Data
	Storing Orientations
	Implementational Aspects
	Isomorphism Test
	Enumeration

	Dimension 3
	Dimension 4
	Dimension 5 and higher

	Bibliography
	Curriculum Vitae

