
DISS. ETH No. 14529, 2002

On the List Update Problem

A dissertation submitted to the
Swiss Federal Institute of Technology, ETH Z¨urich
for the degree of Doctor of Technical Sciences

presented by
Christoph Amb¨uhl
Dipl. Informatik-Ing. ETH
born 15.9.1973, citizen of Willisau-Stadt, Switzerland

accepted on the recommendation of
Prof. Dr. Emo Welzl, ETH Z¨urich, examiner
Prof. Dr. Susanne Albers, Universit¨at Freiburg i.B., co–examiner
Dr. habil. Bernhard von Stengel, London School of Economics, co–
examiner





Meinen Eltern





i

Abstract

An unsorted linear list is one of the simplest data structures on which
one can perform insertions, deletions and lookups. To perform a lookup,
the list has to be traversed linearly until the requested item is found.
The performance of this data structure can be enhanced by making it
self-organizing. In general, the most recently requested item will be
moved closer to the front of the list. This is motivated by the empiri-
cal observation that, in many cases, requests to items are clustered over
time.

An algorithm that updates the list based on the current and past requests
is called a list update algorithm. These algorithms are calledonline
since they do not know what the forthcoming requests will be.

A very simple algorithm is calledMOVE TO FRONT (MTF). Here,
the most recently requested item is moved to the front just after the
lookup. In 1985, Sleator and Tarjan proved 2-competitiveness ofMTF
which is defined as follows: For any sequence of requests, the running
time of MTF is at most twice the running time of the optimaloffline
algorithmOPT. Compared to online algorithms, offline algorithms are
therefore more powerful since they know the whole request sequence
in advance.

Using randomized techniques, one can find algorithms which are even
more competitive. The best algorithm known to date is the���-competi-
tive COMB algorithm due to Albers, von Stengel, and Werchner. It is
known that no algorithm can be better than���-competitive.

The ultimate goal is, of course, to find the optimally competitive list up-
date algorithm. All results in this thesis are aimed to give more insight
into the structure of the list update problem.

The first result shows that, in the partial cost model, no algorithm can
be better than�������-competitive. This is the first non-trivial lower
bound in this model. The partial cost model is much easier to analyze.
Furthermore, any�-competitive algorithm in the partial cost model is
also�-competitive in the standard model.

The second result gives a characterization of all projective algorithms.
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They are basically the only kind of algorithms which can be analyzed
so far. To prove that a projective algorithm is�-competitive, one only
has to prove this on lists with two items which is, of course, much
easier. Using this characterization, we give a matching lower bound for
projective algorithms in the partial cost model.

The third result shows that it is��-hard to computeOPT. Hence, there
is probably no efficient implementation ofOPT. Furthermore, there is
only little hope that a better understanding ofOPT might give new in-
sights into the list update problem.
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Zusammenfassung

Unsortierte lineare Listen geh¨oren zu den einfachsten Datenstrukturen,
auf denen sich die Operationen Einf¨ugen, Löschen und Suchen ausf¨uh-
ren lassen. Um ein Element in der Liste zu finden muss diese linear
durchsucht werden, bis man auf das gesuchte Element st¨osst. Die Ef-
fizienz kann gesteigert werden, indem man die Elemente in der Liste
immer wieder umordnet. Man spricht vonselbstorganisierenden Daten-
strukturen. Im Allgemeinen wird das gerade angefragte Element in der
Liste weiter nach vorne verschoben, da in vielen praktischen Anwen-
dungen die Anfragen auf die Elemente zeitlich geh¨auft sind.

Wir bezeichnen einen Algorithmus, welcher die Liste umordnet, alslist
update Algorithmus. Es handelt sich hier umonline Algorithmen, da
der Algorithmus die zuk¨unftigen Anfragen an die Datenstruktur nicht
kennt.

MOVE TO FRONT (MTF) gehört zu den einfachsten Algorithmen.
Bei jeder Anfrage wird das angefragte Element an den Anfang der Liste
verschoben. Sleator und Tarjan zeigten 1985, dassMTF 2-kompetitiv
ist. Dies bedeutet, dass f¨ur jede Sequenz von Operationen die Laufzeit
von MTF höchstens doppelt so lang ist wie die Laufzeit des optimalen
offline AlgorithmusOPT. Im Gegensatz zu online Algorithmen kennen
offline Algorithmen die gesamte Sequenz von Beginn weg und sind
damit sogar m¨achtiger als online Algorithmen.

Der beste bekannte Algorithmus ist der���-kompetitiveCOMB (Albers,
von Stengel, Werchner). Weiter ist bekannt, dass kein Algorithmus
besser als���-kompetitiv sein kann. Das Hauptziel des list update prob-
lems besteht darin, den besten Algorithmus zu finden.

Das erste Resultat der Arbeit zeigt, dass kein Algorithmus im� � �
Modell besser als�������-kompetitiv sein kann. Dies ist die erste nicht
triviale untere Schranke in diesem Modell. Im� � � Modell kostet
ein Zugriff auf das�te Elemement der Liste nur� � � Zeiteinheiten,
während im standard Modell daf¨ur � Einheiten bezahlt werden m¨ussen.
Im �� � Modell lassen sich Algorithmen einfacher analysieren und die
Analysen lassen sich dann direkt auf das standard Modell ¨ubertragen.
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Als zweites Resultat werden alle projektiven Algorithmen charakter-
isiert. Bis auf eine Ausnahme geh¨oren alle bis jetzt analysierten Al-
gorithmen zu dieser Klasse. Um zu zeigen, dass ein projektiver Al-
gorithmus�-kompetitiv ist, reicht es zu zeigen, dass er dies auf Listen
mit nur zwei Elementen ist. Dies ist nat¨urlich viel einfacher als im all-
gemeinen Fall. Mit Hilfe dieser Charakterisierung wird sodann eine
untere Schranke von��� für die Kompetitivität von projektiven Algo-
rithmen gezeigt.COMB ist also ein optimaler projektiver Algorithmus.

Im letzten Kapitel wird gezeigt, es die Berechnung der optimalen of-
fline Kosten ein��-hartes Problem darstellt. Dies bedeutet, dass
wahrscheinlich kein effizienter Algorithmus daf¨ur exisitert. Es besteht
damit wenig Hoffnung, dass ein besseres Verst¨andnis vonOPT zu ef-
fizienteren online Algorithmen f¨uhren würde.
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Chapter 1

Introduction

1.1 The Sleator Tarjan Result

One of the simplest ways to implement a dictionary is an unsorted lin-
ear list. Here, the time needed in order to insert an item into a list
containing� items is��� since the entire list has to be scanned in order
to prevent duplicates. The time required for deleting or accessing an
item at position� in the list is� units.

Many programmers try to speed up their data structure by reorganizing
the items in the list. Usually, a policy is implemented that moves a re-
quested item closer to the front of list in order to save access time on the
next request to this item. If one assumes that the items are requested
uniformly at random, such ideas can of course not improve the data
structure. Still, in most applications, requests will be clustered. For
example in the case of a parser for Pascal source code, the keywords of
the Pascal programming language will appear very frequently through-
out the whole program, while local variables live only in a limited part
of the program, but may have an even higher frequency there.

Let us restrict to so-called free exchanges in this section. That is, after
item� was accessed, one is allowed to move� to any position closer to
the front of the list. This shall be instantaneous, hence we do not charge
any time for this update step.

1
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The classical list update algorithms areMove To Front (MTF),
Transpose, andFrequency Count. MTF moves the requested
item to the front of the list.Transpose lets the requested item swap
positions with its predecessor. In contrast to the previous algorithms,
Frequency Count maintains additional information in its items in
order to perform the updates. Namely, every item owns a counter which
keeps track of the number of requests performed to it so far. Using this
information, the items are maintained in non-increasing order of the
counters in the list.

In 1985, Sleator and Tarjan [31] gave a theoretical explanation for the
empirical finding thatMTF in general performs best. Theorem 1.1 made
competitive analysis and online algorithms a very popular subject in
theoretical computer science. The termcompetitive analysis was intro-
duced by Karlin, Manasse, Rudolph, and Sleator in [22].

Theorem 1.1 No algorithm is faster than MTF by more than a factor
of ��� �

�
� on any sequence of insertions, deletions, and lookups, where

� is the maximal number of items ever contained in the list.

Proof. In order to prove the theorem, letA be the algorithmMTF
competes against.

Let� be a sequence of� requests to be performed in turn. The requests
are either lookups, deletions or insertions. Let further	�� be the list
state the algorithmA maintains just before it serves the�th request of
�. The states	MTF� are defined analogously. Both algorithms start from
the same initial list state. That is, we have	A� 	 	MTF

� .

The proof is based on a potential function
 that translates the joint list
states ofMTF andA to a natural number. Let
� be the timeMTF spends
on the�th request and
A� the time ofA for the same request. We define
the amortized cost

�� �	 
� ��
� 	 
� �
� � 
���� (1.1)

If we can show that

�� � �� � �

�
� � 
A� � (1.2)
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we are done because the total runtime ofMTF can be written as

��
���


� 	

��
���

�� � 
� �
��

With 
� 	 � and
� � �, we conclude

��
���


� � �� � �

�
� �

��
���


A� �

The potential function
 that allows us to prove (1.2) is based on the
relation between the list states of the two algorithms. More precisely,

� is the number of inversions between the two list states	A� and	MTF� .
An inversion is a pair of items whose relative order differs in both lists.

In order to prove (1.2), we have to distinguish between lookups, inser-
tions and deletions. Each of the three cases has a successful and an
unsuccessful subcase. The most interesting case is when the�th request
is a successful lookup to an item�. Figure 1.1 shows the two list states

�MTF
�

�A
�

�

�

�

�

�

�

�

�

Figure 1.1: List state before the �th request

just before the lookup. By
 we denote the set of items which are in
front of � in both lists.� denotes the items which are behind� in 	MTF�
but in front of� in 	A� . Finally,� contains the set of items which are in
front of � in 	MTF� and behind� in 	A� . We have


MTF� 	 �
� � �� � � ��


A� 	 �
� � �� � � ��

�
� � �
� � �� ��
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the latter because the change in potential only affects inversions involv-
ing �. The inequality holds with equality if� only moves in	MTF� of
Figure 1.1. IfA also moves� closer to the front,�
� becomes even
smaller. Plugging this into 1.1, we obtain

�� 	 
� ��
� � �
� � �� �� � � �
� � �� �
	 � � �
� � � � � � 
A� � � � �� � �

�
� � 
A� �

The case of an unsuccessful insertion is similar to a lookup. An un-
successful deletion or lookup costs the same for bothMTF andA while
the potential function remains unchanged. Thus in this case, we have
�� � 
A� . In the case of a successful insertion (items are inserted at the
end of the list), we again have
� 	 
A� . Since then�
� � 
� � �, we
obtain�� 	 
� ��
� � � � 
A� � �.

1.2 The List Update Model

The subject of the list update problem is to find algorithms which beat
the constant� � �

�
of MTF. In order to do that, we have to define the

model more rigorously.

In the remainder of this thesis, we will stick to the static list update
problem. This means that we start from an initial list state containing�
items. Instead of insertions, deletions, and lookups, the only considered
requests are lookups to one of the� items in the list. In general, we will
use the term “request to�” to denote a lookup of item�.

List states will be denoted in brackets with the items ordered from left
to right. Usually,	 stands for list states but also for the set of items in
the list. Request sequences are denoted by� and their length by�.

The algorithms we consider are online algorithms. That is, their be-
havior can depend only on the current and the past requests, but not on
future requests.MTF clearly is online. Since we would like to imple-
ment our algorithms to speed up our dictionary, the online property is
crucial because in general the algorithm has no knowledge about future
requests.
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On the other hand, the proof of Theorem 1.1 does not require the algo-
rithm A to be online.MTF has to behave well on any request sequence
and against any algorithm. Given�, we can design an online algorithm
A such that it behaves optimally on�. Therefore we can assume thatA
is an optimal offline algorithm.

We will measure the runtime of the algorithms by cost units we charge
to the different operations.

Definition 1.2 Let A��� be the cost an online algorithm A spends to
process a request sequence � and let OPT��� be the cost the optimal
offline algorithm spends for that task. We say A is �-competitive if there
exists a constant � such that for all request sequences �

A��� � � � OPT��� � � (1.3)

holds. In general, we will treat the number of items � as constant.
Hence, � is allowed to depend on �. An algorithm is called competitive
if it is �-competitive for some real number �.

A is strictly �-competitive if for all request sequences � we have

A��� � � � OPT���� (1.4)

For the case of randomized algorithms, the termA��� denotes the ex-
pected costA spends on the sequence�.

The cost model that we will stick to for the rest of this thesis is thepar-
tial cost model, meaning that we only pay�� � units in order to access
the item at position� in the list. It turns out that this model is much
easier to analyze than thefull cost model we used in Section 1.1. Still,
if an algorithmA is �-competitive in the partial cost model, it is also
�-competitive in the full cost model. Usually with some dependence
on �, the number of items in the list. To see this, note that because of
� � �, inequalities (1.3) and (1.4) remain valid if we subtract��� from
���� andOPT��� on both sides.

In the partial cost model,MTF is �-competitive. Indeed,MTF is an op-
timal deterministic algorithm. Algorithms which beat the competitive
ratio of� for arbitrary long lists need to be randomized.
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Concerning the updates, we distinguish between free exchanges and
paid exchanges. At the expense of one cost unit, any consecutive pair
of items can swap its order at any time. On the other hand, just after a
request to an item�, this item may be moved to a position closer to the
front of the list without cost.

Note that free exchanges can be modeled by paid exchanges. Instead
of first paying� units in order to access item� and then move it at
no charge
 positions closer to the front, one can first move the item

 positions and then access the item. In both cases, we pay exactly
� units. Although stated as Theorem 3 in [31], the converse is not
true. For an example, let	 	 
���� and� 	 ����. Here, an optimal
algorithm moves� behind� and � before the first request to�. This
requires paid exchanges. This can be proved formally by projectivity
arguments we will encounter later in this section.

Although paid exchanges are more general, most algorithms known to
date can be stated such that only free exchanges are used. It is not clear
whether paid exchanges can lead to better algorithms. On the other
hand, proofs and definitions often become more elegant if only paid
exchanges are considered.

If we forget about free exchanges, we can specify any deterministic
online algorithmA by a function


A � � � 	�

Here� denotes the set of request sequences, whereas	 denotes the set
of the�� states the� items can attain.
A��� denotes the list state in
which the last request of� is performed if algorithmA is used. Using
this notation, the initial list state can be denoted by
A�
�. We will omit
theA in 
A��� when the algorithm used is determined by the context.

The list update problem can be stated in terms of game theoretic con-
cepts, namely as an infinite two-person zero-sum game. The first player
is calledadversary. His pure strategies are the set of finite request se-
quences. The strategies of the second player, called online player, are
the set of deterministic online algorithms. Let� be a fixed constant and
let ���A� be a pair of pure strategies for the adversary and the online
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player. Then the payoff is

A���

OPT��� � �
�

The goal of the online player is to chooseA such that

���
�

A���

OPT��� � �
(1.5)

is minimized. On the other hand, the adversary chooses� such that

���
A

A���

OPT��� � �
(1.6)

is maximized. If the set of strategies of the two players was finite, an
application of the famous minimax theorem would prove the existence
of a pair of randomized strategies for which (1.5) and (1.6) are equal.
This is called an equilibrium and the corresponding value is referred
to asthe value of the game. Although the minimax theorem cannot be
applied in our case, we prove in Section 2.8 that the list update problem
indeed has a value. However, approximating it via brute force compu-
tation is hopeless.

A �-competitive algorithm proves that the value of the game cannot be
larger than�, while randomized strategies for the adversary can give
lower bounds on the game value. For the full cost model, the known
lower and upper bounds are��� and ���. We will give an improved
lower bound of������� for the partial cost model in Chapter 2 of this
thesis.

A randomized strategy is defined by a probability distribution over the
set of all deterministic strategies. Hence in the case of the online player,
randomized algorithms can be defined as follows. Before serving the
first request, one of the deterministic strategies is chosen according to
the probability distribution. This strategy is then used for the whole re-
quest sequence. A randomized strategy of the adversary is just a prob-
ability distribution over the set�.

This game theoretic model nicely covers the notion of an oblivious ad-
versary. The adversary cannot observe the random choices made by the
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online algorithm. If he could do so, his pure strategies would depend on
the current list state of the online algorithm. This kind of adversaries
are called adaptive. It is easy to see that in this case, randomization
is pointless and no algorithm can be better than�-competitive. Hence,
MTF is optimally competitive against adaptive adversaries.

1.3 Projective Algorithms

In order to describe projective algorithms, we have to introduce the
concept of projections of request sequences and list states.

Let a request sequence� be given and fix a pair of items�, �, the
projection of� to � and� is the request sequence� where all requests
which are not to� or � are removed. We denote the projection of� to �
and� by ���. Given a list state	, the projection to� and� is obtained
by removing all items but� and� from the list. This is denoted by	��.

Definition 1.3 Let 
����� be the projection of 
��� to � and �. A
deterministic algorithm A is projective if for all pairs of items �, � and
all request sequences � we have


����� 	 
�������� (1.7)

A randomized algorithm is projective if all deterministic algorithms
chosen with positive probability are projective.

In words, an algorithm is projective if the relative position of any pair
of items depends only on the initial list state and the requests to� and
� in the request sequence.

Already in [13], Bentley and McGeoch observed thatMTF has this
property. To see thatMTF is projective, observe that� is in front of
� if and only if � has not been requested yet or if the last request to�
took place after the last request to�.

With the exception of Irani’sSplit algorithm [20, 21], projective al-
gorithms are the only family of algorithms one can analyze so far. The
next theorem is responsible for this fact.
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Theorem 1.4 Let � be a (strictly) projective algorithm. If it is �-
competitive on lists with two items, it is also (strictly) �-competitive
on lists of arbitrary length.

Proof. LetA������� denote the cost the projective algorithmA spends
in order to serve��� from the initial list
���
�, which is the list with
only the items� and�, initially ordered like in
�
�.
It holds that

A��� 	
�

������	

A�������� (1.8)

To see this, consider the�th request to some item� in �. Let �� be the
prefix of � up to this request. And let� be the set of items which are
in front of � in 
����. Because of (1.7), we have
������ 	 
��� if and
only if � � �. Therefore the access cost for any request is the same on
both sides.

Concerning update costs, let�� �	 �� for some request sequence� and
some item� � 	. We again use (1.7) to note that
����� �	 
����

�� if
and only if
������� �	 
����

�
���. Hence there is a bijection between

the transpositions on both sides. Therefore the update cost is again the
same on both sides. A similar idea works forOPT. By OPT������� we
denote the minimal costOPT would pay on the sequence��� starting
from
���
�. One (not necessarily optimal) way to serve��� is to force
for all pairs�, � and all prefixes�� of �


OPT�������� �	 
OPT�� �����

In this way, (1.8) would also hold forOPT. Hence if we really serve the
pair lists optimally,

OPT��� � OPT��� �	
�

������	

OPT�������� (1.9)

SinceA is �-competitive on two items, we find for every pair of items
�, � a constant��� such that for all� we have

A������� � � � OPT������� � ����
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Using this fact we get

A��� 	
�

������	

A�������

�
�

������	

�� � OPT������� � ����

� � � OPT��� �
�

������	

���

	 � � OPT��� � � (1.10)

� � � OPT��� � ��

For the strict case, just set all��� �	 �.

Hence the case of pair lists seems to be crucial for the analysis of pro-
jective algorithms. Luckily enough, there is a very simple implemen-
tation of OPT for this case. See [28] for a proof that the following
algorithm is indeed optimal.

Algorithm 1.5 (OPT on two items) Assume w.l.o.g. that the current
list state is 
���. Move � to the front if and only if the upcoming two
requests are to �.

Note that the above algorithm only examines the current request and the
next request to determine the optimal move. We say this algorithm uses
lookahead one. Already for lists with three items, all future requests
may be needed to serve the sequence optimally [28, 2].

Using the fact thatMTF is projective, the proof of Theorem 1.1, reduced
to the static problem, now becomes very simple.

Proof of Theorem 1.1 (projective version). All we have to show is
thatMTF is strictly competitive on lists with two items� and�.

Let � be a request sequence on two items� and�. We break� into
subsequences in an iterative way. We let subsequences end just before
OPT has to pay for a request. Hence in every subsequence except the
first, OPT has to pay for the first request. All other requests are free
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for OPT. The first subsequence is either a regular subsequence or it is
free for both algorithms and therefore can be skipped. Regular subse-
quences are either of the form�
, �
, ��
, or ��
, � � �. On all of these
subsequences,MTF pays at most two units. If we add up the cost for
both algorithms, we find that

MTF��� � � � OPT����

In Chapter 3, we will give a complete characterization of the set of pro-
jective algorithms. A simple subset of these which covers all reasonable
projective algorithms is the set of critical request algorithms [11]. As
we have already seen, algorithms are defined by functions that trans-
late a request sequence into a list state. In the case of a critical request
algorithm,
��� is obtained as follows.

Algorithm 1.6 (critical request algorithms) Let us first see how de-
terministiccritical request algorithms are defined.

Every item � in the list has a so-called critical request function

�� � � � �� , with ����� � ��

where � 	 
�� �� �� � � �� and �� 	 
�� �� �� � � ��. Let ���� denote the
number of request to � contained in �. We call the ��������th request
to � in � the critical request to �. Since �������� can be zero, some
items may have no critical request. In 
���, all items with critical re-
quest are grouped together in front of the items without critical request.
The items with critical requests are ordered according to the time of the
��������th in �. The later a critical request took place in the sequence,
the closer the item is to the front. The remaining items are placed be-
hind, according to their order in the initial sequence.

Randomized critical request algorithms are just a probability distribu-
tion over the set of deterministic critical request algorithms.

As an example, let the online algorithm for three items�, �, and� be
defined by functions��, ��, and�
. The table below lists the values
for the arguments� to �.
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1 2 3 4
�� 1 0 3 2
�� 0 2 3 4
�
 1 2 2 2

Let the initial list state be
����. Let us determine
��� for � 	 ������.
We have�������� 	 ����� 	 �, hence� does not have a critical re-
quest. For� we have�������� 	 �, therefore the third request to�
in � is its critical request. For� we have�
���
�� 	 �. Thus we have

��� 	 
���� since the third request to� happened after the first request
to �. Item�, not having a critical request, must be at the very end.

Algorithms based on critical request functions clearly are projective,
since the relative order of any pair of items just depends on the relative
order of the requests to� and� in � and the relative order of� and� in
the initial list state.

The currently best list update algorithm isCOMB due to Albers, von
Stengel, and Werchner [5].COMB is a combination of two simpler al-
gorithms.

Algorithm 1.7 (COMB) Before the first request, toss a biased coin to
decide which algorithm to use for the whole sequence. Use BIT with
probability 0.8, with probability ��� use TS.

BIT is an elegant����-competitive algorithm due to Reingold, West-
brook, and Sleator [29]. It is a member of a more general class of
algorithms calledRANDOM RESET algorithms. The best algorithm in
this class is

�
�-competitive.

Algorithm 1.8 (BIT) Every item maintains a bit. Initially, each bit is
set to 0 or 1 using a fair coin. On a request to item �, the bit is flipped.
Only if the bit changes to �, we move the item to the front. Otherwise
the position of � is unchanged.

TS is a deterministic member of the classTIMESTAMP��� due to Al-
bers [1]. TS is �-competitive. AllTIMESTAMP algorithms are pro-
jective. While all previous algorithms either moved the requested item
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to the front of the list or left its position unchanged,TIMESTAMP al-
gorithms sometimes move the requested item to a position within the
list.

Algorithm 1.9 (TS) After each request, the accessed item � is moved
in front of exactly the items that have been requested at most once since
the last request to �. On its first request, every item remains at its
position.

While BIT is well defined, it is not clear whetherTS actually defines
an algorithm. We first would have to prove that the items that have to
be passed by� are situated in a consecutive block just in front of�.
Only if this holds, the algorithm can run as described.

Additionally, we would have to prove that both algorithms are projec-
tive. At least in the case ofTS, this is not trivial. Using the critical
requests, both algorithms can be described very easily and in such a
way that their projective behavior becomes obvious.

In order to overcome special cases in the description, we first define
the concept of anaugmented request sequence. Given an initial list
state
���� � � � ��� and a request sequence�, the augmented request
sequence is������������ � � � �����. The two additional requests for
every item will have request number�� and� and will allow critical
request functions to attain the values� and��. Note that this prefix
will never actually be served. The augmented request sequence is just
a concept in order to describe algorithms in a compact way.

With this trick, TS can be described very easily in terms of critical
request functions by

����� �	 � � �

for all items �. Hence the critical request of every item is just the
second-to-last request in the augmented request sequence.

As an example, the list state after� 	 ������� with initial list state

���� is 
���� because of the ordering of the second-to-last requests in
�������������. If we add another request to�, the new list state will
be
���� because the second-to-last request to� is now more recent than
the second-to-last request to�.
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Figure 1.2: Automaton describing the two items case.

SinceBIT is randomized, the critical requests are also randomized. For
every item�, its critical request function can be written as

����� �	 � � ���� ��� ��� �
�

where�� is�’s bit initialized by a fair coin. Hence the critical request is
the last or the second-to-last request with equal probability. The corre-
spondence to the definition using the bits is the following. The critical
request is on the last request if and only if the current value of the bit is
1.

Viewing BIT andTS as critical request algorithms, we can give a sim-
ple proof forCOMB’s competitiveness based on a potential function.

COMB’s critical request functions are static in the sense that the proba-
bility for the last request in the augmented request sequence to be the
critical one is always 0.4, while the second-to-last request has probabil-
ity 0.6. Hence in order to deduce the expected access cost of a request,
all we need is the relative order of the last two requests to each item.
Since bothBIT andTS use only free exchanges, the update costs are
zero.

We want to describeOPT for two items in an online fashion, hence get
rid of the lookahead needed in algorithm 1.5. This can be done by a
state diagram where we encode into the states the fact that the current
list state might depend on a future request.

The diagram in Figure 1.2 indeed does this job. If we are in the left
state, the optimal list state is
���. In the right state, it is
���. The
middle state is the state we move into if the item at the second position
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in the current list has been requested. By
�����, we denote the fact that
the items are in some sense parallel since we do not know whether the
optimal list state is
��� or 
���. If the next request is�, the optimal
choice was
���, otherwise
���. In any case, a request leaving the
middle state is free of charge. In order to compute the optimal cost
of a request sequence, one just moves in the diagram according to the
request sequence like in a deterministic finite automaton. The starting
state is either the right or the left state, depending on the initial list.
ThenOPT��� is equal to the number of times one moves into the middle
state.

With this preparatory work, we are now ready to prove

Theorem 1.10 COMB is strictly ���-competitive

Proof. It turns out that the joint behavior ofCOMB andOPT can be
described by a four state diagram like in Figure 1.3. Each of the four
states in labeled by one of the labels of Figure 1.2 and a permutation
of ����, which represents the ordering of the latest two requests to the
two items.

These labels allow to compute bothCOMB’s andOPT’s cost for the next
request. In the case ofOPT, we already know from Figure 1.2 how
to determine the cost of a new request depending on the state. On the
other hand, sinceCOMB has its critical requests either on the last or the
second-to-last request, we only need to know the ordering of the two
latest requests per item in order to determine the cost of a new request.

Since� and� use the same critical request functions, we can merge
states like
����� 
���� and 
����� 
����. The starting state is
�.
Any request sequence translates to a path in the automaton starting in

�. Each request corresponds to a transition. Using the information
stored in the states, we can giveCOMB’s as well asOPT’s cost for any
transition leaving the state. The cost ofCOMB andOPT is indicated
by the small numbers as the pairsCOMB/OPT. Note thatCOMB’s cost
are expected cost. The cost for serving a request sequence� for both
algorithms is the sum of the cost assigned to the transitions used.

In order to show thatCOMB is ���-competitive, we use a potential func-
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Figure 1.3: Automaton describing COMB and OPT in the partial cost
model.
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tion. It is indicated by the values
� for each state
�. Note that the
value
� equals the maximum costCOMB has to pay on a path starting
at
� which is free forOPT. Let 
� and
OPT� beCOMB’s andOPT’s cost
for the �th request in a request sequence� of length�. Let the �th
request move from state
� to 
�.

The amortized cost is then

�� 	 
� ��
 	 
� �
� � 
��

By checking all eight transitions in Figure 1.3, one can prove

�� � ��� � 
OPT� � (1.11)

Indeed, (1.11) holds with equality except for the transition from
� to

�. Let

 be the state where� ends. Since the potential of the starting
state
� is zero and

 � �, we obtain

COMB��� 	

��
���


�

	

��
���

�� � �
�

	

��
���

��� � 
OPT� � 

 �
�

� ��� �
��
���


OPT�

	 ��� � OPT����

COMB is by far not the only���-competitive algorithm, but it seems to
be one of the simplest. Other���-competitive algorithms are obtained
by choosingTS, BIT andMTF with different probabilities thanCOMB
does. A different way is to choose randomly for each item whether it
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should use the critical request functions ofTS, BIT, or MTF. In Chap-
ter 3, we will show that no projective algorithm can beatCOMB.

The original proof of Theorem 1.10 is based on a partitioning of the
request sequences. The phases are those described in the following
lemma.

Lemma 1.11 Consider a list with the only items � and � with initial
state 
���. The following table shows the expected cost for the algo-
rithms BIT, TS, COMB and OPT for a set of request sequences. We
assume � � � and � � �.

request sequence BIT TS COMB OPT

�
�� �
� � ��� �

�
������� �
�� � � �� ��� � ���� � � �

�
������ �
�� � �

� �� � � ���� �

Proof. Note thatBIT andTS only use free exchanges. Therefore,
we only need to count expected access costs. The expected cost spent
for the request to� in the sequence���� is the probability that� is in
front of � in the list after serving�. Since the order of the items in the
list is determined by the order of the critical requests in the augmented
request sequence, this is not a hard task. The following tables give the
cost of the sequences. Note that in the tables the augmented request
sequences are shown. Thus the actual request sequences start at the
fifth request.
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� � � � �
 � �

BIT � � ���

TS � � �

� � � � �
 � � �� ����� �

BIT � � ��� ���� ���� ����

TS � � � � � �

� � � � �
 � � �� ����� � �

BIT � � ��� ���� ���� ���� ����

TS � � � � � � �

Using Lemma 1.11, the prove of Theorem 1.10 goes as follows.

Proof. We partition every request sequence into subsequences, each of
them terminated by two consecutive requests to the same item. Assum-
ing initial list state
���, the first sequence�� is one of those described
in the lemma. If that subsequence terminates in��, the next subse-
quence��� will again be of one of the three forms. Note that the cost
of ��� will again be like stated in the lemma because the initial list state
for ��� is again
��� for BIT, TS andOPT and the double request to�
works like an augmentation prefix. If�� terminates in��, ��� will be
one of the three forms with� and� interchanged. Again the cost here
is the same because also in the initial state and in the ‘augmentation
prefix’, � and� change roles.

According to the table of Lemma 1.11,COMB’s cost is bounded by 1.6
timesOPT’s cost for all these subsequences. But the very last subse-
quence might not belong to one of the three types. However it will be a
prefix of one of the three types with only the last request missing. Since
OPT never pays on the last request, adding it would leave the cost of
OPTunchanged and merely overestimate the cost ofCOMB, so the cost
ratio ofCOMB versusOPT is even better in this case.
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Figure 1.4: The optimal algorithm on two items.

Since we haveCOMB��� � ��� � OPT��� for all subsequences,COMB
is strictly ���-competitive on two items. From Theorem 1.4 it therefore
follows thatCOMB is strictly���-competitive on lists of arbitrary length.

On two items, there exists a���-competitive online algorithm. Unfor-
tunately, one cannot express it in terms of projective algorithms.

Algorithm 1.12 The algorithm uses of Figure 1.2 by keeping track of
OPT’s state in the figure. If OPT is in the left or the right state, both
algorithms have the same list state. Whenever OPT moves into the
middle state, that is, the item at the second position in the list was
requested, the online algorithm moves the item to the front only with
probability 0.5.

The cost of the online algorithm andOPT are given in Figure 1.4. From
Figure 1.4 it is easy to see that between two visits of the middle state,
OPT pays exactly one unit, whereas our online algorithm pays 1.5 units.
Therefore our algorithm is���-competitive. A proof using a potential
function would assign potential��� to the state
����� and� to the others.

On two items, a lower bound of��� is very easily obtained. Let
�
� �	

��� be the initial list state. If the adversary chooses the request se-
quences��� and ���� with equal probability, no algorithm can be
strictly �-competitive with� � ���. Note thatOPT pays one unit on
either sequence. To do this, it has to move� to the front in the first
sequence, but leave it at the second position in the second sequence.
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Otherwise, it pays at least two units. Any online algorithm makes a
mistake with probability���. Therefore, its expected cost are���.

For the non-strict case, one has to repeat this process arbitrarily many
times. This can be done because one can assume that the list states are
equal after one round. Depending on whether it is
��� or 
���, the next
round uses the same sequences again or it uses��� and����.

As we have seen earlier, a�-competitive algorithm in the partial cost
model is also�-competitive in the full cost model. Concerning lower
bounds, it is the other way round. Lower bounds in the full cost model
generalize to the partial cost model.

1.4 The Offline Problem

Since the performance of an online algorithm is compared with the op-
timal offline algorithmOPT, understanding the problem of computing
OPT��� becomes an issue itself.

A simple algorithm has running time��������� on a list with� items
and a sequence with� requests. It is based on a straightforward dy-
namic programming algorithm for metrical task systems [19] which
works as follows.

Let���� 	� be the minimal cost needed to serve the first� requests of the
request sequence� and end up in the list state	. By 	 we denote the
set of all�� possible list states. Using dynamic programming, we have
to fill a table with�� � rows and�� columns with the values���� 	�,
� 	 � � � � �, 	 � 	. Once the table is filled,OPT��� is obtained by

���
	��

����	��

To fill the table, we use the recursion

���� 	� 	 ���
	���

�
��� � �� 	�� � 
�����	�� 	�

�
� ������ 	�� (1.12)

Here,
�����	�� 	� denotes the minimal cost to move from state	� to
	 and������ 	� denotes the cost for accessing�� in 	. The base case is
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���� 	� 	 
�����	� 
�
��. The time needed to compute all���� 	� is
���������.

This runtime can be reduced to�������� by using the fact that there is
an optimal algorithm which uses only so-calledsubset transfers [28].
In a subset transfer, one moves a subset of the items preceding the re-
quested item� just behind� without changing their relative orders.
Only����� among the�� possible transformations are subset transfers.

In his semester thesis, Pietrzak [26] showed that the problem can be
solved in time��������. As a first step, we break equation 1.12 into

����� 	� �	 ���
	���

�
��� � �� 	�� � 
�����	�� 	�

�
(1.13)

���� 	� �	 ����� 	� � ������ 	�� (1.14)

The hard part now is to compute for a fixed� the values����� 	� when
the values��� � �� 	� are given. In the simple algorithm, we compute
�� values in order to compute the minimum in (1.13). Hence all the��
ways of reordering the list state are considered to compute just a single
value. This has to be done for every list state	.

Pietrzak computes all�� values����� 	� at the same time. The algo-
rithm is based on the fact that a reordering of a list state breaks down to
applying a series of at most

�
�
�

�
paid exchanges to the list state.

Let 	� be a list state that minimizes the expression on the right hand
side of (1.13) and let	� 	 	�� 	�� � � � � 	� 	 	 be the sequence of list
states we obtain when reordering the list state from	� to	 using single
paid exchanges. It is easy to see that

����� 	���� 	 ����� 	�� � � � � � � � ��

This allows to compute����� 	� as follows. Let����	��� 	� be the value
of the right hand side of (1.13) when we consider for	� only list states
that we can obtain from	 by at most� exchanges. Define��	� to be
the set of list states that can be obtained from list state	 by applying at
most one paid exchange. Using

����	��� 	� �	 ��� � �� 	�

����	��� 	� �	 ���
	����		

�
������	��� 	

�� � 
�����	�	��
�
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we can compute��
���

�
�	
��� 	� 	 ����� 	� for all 	 in time ��. This

concludes the description of the algorithm.

Since we prove in Chapter 4 that computingOPT is ��-hard [9], a
polynomial algorithm does not exist unless� 	 ��.

1.5 Other Models

Besides the full cost and the partial cost model, various other models
have been considered. The�� model is a generalization of the stan-
dard model where no free exchanges are allowed and each paid ex-
change costs� units, whereas the definition of the access costs remains
unchanged.

Reingold, Westbrook, and Sleator [29] show that theirCOUNTER��� 
��
��� algorithms are

����� �
� � �

��
� � �

�

�
����

� � �

�
��

competitive. These algorithms maintain a randomly initialized counter
modulo� for each item which is increased on every request to its item.
Whenever a counter reaches� � �, its item is moved to the front. For
each�, there exists a� such thatCOUNTER��� 
����� is �-competitive
for � � ����. The best competitive ratio is�� �

�
��� � � ���� for

� � �.

Sleator and Tarjan also analyze models where accessing an item at po-
sition � costs!��� units [31].

There are many results concerning average case analysis for list update
algorithms. Here the request sequences are generated by a probability
distribution. The requests are independent and the probability for the
next request to be to�� is ��. The performance is usually compared to
the optimal static algorithmSTAT. This algorithm maintains the items
in non-decreasing order by the probabilities��. Rivest [30] showed that
there exists a constant� such that

"
�
FREQUENCY COUNT���

�
	 "

�
STAT���

�
� ��
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However,� has to be chosen very large. Chung, Hajela, and Seymour
[16] proved a similar result forMTF:

"
�
MTF���

� � #

�
"
�
STAT���

�
� �

for a much smaller constant�. Gonnet, Munro, and Suwanda [18]
proved that this ratio is tight forMTF. Recently, Albers and Mitzen-
macher [4] showed

"
�
TS���

� � �

�
"
�
OPT���

�
� ��

This result is stronger sinceOPT performs much better thanSTAT. Re-
member that this ratio only holds for sequences generated by a proba-
bility distribution as described above.



Chapter 2

A Lower Bound for the
Partial Cost Model

2.1 Introduction

In this chapter, we show a lower bound of������� for the partial cost
model. This improves the trivial lower bound of��� presented in the
previous chapter. While the improvement over the previous bound is
tiny, the significance of the result lies in the fact that the new value is
strictly larger than���. This number is important because it is a tight
bound for two-item lists. Previously, many researchers believed that
there is a���-competitive algorithm for arbitrarily long lists. Our result
shows that this is not possible in the partial cost model and indicates
that there is no such algorithm in the full cost model either.

In order to show that no algorithm can be strictly�-competitive, one
usually gives a probability distribution over the set of finite request se-
quences� for which one can prove that any algorithm� has expected
cost

"
�
A���

� � � �"�OPT����� (2.1)

The expectation is taken over the request sequences chosen in the prob-
ability distribution. Inequality (2.1) makes sure that for a given algo-

25
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rithm A, one can always find a request sequence for which

A��� � � � OPT����

Because of Yao’s theorem [34], we only have to check against all de-
terministic algorithms.

Theorem 2.1 (Yao) If there is a probability distribution on request se-
quences so that (2.1) holds for any deterministic online algorithm A,
then (2.1) holds also for any randomized algorithm A.

In order to show a lower bound for non-strict competitive algorithms,
one has to give a whole family of probability distributions, one for each
value of�, such that

"
�
A���

� � � � "�OPT����� � (2.2)

holds. In general, the expected optimal offline cost of the request se-
quences considered will have to grow with the value of�.

Our construction uses agame tree where alternately the adversary gen-
erates a request and the online algorithm serves it. The adversary is
oblivious. That is, he is not informed about the action of the online al-
gorithm. So the game tree hasimperfect information [25]. We consider
a finite tree where – after some requests – the ratio of online versus op-
timal offline cost is the payoff to the adversary. This defines a zero-sum
game, which we solve by linear programming. For a game tree that is
sufficiently deep, and restricted to a suitable subset of requests so that
the tree is not too large in order to stay solvable, this game has a value
of more than�������. This shows that any strictly�-competitive online
algorithm fulfills � � �������. In order to derive from this a new lower
bound for the competitive ratio� according to (1.3) with a nonzero con-
stant�, one has to generate arbitrarily long request sequences. This can
be achieved by composing the game trees repeatedly, as we will show.

A drawback is our assumption of the partial instead of the full cost
model. In the latter model, where a request to the�th item in the list
incurs cost�, the known lower bound is����� ����� for a list with�
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items. This result by Teia [32] yields a lower bound for the competitive
ratio much below��� when the list is short. In fact, there is a���-
competitive algorithm for lists with no more than 13 items, as we will
show in Section 2.7. To prove a lower bound above��� for the full cost
model, we would have to extend our construction to lists with at least
14 items.

One reason why it is so hard to find lower bounds might be that the
game defined by the list update problem does not have a value, meaning
that the competitive ratio of the best online algorithm is larger than the
best possible lower bound (Remember that lower bounds are specified
by a probability distribution on the request sequences). However, this
is not true, as we show in Section 2.8.

2.2 Teia’s result

Teia [32] has constructed a lower bound of��� for the competitive ratio
in the full cost model. Since we will use his ideas for an improved lower
bound in the partial cost model, we explain his proof in the simpler
partial cost model.

Teia constructs an adversary strategy for which (2.2) holds with� 	
���. The request sequences are generated inruns which are repeated
indefinitely. The runs are defined by list states. For the first run, the
initial list state
�
� is considered. To obtain the run from the list, we
traverse the list from front to back, requesting each item with equal
probability either once or three times. If an item is requested three
times, it is moved to the front of the list, otherwise it is left in place.
This results in a new list, which determines the next run.

It turns out that the optimal offline algorithm on these sequences can be
described as follows.

Algorithm 2.2 (3MTF) Move � to the front if and only if the next three
requests are all to �.

To see that3MTF is optimal on any of Teia’s sequences�, note that
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3MTF is projective on� since we have


3MTF�� ��� 	 

3MTF��
�� ������

Therefore, using (1.8), we obtain

3MTF��� 	
�

������	

3MTF�������� (2.3)

Note that Definition 1.3 does not require an algorithm to be online.
Furthermore, Equation (1.8) clearly also holds for offline algorithms
which are projective.

Because of (1.9), we only have to prove that3MTF is optimal on two
items. This holds because3MTF pays exactly one unit per run in this
case, which also is a lower bound since in each run, there is at least one
request to each item.

Concerning the online player, we have

"
�
A���

� �
�

������	

"
�
A�������

�
� (2.4)

Here,��� denotes the optimal online algorithm on the projections of
Teia’s adversary strategy. The explanation for (2.4) is very similar to
that of (1.9).

Teia’s proof is based on a potential function
. 
� is the number of
inversions betweenA’s andOPT’s list state after the�th run $. Since
both algorithms start in the same list state, it holds
� 	 �. He proves

"
�
A�$� � 
� � 
���

� � ��� � OPT�$�� (2.5)

For sequences� with � runs, we get

"
�
A��� � 
� � 
�

� � ��� � OPT����

Since we have� � 
� � �
�
�

�
for lists with� items, there exists a� for

each% & � such that

"
�
A���

�
& ���� � %� � OPT����
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OPT A with 
���� 
��� 	 �
$�� with � WAIT � MTF � WAIT � MTF


��� � WAIT � WAIT � MTF � MTF

� 
� 
� 
� 
� 
� 
� 
�

�� � � � � � � � � �
���� � � � � � � � � �
���� � � � � � � � � �
������ � � � � � � � � �

� �"�
� �
� � 
��� � � � � � � � � � � � � �

Table 2.1: Expected online cost if 
��� 	 �

which proves the result.

In order to prove (2.5), let$�� be the projection of the�th run to� and
�. Because of (2.4) and (2.3) andOPT���$��� 	 �, we can prove (2.5)
by showing that

"
�
A���$��� � 
� � 
���

� � ��� � OPT���$���� (2.6)

To keep the notation simple, we also use
� to denote the projection of
the potential function to� and� here. We have
� 	 � if there is no
inversion between� and�, and
� 	 � otherwise.

The Tables 2.1 and 2.2 show (2.6). Because of symmetry, we only
consider runs whereOPT’s list state initially is 
���. There are four
cases for$��, all have the same probability to be chosen. Table 2.1
refers to the case
��� 	 �. In Table 2.2, we assume
��� 	 �. We can
assume thatA moves the requested item to the front whenever there are
two requests to it in a row. This holds because in this case,A knows that
there is another request to the same item following. Therefore moving
it to the front is always optimal. Thus, there are only four different ways
to serve$��. MTF means that the item is moved to the front already at
the first request.WAIT moves it at the second request, if there is one.
By 
� we denote the online player’s cost. SinceOPT���$��� 	 � in all
cases, we obtain (2.6).
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OPT A with inversion
���� 
��� 	 �
$�� with � WAIT � MTF � WAIT � MTF


��� � WAIT � WAIT � MTF � MTF

� 
� 
� 
� 
� 
� 
� 
�

�� � � � � � � � � �
���� � � � � � � � � �
���� � � � � � � � � �
������ � � � � � � � � �

� � "

� �
� �
��� �  � � �� � � � � � � � �

Table 2.2: Expected online cost if 
��� 	 �

2.3 Poset algorithms

Using partial orders, one can construct a���-competitive list update
algorithm for lists with up to four items [6]. The partial order is initially
equal to the linear order of the items in the list. After each request, the
partial order is modified as follows, where��� means that� and� are
incomparable:

partial order after request to
before � �� 
�� �� � �

��� ��� � � � � � �
� � � � � � � � � ���

That is, a request only affects the requested item� in relation to the
remaining items. Then� is in front of all items� except if� � �
held before, which is changed to���. The initial order in the list and
the request sequence determine the resulting partial order. Note the
similarity to Automaton 1.2. One can generate an arbitrary partial order
in this way [6].

The partial order defines aposition

���� 	 �
� � � � ��� � �
� � ����� �
for each item�. If the online algorithm that only uses free exchanges
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can maintain a distribution on lists so that the expected cost of access-
ing an item� is equal to����, then this algorithm is���-competitive
[6]. One can show that then with probability one� is behind all items
� with � � �, and precedes with probability 1/2 those items� where
���. Incomparable elements reflect the possibility of a “mistake” of
not transposing these items, which should have probability 1/2. For
lists with up to four items, one can maintain such a distribution using
two lists only. That is, the partial order is represented as the intersection
of two linear orders represented by the lists, where each list is updated
by moving the requested item suitably to the front, using only free ex-
changes. The algorithm works by choosing one of these lists at the
beginning with probability 1/2 as the actual list and serving it so as to
maintain the partial order (with the aid of the separately stored second
list).

The partial order approach is very natural for the projection on pairs
and when the online algorithm can only use free exchanges. A lower
bound above��� must exploit a failure of this algorithm. This is already
possible for lists with five items, despite the fact that all five-element
partial orders are two-dimensional (representable as the intersection of
two linear orders). Namely, let the items be the letters� to ' and let the
initial list be 
����'�, and consider the request sequences

�� 	 ��'� and �� 	 ��'� � (2.7)

After the first request to�, the partial order states are���, ���, ���,
and� � ', and otherwise� � � � � � '. Using a free exchange,
� can only be moved forward and has to precede�, �, � each with
probability 1/2. This is achieved uniquely with the uniform distribution
on the two lists
����'� and
����'� (this, as well as the following, holds
even though distributions on more than two lists are allowed). The next
request to� induces� � �, so � must be moved in front of� in the
list 
����'�, where� already passes�, which yields the unique uniform
distribution on
����'� and
����'�. The next request to' entails that'
is incomparable with all other items. It can be handled deterministically
in exactly two ways (or by a random choice between these two ways):
Either' is moved to the front in
����'�, yielding the two lists
����'�
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and
'����� with equal probability, or' is moved to the front in
����'�,
yielding the two lists
'����� and
����'� with equal probability. If the
two lists are
����'� and
'�����, the algorithm must disagree with the
partial order after the request to� as in��, since then� must precede
both� and' in both lists (so� is moved to the front in both lists) but
then incorrectly passes� where only��� should hold. Similarly, for the
two lists 
'����� and
����'� the request to� as in�� moves� in front
of ' and� in both lists, so that it passes�, violating���. Thus, either��
or �� in (2.7) causes the poset-based algorithm to fail, which otherwise
achieves a competitive ratio of 1.5. These sequences will be used with
certain probabilities in our lower bound construction.

2.4 Game trees with imperfect information

As we have seen in Chapter 1, the list update problem can be phrased
as a zero-sum game between two players, the adversary and the online
algorithm (oronline player). A lower bound for strictly competitive
algorithms can be shown by giving a finite adversary strategy for which
(2.1) holds.

In order to deal with finite games, we assume a finite set
 � � of
request sequences (for example all of a given bounded length), which
represent the pure strategies of the adversary. These can bemixed by
randomization. There exist only a finite number� of possible ways
of deterministically serving these request sequences in
. These de-
terministic online algorithms can also be chosen randomly by suitable
probabilities�� for � � � � � . In this context of finitely many re-
quest sequences, an arbitrary constant� in (1.3) is not reasonable, so
we look at strict competitiveness. To be strictly�-competitive against
the adversary strategies in
, it must hold for all� in 
 that

��
���

�� A���� � � � OPT��� � (2.8)

whereA���� is the cost incurred by the�th online algorithm andOPT���
is the optimal offline cost for serving�. We can disregard the trivial se-
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quences� with OPT��� 	 � that consist only of requests to the first
item in the list. In this case (2.8) is equivalent to

��
���

��
A����

OPT���
� � � (2.9)

The termsA���� OPT��� in (2.9), for � � � � � and� � 
, can
be treated as a payoff to the adversary in a zero-sum game matrix with
rows� and columns�. Correspondingly, a lower bound� for the strict
competitive ratio of list update algorithms is an expected competitive
ratio [15] resulting from a distribution on request sequences. This dis-
tribution is a mixed strategy of the adversary with probabilities(� for
� in 
 so that for all online strategies� 	 �� � � � � �

�
���

(�
A����

OPT���
� � � (2.10)

Note that the bounds in (2.9) hold only for the strategies in
, whereas
the lower bounds in (2.10) hold in general.

In the finite case, the minimax theorem for zero-sum games [34] asserts
that there are mixed strategies for both players and reals� and� so that
(2.9) and (2.10) hold with� 	 �. Then� is the “value” of the game and
the optimal strict competitive ratio for the chosen finite approximation
of the list update problem. Note that it depends on the admitted length
of request sequences. Due to the complicated implicit definition and
large size of the game matrix, the best known bounds for� and� in (2.9)
and (2.10) that hold irrespective of the length of the request sequences
do not coincide.

The number of request sequences is exponential in the length of the se-
quences. The online player has an even larger number of strategies
since that player’s actions are conditional on the observed requests.
This is best described by agame tree. At each nonterminal node of
the tree, a player makes a move corresponding to an outgoing edge.
The game starts at the root of the tree where the adversary chooses the
first request. Then, the online player moves with actions corresponding
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to the possible reorderings of the list after the request. There are��
actions corresponding to all possible reorderings. (Later, we will see
that most of them need not be considered.) The players continue to
move alternatingly until the last request and the reaction by the online
player. Each leaf of the tree defines a sequence� and an online cost
A��� (depending on the online actions leading to that leaf), with payoff
A��� OPT��� to the adversary.

The restricted information of the adversary in this game tree is mod-
eled byinformation sets [25]. Here, an information set is a set of nodes
where the adversary is to move and which are preceded by the same
previous moves of the adversary himself. Hence, the nodes in the set
differ only by the preceding moves of the online player, which the ad-
versary cannot observe. An action of the adversary is assigned to each
information set (rather than an individual node) and is by definition the
same action for every node in that set. Hence, the probability for choos-
ing an item, say�, as a next request must be the same in all nodes of the
information set. On the other hand, the online player is fully informed
about past requests, so his information sets are singletons. Figure 2.1
shows the initial part of the game tree for a list with three items for the
first and second request by the adversary, and the first online response,
here restricted to free exchanges only.

A pure strategy in a game tree assigns a move to every information
set of a player, except for those that are unreachable due to an earlier
choice of that player. Here, the online player has information sets (like
in Figure 2.1) where each combination of moves defines a different
strategy. This induces anexponential growth of the number of strategies
in thesize of the tree. The strategic approach using a game matrix as in
(2.9) and (2.10) becomes therefore computationally intractable even if
the game tree is still of moderate size. Instead, we have used a recent
method [33, 24] which allows to solve a game tree with a “sequence
form” game matrix and corresponding linear program that has thesame
size as the game tree.

Using game trees, a first approach to finding a randomized strategy for
the adversary is the following. Consider a list with five items, the min-
imum number where a competitive ratio above��� is possible. Fix a
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adversary

Figure 2.1: Game tree with information sets.

maximum length� of request sequences, and generate the game tree
for requests up to that length. At each leaf, the payoff to the adver-
sary is the quotient of online and offline cost for serving that sequence.
Then convert the game tree to a linear program, and compute optimal
strategies with an LP solver (we used CPLEX).

However, this straightforward method does not lead to a strict compet-
itiveness above���, for two reasons. First, “mistakes” of an algorithm
manifest themselves only later as actual costs. As an example, ifA
moves� to the front on the first request of� 	 ����, we really need
the requests to� to makeA pay for this mistake. So there is little hope
for an improved lower bound using short request sequences. Secondly,
even if only short sequences are considered, the online player has��
responses to every move of the adversary, so that the game tree grows
so fast that the LP becomes computationally infeasible already for very
small values of�.

The first problem is overcome by adding the number ofinversions of
the online list, denoted by
� in the tables 2.1 and 2.2 above, to the
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payoff at each leaf. This yields a strict competitive ratio greater than
��� for rather short sequences. The inversions are converted into actual
costs by attaching a well structured subgame to each leaf of the game
tree that generates requests sequences similar to Teia’s lower bound
construction. The next section describes the details.

The second problem, the extremely rapid growth of the game tree, is
avoided as follows. First, we limit the possible moves of the online
player by allowing only paid exchanges of a special form, so-called
subset transfers [28]. A subset transfer chooses some items in front of
the requested item� and puts them in the same order directly behind�
(e.g. 
����'�!)� � 
�����'!)�). Afterwards, the adversary’s strat-
egy computed against this “weak” online player is tested againstall
deterministic strategies of the online player, which can be done quickly
by dynamic programming. It turns out that the lower bound still holds,
that is, the “strong” online player who may use arbitrary paid exchanges
cannot profit from its additional power. Remember that using free ex-
changes does not help the online player since they can be simulated by
paid exchanges, as we have seen on page 6.

2.5 The game tree gadgets

We compose a game tree from two types of trees or “gadgets”. The first
gadget calledFLUP (for “finite list update problem”) has a small, irreg-
ular structure. The second gadget calledIC (for “inversion converter”)
is regularly structured. An instance ofIC is appended to each leaf of
FLUP. Both gadgets come with a randomized strategy for the adver-
sary, which has been computed by linear programming forFLUP. One
can prove that against this adversary strategy, the best online strategy
has an expected strict competitive ratio of at least��� � � ���, about
�������. To check all possible online strategies, one can use dynamic
programming. TheFLUP game we used is the shortest that we found;
larger versions ofFLUP give higher lower bounds. If we allowed in
theFLUP game all request sequences of length at most�, the limit of
the game value for� � � would be the value of the list update game.
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requests offline list probability OPT
�� 
����'� ��� ���� �
��'� 
'����� ��� ���� �
��'� 
'����� �� ���� �
��'�� 
����'� ��� ���� ��
��'�� 
��'��� �� ���� ��
��'�� 
�'���� ��� ���� ��
��'�� 
����'� �  ����  
��'�� 
��'��� ��� ����  
��'�� 
�'���� �� ����  

Table 2.3: The adversary strategy

This follows from Section 2.8.

Both gadgets assume a particular state of the offline list, which is a pa-
rameter that determines the adversary strategy. Furthermore, at the root
of FLUP (which is the beginning of the entire game), it is assumed that
both online and offline list are in the same state, say
����'�. Then the
adversary strategy forFLUP generates only the request sequences�,
��', ��'�, and��'� with positive probability, which are the sequences
in (2.8) or a prefix thereof. After the responses of the online player
to one of these request sequences, theFLUP tree terminates in a leaf
with a particular status of the online list and of the offline list, where
the latter isalso chosen by the adversary, independently of the online
list. For the request sequence�, that offline list is
����'�, that is, the
offline algorithm has moved� to the front. If theFLUP game termi-
nates after the request sequence��', the adversary makes an additional
internal choice, unobserved by the online player, between the offline
lists 
'����� and 
'�����. In the first case, the offline player brought
' to the front but left� and� in their place, in the second,� was also
moved to the front. Similar choices are performed between the offline
lists for the request sequences��'� and��'�.

The specific probabilities for these choices of the adversary inFLUP
are shown in Table 2.3. The last column denotes the cost for the opti-



38 Chapter 2. A Lower Bound for the Partial Cost Model

mal offline algorithm. TheFLUP tree starts with� as the first request,
followed by the possible responses of the online player. Next, the ad-
versary exits with probability��� ����, without a request, to the leaf
with offline list 
����'�, and with complementary probability requests
item �, which is followed by the online move, and so on.

Each leaf of theFLUP tree is the root of anIC gadget which gen-
erates requests (similar to the runs in Teia’s construction, see below),
depending on the offline list. The number of inversions of the online
list relative to this offline list is denoted by
. The purpose of theIC
gadget is to convert these
 inversions into actual costs. Any request
sequence generated by theIC gadget can be treated with the same min-
imal offline cost*, here* 	 ��. Thereby, the online algorithm makes
mistakes relative to the offline algorithm, so that the online cost inIC
is at least���* �
.

Since adding theIC gadgets leads to a game far too large to compute
its value, we consider instead the game consisting only of theFLUP
tree with the following payoffs at its leafs. LetA be the cost the online
player has to pay on its path from the root to the leaf. Then the payoff
to the adversary at this leaf is

+ 	
A�
� ���*

OPT� *
� (2.11)

Note that the expected payoff to the adversary in this small game is at
most as large as in the one with theICs. Therefore, the value of the
small game is the desired lower bound.

The probabilities in table 2.3 have been computed by linear program-
ming. One can show that any online strategy, as represented in the
FLUP tree, has an expected strict competitive ratio of at least���� �


�� ,
or about�������.

At a leaf of theFLUP gadget, the adversary reveals his list state to
the online player and he charges+. This he can do since, as we will
see later, there exists a strategy for the adversary which depends only
on the adversary’s list state which makes the online player pay at least
���* �
 in the expectation, whereas the adversary pays only*. Hence
at the leaf, the adversary can indeed guarantee payoff+.
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The fact that the strategy does not depend on the online list is crucial,
since otherwise the adversary would not be oblivious any more. Reveal-
ing the adversary’s list to the online player is allowed since it merely
weakens the position of the adversary: Any online strategy without this
extra information can also be used when the online player is informed
about the adversary’s internal choice, so then the online player cannot
be worse.

The offline list assigned to a leaf of theFLUP gadget is part of an op-
timal offline treatment (computed similar to [28]) for the entire request
sequence. However, that list may even be part of a suboptimal offline
treatment, which suffices for showing a lower bound since it merely
increases the denominator in (2.10). Some of the offline costs in table
2.3 can only be realized withpaid exchanges by the offline algorithm.
For example, the requests��'� are served with cost 10 yielding the of-
fline list 
���'�� by initial paid exchanges that move� to the end of the
list. With free exchanges, this can only be achieved by moving every
requested item in front of�, which would result in higher costs.

In the remainder of this section, we describe theIC gadget. Its purpose
is to convert the inversions at the end of theFLUP game to real costs
while maintaining the lower bound of at least���. At the same time,
these inversions are removed so that both the online list and the offline
list are in the same order after serving theIC.

The IC extends the construction by Teia [32] described in Section 2.2.
Let �� be the sequence that requests the first� items of the current
offline list in ascending order, requesting each item with probability
1/2 either once or three times. Assume that the offline algorithm treats
�� by moving an item that is requested three times to the front at the
first request, while leaving any other item in place, which is optimal.
The triply requested items, in reverse order, are then the first items of
the new offline list, followed by the remaining items in the order they
had before. Then�� is a run as used in Teia’s construction for a list with
� items. The random request sequence generated there can be written
as��� , that is, a,-fold repetition of��, where, goes to infinity. Note
that the offline list and hence the order of the requestschanges from
one run�� to the next, so��

� , for example, isnot a repetition of two
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identical sequences. We still have (2.3) for sequences consisting of
these runs. The optimal offline treatment of�� is still the same as in
the special case of�� and costs

�
�
�

�
units.

Next we show

"
A���� � 
��� �
�� � ���OPT���� � (2.12)

where
��� and
� denote the inversions between the list states of the
two players before and after the run. All we have to do is to generalize
(2.6). Previously,$�� was one of the four sequences of Table 2.1. In
the general case,$�� can also be�, ��� or the empty sequence.

In all three cases, we haveOPT���$��� 	 �. Additionally, we have
"
A�$��� � 
���� � �, because the online algorithm incurs cost at
least one if
��� 	 �. Hence,

"
A�$��� � 
��� �
�� � ���OPT�$��� �"

�� (2.13)

holds. In order to prove (2.6), we can simply omit the additional term
on the right hand side.

As in (2.5) above, (2.12) can be extended to concatenations of se-
quences��. Let us first consider the randomly generated sequence
defined by the four runs

IC� �	 �� �� �� ��� (2.14)

which by the preceding considerations fulfills

"
A�IC��� � ���OPT�IC�� � 
� � "

�� (2.15)

A more refined analysis shows

"
A�IC��� � ���OPT�IC�� � 
�� (2.16)

Namely, if we consider the projection ofIC� to any pair of items, the
last run is one where only one item is requested, hence (2.13) applies.
Therefore we obtain

"
A�IC��� 
� �
�� � ���OPT�IC�� �"

��
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which proves (2.16). Hence,IC� serves as an inversion converter with
* 	 ��.

However, the inversion converter we will use is

IC �	 � �
� � �

� � �
� � �

� � (2.17)

because this one allows to prove

"
A�IC�� � ���OPT�IC� � 
� �"


�� (2.18)

Note that if we projectIC to any pair of items, the last two runs will be
� or ���. Hence, the projection ends with at least two requests to� in
a row. A simple case analysis shows that for the last two runs together,
one can prove

"
A�$��� � 
��� �
�� � ���OPT�$��� � � �"

�� (2.19)

Here, we have$�� � 
��� ����� �������, and
��� and
� count the
inversions before and after the last two runs. Again, we haveOPT�$��� 	
�. The following case analysis proves (2.19) and therefore also (2.18).


��� 
� "
A�$���� 
��� �
�� � �"

��

� � � � �
� � � � �
� � � � �
� � � � �

UsingIC, we obtain a lower bound above��� for the competitive ratio�
in (2.2) for any additive constant� by arguing as follows. If we assume
that the online player usesMTF to serve the inversion converter, we have


 	 � at the leaves of theIC. Since the list states of the two players
coincide, we can add newFLUP games at the leaves of the inversion
converter. Doing this recursively, we can generate request sequences
of arbitrary length and offline cost. Hence, our bound holds for any
constant� in (2.2).

Indeed, there is no use for the online player to have inversions at the end
of the inversion converter since by (2.18), he pays exactly the amount
he would have to pay for creating them as a first step in the nextFLUP
game.
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2.6 Free exchange model

In the above construction, the value of the lower bound does not depend
on whether the online player may use paid exchanges or not, but the ad-
versary’s strategy does use paid exchanges. So it seems that the online
player cannot gain additional power from paid exchanges. This raises
the conjecture that by restricting both players to free exchanges only,
the list update problem might still have an optimal competitive ratio
of ���. However, this is false. There is a randomized adversary strategy
where the offline algorithm uses only free exchanges which cannot be
served better than with a competitive ratio of��� � � ����.

In the previous case, the pure strategies of the adversary consisted of re-
quest sequences with at most four requests plus an inversion converter.
This is short enough such that one can allow all request sequences of
length four for the adversary. In the optimal randomized strategy com-
puted by the linear program, most of them are chosen with probability
zero.

In the free exchange model, one needs longer request sequences to find
lower bounds larger than���. Since the number of request sequences
grows exponentially, the brute force method is not tractable anymore.
However, there is a way to generate small sets of pure strategies with
serve as candidates for our method.

If one restricts the online player to a small number of random bits and
restricts the length of the request sequences, the problem can be viewed
as a finite two-person zero-sum game with full information. Let� be
the number of random bits allowed to the online player. This can be
modeled as follows. Like in the case of the poset algorithms, the state
of the online player consists of�� list states. These list states can be
observed by the adversary. As a first move of the online player, he uses
the� random bits to chose one of the�� list states uniformly at random
as the one he will use to update the list accordingly. This choice is not
revealed to the adversary.

A request is served by changing all�� list states by the online player.
The game trees end with a move of the adversary, where he chooses
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requests offline list probability OPT
�� 
����'� ���� ���� �
��� 
����'� ���� ���� �
���'� 
'����� ��� ����  
���'�� 
�'���� ��� ���� ��
���'�� 
����'� ��� ���� ��
���'�� 
��'��� �� ���� ��
���'��� 
����'� � � ���� ��
���'���� 
���'�� ��� ���� ��
���'���� 
����'� ��� ���� ��
���'���'� 
���'�� ��� ���� ��
���'���'� 
'����� ��� ���� ��
���'��'� 
�'���� �� ���� ��
���'��'� 
�'���� �� ���� ��
���'��'� 
'����� �� ���� ��
���'��'�� 
�'���� �� ���� ��
���'��'�� 
���'�� �� ���� ��

Table 2.4: Adversary strategy in the free exchange model

a list state which serves as inversion converter. The payoff is defined
by (2.11), whereA and
 are the expected total online cost and the
expected number of inversions taken over the� random bits.

Setting� �	 �, one finds a set of�� pure strategies of length at most
eight which allow to prove the desired bound.

In the case with paid exchanges, we had a simple argument why no
online player would ever preserve inversions after theIC. Namely we
showed that for every inversion the online player kept after theIC he
would have to pay an extra cost. Instead of preserving inversions in the
IC, he could w.l.o.g. create them just after theIC, spending the same
amount.

Changing our models slightly, we can use a similar argument in the case
with free exchanges. If we repeat the�� in (2.17) exactly
 times instead
of three times, preserving an inversion now costs
� � units instead of
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requests offline list probability OPT
�� 
����'� ���� ���� �
��'� 
'�����  �� ���� �
��'�� 
����'� ��� ���� ��
��'�� 
����'� ��� ���� ��
��'���� 
����'� ��� ���� ��

Table 2.5: Adversary strategy in the MTF model

only one. Note that since there are only free exchanges allowed, it is
not possible to create a new inversion between item� and� once the
last request to� or � has been served. Of course the offline cost for an
IC grows with
. By allowing the online player to use paid exchanges
that cost
 � � units per exchange just after leaving theIC and before
entering the nextFLUP game, we only strengthen the online player as
there is no obligation to use them. In the new model, we can again
assume that no inversions are kept in theIC, as the online player can
perform these special paid exchanges before theFLUP game.

But this time, we really have to check whether the online player can
take advantage of the paid exchanges or not. This just needs a simple
extension of our dynamic programming approach. If he can, the value
of 
 has to be increased.

For the adversary strategy in Table 2.4, the best online algorithm achieves
a competitive factor of��� � �

���� using the originalIC.

The same can be done in the model where elements either stay at their
current position or are moved to the front of the list. The strategy pre-
sented in Table 2.5 also uses the regular inversion converter and proves
a lower bound of��� � �

���� .

2.7 Full cost model

The method we presented here cannot be applied to the full cost model
because one would have to use lists with at least fourteen items. The
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reason for this is the existence of a���-competitive algorithmCOMB13
for lists with up to 13 items in the full cost model. LikeCOMB,COMB13
is a combination ofTS andBIT. But this time,BIT is chosen with
probability� �, whereas we chooseTS with probability� �.

Clearly,COMB13 is projective and we can prove its competitive ratio
along the lines of the proof of Theorem 1.10.

In the full cost model, accessing the item at position� costs� units
instead of� � � units in the partial cost model. This holds for both
COMB13 andOPT. In order to apply projective analysis, the additional
unit has to be equally distributed among all pairs involved in the current
request. There are exactly�� � pairs involved in each request, namely
those which contain the currently requested item. If the first item in the
pair list is requested, we charge�

��� units. For the second item,�� �
���

units are charged. Doing so, the access cost for the item at position�
really becomes

�� � �� � �� � �

� � �

�
� �� � �� � � �

� � �

�
	 ��

as we require in the full cost model.

As in the proof forCOMB, we show that the amortized cost projected to
any pair of items is bounded by��� timesOPT’s cost. Figure 2.2 shows
the access cost ofCOMB13 on pairs of items for� 	 ��.
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Figure 2.2: Automaton proving that COMB13 is ���-competitive on lists
with up to 13 items in the full cost model.
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2.8 The list update game has a value

Think of the list update problem as a two-person zero-sum game. The
pure strategies of the adversary are the finite request sequences. Those
of the online player are the deterministic algorithms. Let us first assume
a fixed number of items� and a fixed constant�.

Let � be the best competitive ratio an algorithm can attain,

� 	 ���
A
���
�

A���

OPT��� � �
� (2.20)

We disregard the request sequences withOPT��� 	 � in order to have
a well defined payoff in all cases. Note that in (2.20), both� and�
denote randomized strategies. On the other hand,� shall be the value
of the best randomized adversary strategy, for simplicity also called
sigma,

� 	 ���
�

���
A

A���

OPT��� � �
�

Theorem 2.3 For � and � fixed, we have � 	 �.

To get an intuitive understanding, the reason why this theorem holds is
that the online algorithm can force the adversary to somehow restart the
whole game after a bounded number of requests. In this way, even very
large request sequences can be broken into subsequences of bounded
length for which the minimax theorem applies.

Let us first deal with strictly competitive algorithms in the full cost
model.

Proof. Assume� � � and choose� such that

� &

�
�
�

�
��� �� � ��

� � �

or equivalently
� � �� � �� �

�
�
�

�
� � ���� � �� (2.21)
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Let A� be an online algorithm that is optimally strictly competitive on
request sequences with offline cost at most���. Clearly,A� is strictly
�-competitive on such sequences, since the lower bounds increase with
the length of the request sequences one allows as adversary strategies.

A� can be extended to an algorithm for arbitrary long request sequences
as follows. It behaves regularly until� � OPT��� � ���. At this time,
we reset the game to the initial state. This means thatA� moves to the
initial list state which costs at most

�
�
�

�
units. Concerning the adversary,

he is allowed to execute a special update operation which moves its list
state to the initial one as well. The cost for this operation is negative.
His costs get reduced by

�
�
�

�
. We can assume that the adversary always

performs this reset operation since the saved
�
�
�

�
units allow him to

move to any desired list state at the beginning of the next phase with
net cost at most zero for the two operations. Hence we are again in the
initial state of the algorithm and we can serve the next phase.

In each complete phase,A� pays at most� � �� � �� �
�
�
�

�
units,

whereas the adversary pays at least� � ���� units. If the last phase
is not completed (it does not end with a reset operation),A� pays at
most� � �� units, whereas the adversary pays�� units. Hence, the cost
ratio is strictly smaller than� in every phase. ThereforeA� is strictly
��-competitive for�� � �, which is a contradiction.

Note that by introducing the reset operations, we bounded the adver-
sary’s cost from below. Hence the ratio ofA���� andOPT��� is not
larger.

For the partial cost model, this proof does not work because there exist
infinitely many request sequences� with OPT��� � � and therefore
it is not clear whether there exists a�-competitive algorithm on these
sequences. However, the following lemma proves that there is at least
a� �� � %�-competitive algorithm for any small% & �. This allows to
apply the above proof, since we can choose% such that

� � � �� � %� � ��

Lemma 2.4 Let � be the best lower bound for strictly competitive al-
gorithms on list with � items. Then there exists, for every � and any
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� � % � ���, a ����
��� -competitive algorithm if the adversary is restricted

to request sequences with OPT��� � �.

Proof. Let us restrict the adversary to request sequences of length at
most, with

, 	

�
� � �
%

�
� ��

Certainly there is a strictly�-competitive algorithmA� on sequences
of length at most,. The value of, is chosen such that all request
sequences� for which OPT��� � � holds andA� pays at least% for
every request satisfy��� � ,. To see this, all we have to prove is
that there is no such� with ��� 	 ,. Note thatA� would pay at least
,% & �� for such a sequence. This contradicts the fact thatA� is strictly
�-competitive on sequences of length,.

Let us now prove the lemma by designing an algorithmA which is
strictly ������� -competitive on request sequences withOPT��� � �.

The algorithmA internally runs algorithmA�. In general, the two algo-
rithms will be in the same list state. In the remainder of this proof, all
the costs are expected costs.

Upon each request to an item�, it first checks whether the cost to serve
� in A� is larger than%. If this is the case,� is fed toA� and we perform
in A the same paid exchanges as inA� and access�.

If serving � costs less than% in A�, algorithmA enters a so-called%-
phase by moving� to the front of the list inA, which costs at most%
units. As long as there are requests to�, item� is kept at the front of
the list. Hence, the access cost for all these requests are zero. None
of these requests is fed toA�, though. On the first request to an item�
different from�, we leave the%-phase by moving� back to the place
where it was before the%-phase. This costs at most% units. Note that
for the request to�, bothA andA� will have to pay at least� � % units.
Hence if� � % � ���, this request will be processed regularly.

Let � be a request sequence withOPT��� � �. Let further�� be the
subsequence which was fed toA�. Since we haveOPT���� � OPT��� �
� andA� payed at least% units for every request, we have���� � , and
thereforeA� is �-competitive on��.
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Note that we have���� � ������ � ��%, where� is the number of
times that� enters an%-phase. We claim than

A��� � � � %

� � %
� A������

The idea is that for any cost (1-eps) spent by A’, algorithm A is allowed
to spend (1-eps+2eps). Note that we can charge the�% for every%-phase
to the first request after the previous%-phase, sinceA� pays at least��%
for these requests. Note that if� starts with an%-phase, this phase is
free for both algorithms since in this case, the requested item is already
at the front of the list. Otherwise, the first request of� is charged for
the first%-phase, since its cost is at least one unit. Hence we conclude

A��� � � � %

�� %
� A����� � �

� � %

� � %
� OPT���� � �

� � %

� � %
� OPT����

The case where� & � is similar. Namely, for any%, we can choose�
large enough such that (2.21) holds for��� %� instead of� and

A���� � ��� %� � OPT���

for all sequences with� � OPT��� � � � �. In this way, we are sure
that all the completed phases are fine. For the last phase, we use the
constant�.

What we are actually interested to prove is

!��
��	

!��
��	

���� �� 	 !��
��	

!��
��	

���� ���

First of all, the two limits to exists. This follows from

� � ���� �� � ���� �� � ���

and the fact that���� �� and���� �� decrease monotonically for growing
� and increase monotonically for growing�. Furthermore, Theorem 2.3
makes sure that the limits indeed have the same value.



Chapter 3

Optimal Bounds for
Projective Algorithms

3.1 Introduction

Although (1.7) is a necessary and sufficient condition for projective al-
gorithms, it gives not much insight of how projective algorithms can
be constructed and whether there are better algorithms than the known
families of algorithms. Consequently, obtaining a lower bound for pro-
jective algorithms seems to be very hard.

In this chapter, we present a simple characterization of all projective
algorithms. The crucial part of the characterization was already pre-
sented in the introduction of this thesis in terms of the critical request
algorithms.

A key observation for our result is to look at algorithms in a more static
way. The classical definition of algorithms asBIT or TS is in terms
of how the current list state changes upon a new request. Our approach
tries to understand how
��� is determined by� and the initial list state,
without considering the evolution of the list states. More specifically,
we ask how
��� changes if the requests of� are permuted.

While the critical request algorithms cover already all “efficient” pro-

51
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jective algorithms, we have to extend their definition in order to really
cover the whole class of projective algorithms. Namely, two functions
for every item are needed. The functions�� are basically the critical
request functions known from the introduction. Note that if the relative
ordering of two items in
��� is defined by critical requests of�, it is
not possible to have a pair of items whose relative order remains un-
changed on shuffling the requests in�. Hence,FREQUENCY COUNT
for example, although projective, cannot be described as a critical re-
quest algorithm. We extend the critical request algorithms by additional
functions-� which group all items into so-called containers. The con-
tainers are totally ordered. The ordering of items in different containers
is then determined by the ordering of the containers, while items within
a container are generally ordered by their critical requests.

The following theorem gives the desired characterization. For a request
sequence� with � requests to�, let �� 	 �� (the�-fold repetition of�)
denote the subsequence consisting only of the requests to item�.

Theorem 3.1 A is a deterministic projective algorithm for a set 	 of
list items, if and only if there exists an ordered set � 	 ��

���� and
two functions

- � 	� �� �� �� -��� �� �	 -��� ��� ���� �� �	 ��� ���
� � 	� � �� �� � ��� �� � �� ���� ��

with the following properties: given any two items � �	 �, and any
request sequence � such that �� 	 ��� �� 	 �� , � is in front of � in the
online list after A has served � if one of the following three conditions
holds.

(a) -��� �� � -��� ��, or

(b1) -��� �� � �� and there exists a pair ��� ��, � �	 �� � such that
-��� �� 	 -��� �� 	 -��� ��, and the � ��� ��-th request to �
appears after the � ��� ��-th request to � in �, or

(b2) -��� �� � �� and there exists a pair ��� ��, � �	 �� � such that
-��� �� 	 -��� �� 	 -��� ��, and the � ��� ��-th request to �
appears before the � ��� ��-th request to � in �.
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If none of these conditions hold, both relative orderings of � and � are
allowed.

We will also write-��� �� as-���� and� ��� �� as�����. All pairs ��� ��
which map to the same value, � � under- define an equivalence
class which we call acontainer and identify with,. We say that� is
in container, with respect to� if -��� ����� 	 ,. As a shortcut, we
write �� � ,, � 	 ����. By 
��� we denote the container, for which
-��� �� 	 ,. Initially, each item� is in a container-��� �� of its own,
whose position in the order represents the initial list state.

If at least three items are in some container with respect to�, the rel-
ative order of any two of them (� and�, say) after serving� is deter-
mined by the order of theircritical requests ����� and����� in �. In
case of-���� � ��, we have the item in front whose critical request
is more recent. In this case, we have astandard container, otherwise a
nonstandard one.

The theorem does not completely specify the behavior ofA in case there
are containers with only two items. In this case, there is no restriction
on the order of the two items, except the obvious condition that this
order does not depend on requests to other items. In particular, any
algorithm over a two-item list is projective, in which case the theorem
holds with suitable- and arbitrary� .

Let us illustrate this theorem for a few projective algorithms over the
set of items	 	 
��� � � � � ���, with initial list state
��� � � � � ���. In
this case,MTF uses� 	 �� 	 
�� � � � � �� and

-���� �� 	

�
�� if � 	 �
�� otherwise

� ���� �� 	 ��

Thus,MTF moves all items into a common container after their first
request. This container is a standard container, so� is in front of �
in the online list if and only if� was requested more recently than�.
Using � 	 �� 	 
�� � � � � �� instead would result in theMOVE-
TO-BACK algorithm, which is not competitive. We will see later that
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no competitive algorithm will use nonstandard containers with positive
probability.

The algorithmTIMESTAMP moves all items into a common standard
container after their second request; within that container, items are
ordered by recency of their second-to-last request. This behavior can
be obtained by using� 	 �� 	 
�� � � � � ��� and

-���� �� 	

	

�

��� if � 	 �
�� � �� if � 	 �
�� otherwise

� ���� �� 	 ������ � � ���

The randomized algorithmBIT tosses a coin for each item� do decide
whether� will be moved to the front after an even number of requests
to � (and stay in place after an odd number of requests), or vice versa.
Thus,BIT uses� 	 �� 	 
�� � � � � ��� and for each� randomly
decides between the two pairs of functions

-����� �� 	

	

�

��� if � 	 �
�� � �� if � 	 �
�� otherwise

������ �� 	 ������ ��� ���
and

-����� �� 	

�
��� if � 	 �
�� otherwise

������ �� 	 ��� �� � ��

Finally, we consider the algorithmFREQUENCY COUNT which main-
tains the items sorted according to decreasing number of past requests;
two items which have been requested equally often are ordered by re-
cency of their last request, like inMTF. This corresponds to the choices
of � 	 �� 	 � and

-���� �� 	

�
�� if � 	 �
��� otherwise

!���� �� 	 ��
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FREQUENCY COUNT is not competitive; in fact, we will prove that no
competitive algorithm maintains more than one container in the long
run with positive probability.

Using the characterization of Theorem 3.1, we will derive the lower
bound for the competitive ratio of any projective algorithm.

Theorem 3.2 For any % & �, any � � � and any projective algorithm
A, there exists a finite sequence . such that

"
A�.�� � ���� � %�OPT�.� � ��

These results are significant in two respects. First, they show that the
successful approach of combining existing projective algorithms to ob-
tain improved ones has reached its limit with the development of the
COMB algorithm. New and better algorithms (if they exist) have to be
non-projective, and must derive from new, yet to be discovered, design
principles.

Second, the characterization of projective algorithms is a step forward
in understanding the structural properties of list update algorithms. Un-
der this characterization, the largest and so far most significant class of
algorithms appears in a new, unified way.

Projective algorithms have a natural generalization, where we demand
the relative order of any�-tuple of list items to depend only on the
requests to these� items. It turns out that for lists with more than�
items, only projective algorithms satisfy this condition. This follows
from the fact that e.g. for� 	 �,


A������ 	 
A��������� and


A������ 	 
A���������

imply that the list state
����� depends only on���, because it must be
independent of, and�.

We define arandomized online algorithm as projective if it is a discrete
probability distribution over deterministic projective algorithms. A less
restrictive definition is conceivable, but would not allow us to prove



56 Chapter 3. Optimal Bounds for Projective Algorithms

the lower bound for projective algorithms that we intend and that we
think is useful. Namely, one could call a randomized online list update
algorithm projective if serving any request sequence� induces a dis-
tribution on list states
����� that only depends on���. Under these
weaker requirements, one can indeed find 1.5-competitive algorithms
for lists with few items. For the case of two items, Algorithm 1.12
trivially is projective. Furthermore, the Poset algorithms described in
Section 2.3 are also projective in this generalized sence. Unfortunanely,
they are defined only for lists with up to four items.

Theorem 3.1, discussed further and proved in the following sections,
characterizes the deterministic projective algorithms in a way that makes
their projective behavior transparent, and unifies many known algo-
rithms. By our above assumption that considers a randomized projec-
tive algorithm as a probability distribution over deterministic ones, we
will be able to use this characterization in the lower bound proof of
Theorem 3.2 later.

An open problem is to extend the lower bound to the full cost model,
even though this model is not very natural in connection with projective
algorithms. This would require request sequences over arbitrarily many
items, and it is not clear whether an approach similar to the one given
here can work.

3.2 Containers

Consider a deterministic projective algorithmA over a set	 of list items
with fixed initial list state; our intended characterization in the form
of Theorem 3.1 addresses the relative order of two items� �	 � in
the online list after a sequence� with �� 	 ��� �� 	 �� has been
served. An easy case occurs if this order only depends on� and �,
but not on the pattern in which the requests appear in�. For example,
FREQUENCY COUNT has� in front of � whenever� & �. This leads
us to the following
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Definition 3.3 Let �� � � 	� � �	 � and �� � � �. We define

�� �A �� �� �� � �� 	 ��� �� 	 �� � 
A�� 	 
����

Observation 3.4 If �,� and � are distinct and �, �, � � �, then �� �A

�� and �� �A �� implies �� �A ��.

To see this, consider some� with �� 	 ��, �� 	 �� and
A�� 	 
���.
Without affecting���, we can insert� requests to� into �, and be-
cause of�� �A ��, this can be done in such a way that
A����� 	 
���
BecauseA is projective, we then have
A��� 	 
���� which proves
�� �A ��.

For distinct items,�A is transitive by Observation 3.4. In general, we
obtain a reflexive and transitive relation from�A as follows.

Definition 3.5 Let

�A be the reflexive and transitive closure of the

relation �A. Then

�� �A �� �� ��

�A �

� and ��

�A �

��

defines an equivalence relation whose equivalence classes are the con-
tainersdetermined by A.

By 
��� we denote the container�� belongs to. A container, is grown
if there exist distinct items�, �, and� and�, �, � � � such that, 	

��� 	 
�� � 	 
���.

Lemma 3.6 If 
��� is grown, �� � 
��� and � �	 �, then �� �A �� .

Proof. Because
��� is grown, there is a projection�� � 
��� with �

distinct from� and�. Hence,��

�A �

� and��

�A �

�. Therefore there
exists a chain

�� 	 (��� �A (��� �A � � � �A (
����

��� �A (��� 	 ��

with � 	 (� for some/ �	 �� �. By successively removing all interme-
diate elements of the chain, we will derive�� �A �� . Consider the first
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index� such that
(�� � � � � (�� contains three distinct elements. Because
of (� �	 (��� for � 	 �� � � � � � � �, the items(�, (��� and(��� must
be distinct. By Observation 3.4,(����

��� can be removed from the chain

without affecting its validity, because(����

��� �A (��� .

Only for � 	 �, this might result in a chain containing projections to
only two distinct items. In the case� 	 �, this is okay since we then
obtain�� �A ��, which we were looking for. In the case� & �, it
is easy to check that(���� (� and(��� are distinct, and the removal of
(��� yields a shorter chain, again containing projections to three distinct
elements.

Continuing in this fashion, we finally arrive at the desired chain�� �A

�� .

Corollary 3.7 If , is a grown container and ��� �� � ,, then there
exist sequences �� �� with �� 	 ��� 	 ��, �� 	 ��� 	 �� and


A����� 	 
����


A����
�� 	 
����

This means that, for projections in the same container, the order of the
respective elements depends on the pattern in which the requests to
them occur in�. For projections in different containers, the order can
be derived from a suitable order on the containers.

Lemma 3.8 There exists a total order �A on the containers such that
,� �A ,� for distinct ,�, ,� implies that for all pairs �� � ,�, �� �
,�, � �	 �: �� �A �� and not �� �A ��.

Proof. The relation

,� �A ,� �� ��� � ,�� �
� � ,� � �

� 
�A �
�

is a partial order which can be extended to a total order; it follows
that for any pair
��� �	 
�� � with � �	 �, 
��� �A 
��� if and only if

��� �A 
�� �.
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To see that�A is indeed a partial order, we have to show that it is
reflexive, transitive and antisymmetric. The first two hold because


�A

has these two properties as well. The last property holds because of the
definition of the containers in Definition 3.5.

Concerning the proof of Theorem 3.1, we have defined the container
functions- and have dealt with case (a) of the theorem.

3.3 Critical Requests

In this section, we deal with the case where-��� ����� 	 -��� �����.
The interesting case here is when this container is grown. Under this
condition, the relative order of� and� in the online list after serving�
can be characterized in terms ofcritical requests.

Theorem 3.9 Let A be a deterministic projective algorithm over a set
of items 	. Then there exists a function

� � 	� �
� �� �

� � � ��� �� � �� ���� ��

such that for all grown containers , exactly one of the following con-
ditions holds.

(b1) For all pairs ��, �� with , 	 
��� 	 
�� �, and all � such that
�� 	 ��� �� 	 �� , 
A

����� 	 
��� if and only if the � ��� ��-th
request to � happens after the � ��� ��-th request to � in �.

(b2) For all pairs ��, �� with , 	 
��� 	 
�� �, and all � such that
�� 	 ��� �� 	 �� , 
A

����� 	 
��� if and only if the � ��� ��-th
request to � happens before the � ��� ��-th request to � in �.

In case (b1), we say that, is astandard container, in case (b2) we have
anonstandard one. This also yields the partition of the set of containers
� into �� and�� that we have stipulated in Theorem 3.1.

As a simple illustration, observe that the algorithmMTF uses� ��� �� 	
� for all � and satisfies condition (b1).
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Proof. Let � be a request sequence with�� 	 ��� �� 	 ��� �� � & �
and��� 	 �� � such that
��� 	 
�� �, and
��� is grown.

We label each request to an item with its position in the unary projection
to that item (e.g. the fifth request to� will be labeled��
	). Then�
can be considered as a permutation of labeled requests. Because of
Corollary 3.7, there exists a permutation�� of � such that
A����� �	

A����

��. This means that, we can as well assume that in�, we have a
consecutive pair of items���	� ��
	, such that
A����� �	 
A����

��, where
�� arises from� by transposing���	 and��
	.

This behavior does not change if we add� & � requests to� �	 �� �
to �. We choose� and� such that
��� 	 
���. Because
��� is grown,
such a pair must exist.

We add these requests to� such that���	 and ��
	 stay consecutive
and such that there exists a consecutive pair of requests, say����	 and
���	 such that transposing this pair changes
�����. Again because of
Corollary 3.7, this must be possible.

We claim that( 	 (�. To see this, assume( �	 (�. Then we can, if
necessary, transpose any of the two pairs���	� ��
	 and����	� ���	 in
� such that
��� 	 
����. Let "� be� with the two pairs����	� ��
	�
and �����	� ���	� transposed. By projectivity, we have
�"�� 	 
����.
Hence
����� �	 
���"��, although��� 	 "���. This contradicts the
projectivity ofA.

In particular, there is a unique value of( such that���	 participates in
any transposition that reorders� and� in the list. By symmetry, this
uniqueness also holds for the pair� and�. Because the value of( is the
same in both cases and by projectivity, it only depends on��. Therefore
it is a function of� 	 ����. We call���	 the critical request of� and set
����� 	 � ��� �� 	 (.

By a symmetric argument, the request���	 defines the unique critical
request for�, and����� 	 � ��� �� �	 /.

To see that the relative order of two items in the list must change when-
ever the two critical requests are transposed in the request sequence,
think of a request sequence� on two items� and� where the critical
requests of� and� are consecutive. Let�� be the sequence obtained by
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swapping the critical requests. Now assume that this swap does not al-
ter the list state. Then we can obtain any permutation of the request se-
quence by successively transposing consecutive requests, starting from
either� or ��, without ever transposing the critical requests. Thus, the
relative order of� and� would be the same for all request sequences.
This contradicts our assumption that�� �A �� .

We still need to argue that the items in, are ordered either according
to case (b1) or (b2).

For this, consider a request sequence� over an�-item list such that

��� 	 
���� � � � ���. Let �� be the position of��’s critical request in
�. If we do not have

�� & �� & � � � & �� (case (b1)) or
�� � �� � � � � � �� (case (b2)),

we must have an index� such that either

�� � ���� & ���� or �� & ���� � �����

In both cases, we can manipulate� such that the critical requests of
�� and���� change their order, but both keep their relative order w.r.t.
the critical request of����. In the list obtained after serving�, items
�� and���� change their relative order under this manipulation, while
they keep their relative order with respect to����. This is impossible.

The assumption of grown containers in the preceding theorem is cru-
cial. If � �	 � and�� � 
���, where
��� is a non-grown container, then
� and� are adjacent in
A���, for any� with �� 	 �� and�� 	 �� .
This holds because
��� does not contain a projection to a third element.
In this case, the projective algorithm is free to choose any order of�
and � which only depends on���, without violating projectivity. In
particular, the algorithm is not forced to operate according to critical
requests.

Together with the results of the previous section, we have now proved
Theorem 3.1.
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3.4 The Lower Bound

In this section, we use the characterization of projective algorithms
from Theorem 3.1 to prove that no such algorithm is better than 1.6-
competitive. Intuitively, it is clear that a good algorithm will maintain
only one container in the long run (which must be a standard container),
and it will have the critical request close to the last request for each
item. We prove this intuition in the next section; for the time being, we
restrict our attention to algorithms which satisfy these conditions.

Definition 3.10 For a given integer 0 & �, a deterministic projective
algorithm is called 0 -regular, if

(i) -���� 	 -���� (and this container is a standard container) for
all items �� � and all �� � � 0 , and

(ii) !���� �	 � � ����� � 0 for all items � and all � � �.

A randomized algorithm is 0 -regular if it is a probability distribution
over deterministic 0 -regular algorithms.

ExceptFREQUENCY COUNT (which is not competitive), all the al-
gorithms discussed at the end of the introduction are0 -regular with
0 � 
�� ��.

Given any% & � and�, we will show that there is a probability distri-
bution# on a finite set# of request sequences so that

�
���

#�.�
A�.�

OPT�.� � �
� ��� � %� (3.1)

for any deterministic0 -regular algorithmA. ThenYao’s theorem [34]
asserts that also any randomized0 -regular algorithm has competitive
ratio ��� � % or larger. This holds for any% & �, so the competitive
ratio is at least 1.6. This is achieved byCOMB and therefore 1.6 is a
tight bound for the competitive ratio of0 -regular algorithms.
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All . � # will consist of only two items� and�. In what follows, let
$0 & 0 and $0 � � and let

1 �	 �
�� ����

�� ��
�� �

�� ����
�� ��

�� �
�� �

�� � (3.2)

1 consists of eightblocks, each of which ends in� �� or � �� . Let2 and
� be positive integers and

3 �	 �1� � 	 � $0 � �� (3.3)

Then the set of sequences in (3.1) is given by

# 	 #�2�� � �	 
� �����
����1 � � � 4 � 3� � � 
 � �3��

(3.4)
where any. in # is chosen with equal probability� 3�� by #.

OPT pays exactly ten units for each repetition of1 (which always starts
in offline list state
���). Assuming that also the initial list state is
���,
all sequences in# have offline cost��2 � �. This and the fact that
#�.� for . � # is constant allows us to conclude (3.1) once we can
prove

Lemma 3.11 �
���

A�.� � ��2�3� � 5�2�3���

Namely, we then obtain

�
���

#�.�
A�.�

OPT�.� � �
	

�
��� A�.��

����OPT�.� � ��

� ��2�3� � 5�2�3��

���2 � � � ��3��

	 ��� � ����� � ��

��2 � � � �
� 5�2�3��

���2 � � � ��3��

� ��� � %�

for 2��� $0 large enough.
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In the rest of this section we show that (3.4) yields Lemma 3.11. For
this, we distribute the total online cost amongstates assumed by se-
quences. � #.

Definition 3.12

(i) . � # assumes state ��� �� if there exists a prefix � 	� .��� �� of
. with �� 	 �� and �� 	 �� . � denotes the set of states assumed
by sequences . � #.

(ii) . � # switches at��� ��, if .��� �� contains the initial prefix

�
�����

����, and one of the eight blocks of some repetition of
1 starts immediately after .��� ��. If the block starts with �, .
switches to�, otherwise . switches to�.

(iii) ��� �� is called a switchingstate if some . � # switches at ��� ��.

 denotes the set of switching states.

(iv) For ��� �� � 
 and . switching at ��� ��, A���� �� denotes the
online cost incurred by serving the block of 1 that follows the
prefix .��� ��. A��� �� is the sum of these costs over all . switching
at ��� ��.

These definitions allow us to rewrite the total online cost as follows.�
���

A�.� 	
�

����	��

A��� �� �
�

���!"����!#"

A��
�����

�����

&
�

����	��

A��� ���

We see that. 	 �
�����

����1 switches at��� �� if and only if

� 	 $0 � 
� (3 � ��

� 	 $0 � 4� (3 � ��
(3.5)

for some( � 2 and

��� �� � 
� $0� ��� �� $0 � �� ��� �� $0 � �� ��� �� $0 � �� � $0 � ���
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(switch to�), or

��� �� � 
��� ��� �� $0��� $0���� �� $0��� � $0���� �� $0��� � $0����

(switch to�). For a fixed pair��� ��, the values of4 and( (and hence of

) that satisfy these equations are uniquely determined. It follows that
at most eight sequences switch at any given state��� ��.

Definition 3.13 A state ��� �� � 
 is called good if and only if the
following two conditions are satisfied.

(i) there are exactly eight sequences . � # that switch at ��� ��, and

(ii) property (i) also holds for the states �� � �� �� and ��� � � ��.

6 denotes the set of good states.

Then (3.5) further yields

�
���

A�.� &
�

����	�$

A��� ��� (3.6)

This means, for every good state��� �� and each of the eight blocks in
1, there is exactly one sequence. � # such that. continues with this
block after the prefix.��� ��. Moreover,A��� �� accounts for the online
cost incurred by serving these eight blocks.

We will now prove two claims, which together yield Lemma 3.11 and
therefore the lower bound of���.

Claim 3.14 For every state ��� �� � 6, we have A��� �� � ��. The
sequences switching to � and �, respectively, both provide eight units.

Claim 3.15 �6� � 2�3� � 5�2�3��.

Let us prove Claim 3.15 first. From equations (3.5), we see that exactly
eight sequences switch at��� �� if and only if for all eight pairs��� ��,
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the solutions(� 4� 
 to system (3.5) satisfy� � ( � 2, � � 4 � 3 and
� � 
 � �3. Using the facts that� � 3� � � �� � � 3, for all ��� ��,
one proves that a sufficient condition for this is

3 � � � � � $0 � 23� � �3 � � � � � �3 � 3 � �� (3.7)

If both weak inequalities in (3.7) hold as strict inequalities, then��� ��
is guaranteed to be good. Hence there are at least

�2 � ��3 � ��3 � �3� 	 2�3� � 5�2�3��

good states. This implies the claim.

To prove Claim 3.14, consider a good state��� �� and the four sequences
.��	� � � � � .��	 that switch to� in ��� �� (the argument for the sequences
switching to� is symmetric). ForA��� ��, we have to count the total

online cost incurred by serving the four blocks� �� , � �� , �� �� , and
����

�� following the prefixes.�%	��� ��� � 	 �� � � � � �, see Figure 3.1.

.��	 � .��	��� �� �����	 �����	 � � �

.��	 � .��	��� �� �����	 �����	 �����	 � � �

.��	 � .��	��� �� �����	 �����	 �����	 � � �

.��	 � .��	��� �� �����	 �����	 �����	 �����	 � � �

Figure 3.1: Blocks in sequences switching from � in ��� ��

Our goal is to show thatA incurs at least eight units of cost by serving
the four blocks. This is not always true: a certain choice of critical re-
quest values may result in an online cost of only seven units. However,
this particular choice will lead to nine units of cost in state����� ��, one
of which we can “borrow” forA��� ��. This results in eight amortized
units of online cost, for all good states.

BecauseA is0 -regular, we know that� and� are in the same standard
container after processing.�%	��� �� (and also at any later time), for
all �. Moreover, the critical request of� is among the preceding$0
requests to�, while the critical request of� is further away. Therefore,
four units are to be paid for the requests to�����	. At least three more
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� �
� � �
� � �
� � � �

!��� � �� 	 ��
!���� �� 	 �

� �
� � �
� � �

� � � �

!��� � �� 	 ��
!���� �� & �

� �

� � �
� � �
� � � �

!��� � �� & �

Figure 3.2: The seven unavoidable cost units

units are necessary to serve the remaining requests. Figure 3.2 depicts
the different cases (requests which incur a cost unit appear in bold). An
eighth unit will be spent, unless

!���� �� 	 � and !��� � �� 	 �� (3.8)

Namely,!��� � �� � � is necessary since otherwiseA would have to
pay a unit for the request to�����	 in .��	. But then we must also have
!��� � �� 	 � and!���� �� 	 � to avoid a cost unit for the request to
�����	 in .��	.

Now we see that for the sequences switching to� in state�� � �� ��,
two cost units are created by (3.8) in addition to the seven unavoidable
units. More specifically, the requests�����	 and�����	 in the sequence

.��	 � .��	�� � �� �� ���	 �����	 �����	 �����	 �����	 � � �

will cause two cost units which add to the seven unavoidable cost units
we spend for these sequences. From the nine cost units in total, we can
safely borrow one.
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3.5 Irregular Algorithms

Unbounded �–functions

We first show that the lower bound also holds for randomized algo-
rithms even if they use deterministic algorithms which do not satisfy
condition (ii) of Definition 3.10 with positive probability. The idea of
the proof is to show that by choosing$0 large enough, one can still
charge enough to prove the previous lower bound.

In the regular lower bound construction, we have charged 16 cost units
for every state��� �� such that

3 � � � $0 � 23� � �3 � � � � � �3 � 3� (3.9)

a consequence of (3.7). Let us denote this set of states by6�. As a
precondition, we need!���� � $0 to charge for the blocks switching
to � and !���� � $0 for those switching to�. In the case of larger
! -values, we can still charge

�
���

A�.� &

�
����	�$�

�
� � �� � �%�&�!���� � $0�� � � � �� � �%�&�!���� � $0��

�
�

The probabilities refer to the probability distribution which defines the
randomized algorithm. We can do this because Claim 3.14 already
holds if !���� � $0 and !���� � $0 . The only case where this is
not obvious is the third one in Figure 3.2: in case of!������ � $0 , we
might not be able to charge a seventh cost unit. Nevertheless, we will
then have at least one cost unit for either�����	 or �����	. Also, (3.8)
ensures that the ninth unit we might need to borrow from another state
is actually spent.

Using Claim 3.15 and (3.9), we obtain
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�
���

A�.� & ��2�3� � 5�2�3��

� �
 "� �����
��"� ��

��#"�"���
����"

�
�%�&�!���� � $0 � � �%�&�!���� � $0�

�

Lemma 3.16 If A is �-competitive for � � ���, then for � � $0 ,

�����
���

�%�&�!���� /� � $0� � "�A����
���

�� �� � ��� �� (3.10)

and for � � $0 ,

�����
���

�%�&�!��� � /� � $0� � "�A����
���

�� �� � ��� �� (3.11)

Proof. We only prove (3.10) here, (3.11) is similar. For the first in-
equality, we only consider the access cost for the last$0 requests to�
in the sequence on the right hand side. For each of them, one unit is
spent whenever!���� /� � $0 because then� is behind�. The second

inequality holds becauseA is �-competitive andOPT���� ���
�� � � �.

Using (3.10), we can bound

 "� �����
��"� ��

��#"�"���
����"

�%�&�!���� � $0�

�
 "� �����
��"� ��

�

$0

��#"�"���
����"�� ����	

�����
���

�%�&�!���� /� � $0�

� �23 � 3 � ��
�

$0
��3 � �3 � $0 � ����� � ��

	 ��2�3� $0 � 	 ��2� $0� 	 5�2� $0���
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Inequality (3.11) yields

 "� �����
��"� ��

��#"�"���
����"

�%�&�!���� � $0�

�
 "� �����

��"� ���� ����	

�

$0
��3 � �3 � ��

�����
���

�%�&�!��� � /� � $0�

� �23 �3 � $0 � ��
�

$0
��3 � �3 � ����� � ��

	 ��2�3� $0 � 	 ��2� $0� 	 5�2� $0���

As in Lemma 3.11, we get

�
���

A�.� � ��2�3� � 5�2�3�� � 5�2� $0���

from which we conclude

�
���

#�.�
A�.�

OPT�.� � �
� ��� � %�

for 2�� and $0 large enough.

Several Containers

Proving that our container cannot be a non-standard one is not too hard.
In a non-standard container a sequence like� 	 ��� would cause un-
bounded cost for growing�, while the offline cost is a constant. Thus
no algorithm can afford to use this kind of container with positive prob-
ability.

To show that our lower bound still holds if we allowA to use more
than one container, we compareA with an algorithm'A. We derive'A by
usingA’s critical request functions, but ignoring its container structure.
Thus in'A, all items are in a common container after their first request.
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As we already proved a lower bound for this kind of algorithms in the
previous section,'A cannot be more competitive than���.

From the fact thatA is supposedly�����%�–competitive while'A is only
1.6–competitive, we derive that there must exist a7 & � such that there
is a sequence of states���� ���, � � � � � , with �� and�� increasing
strictly monotonically and�%�&�-����� �	 -������ � 7. Remember
thatA and'A can serve a request differently only by using containers.

We will show that this contradicts the competitiveness ofA, by exhibit-
ing a family of request sequences on whichA cannot be competitive at
all.

Let 8��� be the indicator variable for the event that-����� �	 -�����.
If 8��� 	 �, we get

�
�����
���

�8����� �8���� �8����� � �� (3.12)

This just follows from the fact that8��� 	 �, 8���� 	 �, 8���� 	 �
imply 8����� 	 �. Define

���� �	 "�8���� 	 �%�&
�
-����� �	 -�����

�
�

Then we get

�
�����
���

������� � ����� � ������ 	

"

�

�����
���

�8����� �8���� �8������ �

�%�&�8��� 	 �� � "

�

�����
���

�8����� �8���� �8������8��� 	 �� �

7���

We now sum up for all8���, � � 4 � � and get

�
�����

�
���������

������� � ����� � ������ � 7�� � �� (3.13)
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Observing that each term appears exactly�� times, we find

�
�������

���� � 7��

��
� 7

�
���

Define
�!��� �	 �%�&�-����� � -�������

�&��� �	 �%�&�-����� & -�������

and assume w.l.o.g. that

�
�������

�!��� �
7

�
���

Then there exists some
 � 
�� � � � � �� such that

��
���

�!��� 	
��
���

�%�&
�
-����� � -�����

� � 7

�
��

The request sequence we feed toA is now � 	 ��������. We have
OPT��� � � but expected online cost at least7 � �� , because already
the expected cost to serve the��� � ��st request to� is at least

���� 	 �%�&
�
-����� � -�����

�
�

for all � � 
�� � � � � ��. Namely, with this probability,� is at that time
in a container behind the one� was moved to in the��-th request to�,
in which case� incurs online cost of one. By letting� tend to infinity,
this shows thatA cannot be competitive with constant ratio, which is a
contradiction.



Chapter 4

Offline List Update is
��-hard

4.1 Introduction

In this chapter, we will be concerned with the offline version of the list
update problem (OLUP). Given a request sequence� and an initial list
state	, we would like to compute the minimal offline cost to serve the
sequence�. This value is denoted byOPT�	� ��.

In competitive analysis, the cost of an online algorithm is compared
to the cost of the optimal offline algorithmOPT. UnderstandingOPT
might therefore lead to a better understanding of the list update problem
itself. Unfortunately, it will turn out in this chapter that the problem of
computingOPT�	� �� is ��-hard. Hence, there is probably not much
structure to be understood. Some properties ofOPT have already been
studied in the past [28, 29, 5, 2].

The significance of this result is increased by the lower bound presented
in Chapter 3. Since projective algorithms are analyzed on lists with two
items, the structure ofOPT is not really an issue here because, as one
can see in (1.10), we actually prove the stronger result

���� � � � OPT��� � ��

73
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Thus, it might be necessary to replaceOPT by better bounds in order to
beatCOMB.

The currently best algorithm forOLUP on lists with� items and request
sequences of length� runs in�������� [26] as presented in Section
1.4. From the��-hardness we can conclude that there cannot be an
algorithm which is polynomial in� and� unless� 	 �� .

An OLUP instance on� items and� requests to these items can be
encoded in(�!�)��� � �� bits. But we can assume� � �. Therefore,
an algorithm is still polynomial if its runtime is polynomial in�.

A feasible (but not necessarily optimal) solution for an instance of
OLUP is here called aschedule. Note that there are always optimal
schedules which do not involve free exchanges [14]. Therefore a sched-
ule is determined by the sequence of list states	� � � � 	� where	� de-
notes the state when the�th request is performed.

As an important part of the proof, we introduce a generalization of
OLUP calledweighted list update problem (WLUP). Here, the items
have a weight that influences access and transposition cost. A version
of WLUP was considered already in [8], but our definitions and appli-
cations are different.

In the proof of the result, we assume the partial cost model. It is easy
to obtain the value ofOPT�	� �� in the full cost model by adding��� to
the optimal cost in the partial cost model. Therefore, the proof certainly
holds for the full cost model as well.

4.2 The Weighted List Update Problem

In this section, we introduce the weighted list update problem (WLUP),
which generalizesOLUP to items with weights. These weights have to
be non-negative integers. We denote weighted items by capital letters.

An instance ofWLUP consists of a request sequence� and an initial list
	 over a set of weighted items. In general, we denote an instance by the
triple �	� ��9 �, where,� is the�th entry of the vector9 and denotes
the weight of the�th item in	. We denote the optimal algorithm for
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this problem byWOPT and the minimal cost for an instance���	�9 �
by WOPT�	� ��9 �.

The cost incurred by operating on weighted items is the following. Let
the items be8�, � 	 � � � � �. In order to transpose two items8� and8�
with weights,� and,� respectively, we pay

,� � ,� (4.1)

units. The access cost for an item8� with weight,� is the following.
Let 
 be the set of items in front of8� in 	�, then accessing8� in 	�
costs

,� �
�

�'	��

,
� (4.2)

From these definitions it follows that an instance consisting only of
items with weight one is identical to anOLUP instance. We call the
items in anOLUP instanceregular items. Note that if an item has
weight zero, it does not cause any cost at all.

Theorem 4.1 If all weights of a WLUP instance are bounded by a poly-
nomial in the number of items, then there is a polynomial reduction
from WLUPto OLUP.

The reduction is defined by a function! that converts aWLUP instance
into an OLUP instance. Let theWLUP instance be�	� ��9 � with
items8� for � 	 � � � � �. The OLUP instance will be built by regu-
lar items����, � 	 � � � � �, � 	 � � � � ,�. We convert�	� ��9 � into
an OLUP instance by replacing any occurrence of8� in 	 and� by
the sequence�������� � � � ����
 . The theorem follows immediately from
the next lemma, since the sum on the left hand side of (4.3) can be
computed in polynomial time.

Lemma 4.2 Let ��'
 � denote the number of occurrences of 8� in �.
Then we have

WOPT�	� ��9 � �
�
'
�	



,�
�

�
� ��'
 � 	 OPT�!�	� ��9 �� (4.3)
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Proof. Just for this proof, we introduce a new model where the access
costs, replacing (4.2), are defined by

�
� �

�'	��

,� � ,


�
��



,�
�

�
� (4.4)

Hence, in this model, we showWOPT�	� ��9 � 	 OPT�!�	� ��9 ��
which is trivially equivalent to (4.3) in the old model.

To see thatWOPT�	� ��9 � � OPT�!�	� ��9 ��, an optimal schedule
for �	� ��9 � is transformed to theOLUP instance as follows. Re-
member that a schedule is defined by a list state for every request in
the request sequence, denoting the list state in which the request takes
place. Let�� 	 8� be the�th request in theWLUP instance which is
transformed into a sequence of,� requests in theOLUP instance. The
list states for all,� requests will be the same; namely	� where! is
applied on.

What we obtain is a legal schedule for!�	� ��9 � with exactly the
same cost. This follows from the following observations. If we access
8� in �	� ��9 �, this translates to accessing all items���� � � � ����
 in
!�	� ��9 � in turn. In order to access���� in our schedule, one has to
pass all�
�� with 8
 � 
 plus all���� with � � �. Summing up the
cost for accessing all items���� , � 	 � � � � ,�, we obtain (4.4). If two
weighted items8� and8� are transposed, every item���� passes every
item���
 in theOLUP schedule. This needs,� � ,� transpositions.

ProvingWOPT�	� ��9 � � OPT�!�	� ��9 �� is more involved. Let
us start with an optimal schedule for theOLUP instance!�	� ��9 �.
We can retransform this instance and its optimal schedule into aWLUP
instance by treating the items���� of !�	� ��9 � as weighted items with
weight�. Because there are now weighted items, we write them as8��� .

For a general weight vector9 , the total cost of the given schedule
depends on the weights and can be expressed as

-�9 � 	
�

���
�	

��

!����	����
	 � ,���,��
 �
�
���



,���
�

�
� ��'
 �� (4.5)
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We denote by!����	����
	 the number of times8��� and8��
 are trans-
posed in the schedule plus the number of times8��� is in front of8��

when8��
 is requested and vice versa. The second sum accounts for
the second term in (4.4). We can write8� there instead of8��� because
by construction, the number of requests to8��� is equal to the number
of requests to8� in the original sequence�.

If we set all,��� 	 �, we have-��� 	 OPT�!�	� ��9 ��. This holds
because items with weight one behave exactly like regular items.

Starting from this instance, we will now repeatedly apply a process of
merging items by changing their weights. Namely we choose�� �� �,
� �	 � such that,��� & � and,��� & �. Let us rewrite (4.5) such that
we can more easily detect how its value changes if we change,��� and
,���.

-�9 � 	 -� � -� � ,��� � -� � ,��� � !����	�����	 � ,���,���
�



,���
�

�
��'
 ��



,���
�

�
��'
 � (4.6)

Here,-� denotes all cost independent of both,��� and,���. By-� �,���
and-� �,���, we denote cost depending linearly only on one of the two.

Assume w.l.o.g.-� � -�. The process sets the new value of the new
,��� to ,��� � ,��� and sets the new,��� to zero. To see that the value
of -�9 � does not increase, observe that-� does not change at all and

-� � �,��� �,���� � -� � � � -� � ,��� �-� � ,���� (4.7)

and furthermore

!����	�����	 � ,���,��� �


,���
�

�
��'
 � �



,���
�
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��'
 � �

!����	�����	 � �,��� � ,���� � � �


,��� � ,���
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�
��'
 � �
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�
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 �� (4.8)

Using!����	�����	 � ��'
 � and
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inequality (4.8) is straightforward. This reweighting process must ter-
minate because in each step, the number of items whose weight is set
to zero increases by one. What we end up with is an instance where
for each� we have exactly one� � 
� � � � ,�� for which ,��� 	 ,�,
and all the other,���, � �	 � are zero. This instance is equivalent to
�	� ��9 ) we started with. Just rename the8��� with ,��� 	 ,� to 8�
and forget about the8��� which have weight zero. Because we did not
increase the value of- by changing the weights, we found a sched-
ule for �	� ��9 � whose cost is bounded by-���, hence we proved
WOPT�	� ��9 � � OPT�!�	� ��9 ��.

4.3 A Lower Bound

Since no efficient algorithm is known to computeOPT�	� ��, one often
replaces it by an easily computable lower boundOPT�	� �� to show
(1.3). In this section, we generalize this idea to weighted items and
the WLUP problem. We denote the corresponding lower bound for
WOPT�	� ��,� by WOPT�	� ��9 �.

Instead of expressing a list state in the usual way, we can write it as
the set of relative orderings of all pairs of items. As an example, the
list 
8�8�8�� can be written as
8� � 8��8� � 8��8� � 8��,
where8� � 8� means that8� is in front of8� . The idea ofWOPT is
to drop the condition that the only legal list states are the total orderings
of the items. E.g. the state
8� � 8��8� � 8��8� � 8�� is now
legal. Hence, the relative ordering of any pair of items can be chosen
independently of any other pair.

The access and update cost are still defined by (4.1) and (4.2). The set

 in (4.2) consists of the indices� for which8
 � 8�. It is easy to see
that this defines a lower bound since a schedule forWOPT is also valid
for WOPT and has the same cost.

A nice feature ofWOPT is that it is computable in polynomial time.
To see this, remember that the pair
8��8�� incurs a cost only if it
is swapped or if one of the two items is requested. Since there are
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no restrictions on the relative ordering of8� and8� in WOPT, their
optimal relative order depends only on the requests to8� and8� in
the request sequence. Finding the optimal schedule for a pair of items
can be done in linear time using one of the algorithms described in
the introduction. Because there are����� pairs of items, the overall
running time is������.

Note also that the optimal schedule for an instance on two items does
not depend on their weights if both weights are positive. This holds
because the total cost of a schedule is of the form� � �,� � ,��, where
� � � is independent of,� and,�.

Hence, the hardness ofWOPT seems to stem from the total ordering
that must hold at any time in a schedule.

4.4 The Reduction

By Theorem 4.1, it suffices to show a polynomial-time reduction from
an ��-hard problem toWLUP in order to prove��-hardness of
OLUP.

Theminimum feedback arc set problem (MINFAS) [17] will serve well
for that purpose. Its decision variantMINFAS�6� �� is defined as fol-
lows. Given a directed graph6 	 �:�"� and� � �, we want to decide
whether there is a subset"� � " with �"�� � � such that the graph
6� 	 �:�" �"�� is acyclic.

There is a second interpretation which is more natural for our purpose.
We interpret an arc pointing from*� to *� as a constraint “*� should be
ahead of*�”. What we want to decide is whether there exists a total
ordering of the vertices such that less than� of these constraints are
unsatisfied.

We show a reduction fromMINFAS�6� �� to the decision version of
WLUP, denoted byWLUP�	� ��9� ���. Here we want to decide whether
there is a schedule which serves� from the initial state	 at maximal
cost��. More precisely, the reduction consists of a polynomial time
computable function! that takes6 and � as arguments and returns
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must not swap:  �! [ab] �;
 �! [ab] ���;
 �! [ab] ����


can swap:  �! [ab] ����;
 �! [ab] ����
�

must swap:  �! [ab] ���;

Table 4.1: optimal behavior on two items

�	� ��9 � such that

MINFAS�6� �� � WLUP�	� ��9�WOPT�	� ��9 � � ��� (4.9)

For this section, it is important to understand how an optimal schedule
of WOPT looks like. AsWOPT treats all pairs of items independently, we
have to investigate how sequences on two items are served optimally.
Remember that in the two items case, the behavior does not depend on
the weights if they are positive.

We consider a list containing only the items� and�. In order to describe
how WOPT acts, we must find out in which cases it must, can or must
not swap the two items. Table 4.1 gives the answer for a few cases,
depending on how the remaining part of the request sequence looks
like. We will encounter these cases later in this section and then refer
to them by their number in angle brackets, like �!. The notation is
analogous to the one for regular expressions. Thus,����
 denotes the
empty sequence or any number of repetitions of��. The sequence;
can be any sequence on� and �. If there is no; at the end of the
sequence, we assume that this is the end of the sequence. We say that a
(sub)sequence� is servedperfectly if we do not break these rules when
serving�.

We now describe the function! which transforms aMINFAS instance
into a WLUP instance. For every vertex*� of 6 	 �:�"�, we have
a weighted item:� with weight� � �. We call themvertex items and
define� �	 �: �. Additionally, we have two items� and� both with
weight one. These are all the items we need.
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Let us check briefly that the weights are not too large in order to make
Theorem 4.1 work. Clearly, the hardMINFAS instances obey� �
�"� � �: ��. Hence, in those cases, the weights of the items are polyno-
mial in the number of items. Thus, the reduction fromWLUP to OLUP
is polynomial.

We set the initial list state to	 	 
:�:�:� � � � :�� ��. The sequence�
is basically of the form

�:�:�:� � � � :��

�

with additional requests to� and�. It consists of two parts�� and���.
The first part is

�� �	 :�:�:� � � � :��

The second part consists of so-calledarc gadgets. An arc gadget for
�*�� *�� � " basically consists of 6 repetitions of�� with additional re-
quests to� and�.

Here is the arc gadget for the edge�*�� *�� in a graph with five vertices.

:���� :��� �:
:��� �� :� ��������:
�:���:���:
�
� (4.10)

The following gadget represents the edge�*�� *��.

:���:� ���:
:��� � :��� �� :
:���������:���:
��
���

In general, the first request to� in a gadget for edge�*�� *�� is always
just in front of the first request to:�. Hence if � & �, the requests
to � and� will be placed within the first three repetitions of��. The
case with five vertices is already general enough. The gadget works in
exactly the same way if one replaces:�, :�, or :
 by any number of
vertices or omits them.

To finish up the description of the request sequence, let us partition the
set of arcs in6 into two subsets."� contains the arcs�*�� *�� with
� & �, whereas"� contains those with� � �. In ���, we have one arc
gadget for each arc in6, with the additional restriction that all the arc
gadgets of the arcs in"� precede those in"�.
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In order to prove (4.9), we first look at some properties of this instance.
From now on, we abbreviate the costWOPT�	� ��9 � by 2. In a
schedule that costs no more than2�� units, every pair of items involv-
ing a vertex item must be served perfectly. This holds because the cost
of such a pair is a multiple of��� ��. Therefore, any non-optimal step
involving a vertex item costs at least� � � additional units and there is
no way to compensate for that. Consider a pair consisting of two vertex
items:� and:� , � � �. In the initial state,:� is in front of:�. Therefore
WOPT, which serves each pair of items independently, has to serve the
following request sequence from the initial state:� � :� :

:�:�:�:� � � � :�:�

One way of serving this instance perfectly is to do nothing at all. But
there are other perfect schedules for this sequence: In order to stay
perfect, we are allowed to swap the two items exactly once (check �!,
 �!, and �!). Because one should never move:� in front of :� when
the next request goes to:�  �!, this swap has to take place before a
request to:� .

It is easy to see that in a schedule which costs at most2 � � units, the
list state before and after every gadget must have� and� at the end of
the list state: Because there are at least three repetitions of�� at the end
of an edge gadget and because of �!, the items� and� must be at the
end of the list. Furthermore, we can assume that all gadgets start with
� in front of �. This is certainly true for the first gadget. Moving� in
front of � before the first request to� does not make sense. For the other
gadgets, we now have a closer look at the requests to� and� only. Note
that such a projected gadget ends up with three requests to� and starts
with another one to�. Therefore, there is no gain in having� in front of
� in between two gadgets. Hence we may assume that any gadget starts
in a state having the sublist
��� at the very end of the list.

To see howWOPT serves the gadget for�*�� *��, we again have a look at
the case�*�� *�� in (4.10). Note that we can serve that gadget perfectly
if and only if :� is in front of :� at the first request to�. The crucial
point is that in a perfect schedule, when the first request to� takes place,
� must still be behind�  �!, while � must be behind:�  �! and� must
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be in front of:�  �!. Only if :� is in front of :�, we can fulfill these
conditions. Note that� and� can pass:�, � �� 
�� ��, but they do not
have to �!. At the next request to�, we move� to the front of the
list  �� �!. Later, at the first request of the request triple to�, we move
� to the front as well �!, but � will pass� again later �!. Because of
the additional��� finishing (4.10), both� and� must be moved behind
all vertex items at the end without changing the relative order of� and
�  �!.
If :� is behind:�, not all the conditions mentioned in the previous
paragraph can be fulfilled at the first request to�. The only way to fix
this without paying more than� extra units is to move� in front of �
at the first request to� and thus pay one unit more than in the previous
case.

Now we are ready to prove (4.9). The easier part is the" direction. If
we can get an acyclic graph6� by removing only� arcs, we sort the
vertices of6� topologically. The schedule which costs at most2 � �
looks as follows. We use the initial sequence�� to rearrange the items
:� according to the topological order �!. For the rest of�, we do not
change the ordering of the vertex items anymore. Thus, we serve all
vertex pairs optimally.

Concerning the arc gadgets, all those corresponding to the arcs in6�

can be served perfectly. For each arc we removed from6, we have
to pay one unit extra. As there are at most� of them, we pay at most
2 � � units to serve�.

It remains to prove the# direction of (4.9). There are at most� gadgets
which were not served perfectly. We will show that if we remove the
arcs corresponding to those gadgets, the resulting graph will be acyclic.

Let - be a subset of" such that- forms a cycle in6. We have to
prove that there is at least one arc gadget belonging to- which is not
served well. For any arc' 	 �*�� *�� and any list state	, we say' is
open if we have:� in front of:� in 	 and closed otherwise. The arcs in
- � "� are those which are closed in the initial list. In order to serve
such a gadget perfectly, it has to be open when its gadget is served, but
remember that we cannot close it anymore afterwards without paying
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more that� units extra �!. The arcs in- � "� are open in the initial
list. If we want to serve them well, we can not close them before their
gadget is served because we cannot reopen them �!.
Let us have a look at the list just after we served all arc gadgets for
"� in �. In order to serve all gadgets belonging to- well, all of them
must be open at this time. This means for any arc' 	 �*�� *�� in - that
the item:� must be in front of:� in the current list. Because- forms
a cycle, at least one of them must be closed and hence was not (if it
belongs to"�) or will not be (if it belongs to"�) served well. This
concludes the proof.



Outlook

As the title of this thesis suggests, the list update problem is far from
being solved. The gap between 1.50115 and 1.6 is small in absolute
values, but the problem remains interesting since closing the gap needs
an approach totally different from what has been done to date.

The main goal in the future must be to find good algorithms which are
not projective. Actually, the main problem here is to find techniques
that allow to analyze such algorithms.

Another direction might be to use complexity theory in order to get
more insights. The��-completeness result discussed in Chapter 4 im-
mediately asks for better approximation algorithms and non-approxima-
bility results. A proof that the offline list update problem cannot be ap-
proximated within a factor of��� � % would immediately imply that
no polynomial ���� � %�-competitive online algorithm exists unless
� 	 �� .

At first sight, it seems easy to obtain a�-approximation forOLUP for �
smaller than���, since��� is a rather trivial lower bound for online al-
gorithms and it is really the online property that boosts the lower bound
to 1.5.

On the other hand, online and offline algorithms behave very similar
when it comes to analyzing them. In both cases, one knows a lot about
the optimal relative order of pairs of items, but it is not clear how to
translate this information into total orderings of the items.

Like in the online case, projective algorithms seem to be the only class
of algorithms which allow to prove something about them. Extending
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projective algorithms to the offline case is straightforward. As a con-
cluding, somewhat speculative remark, this does not seem to lead to
algorithms which beat COMB. If this observation can be confirmed in
future research, the lower bound of 1.6 for projective algorithms is not
caused by the online property at all.
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[10] C. Ambühl, B. Gärtner, and B. von Stengel (2000), A new lower
bound for the list update problem in the partial cost model.Theo-
retical Computer Science 268, no. 1, 3–16.
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beit an der ETH Z¨urich, (2. Teil).

[28] N. Reingold, and J. Westbrook (1996), Off-line algorithms for the
list update problem.Information Processing Letters 60, no. 2, 75–
80.



90 Bibliography

[29] N. Reingold, J. Westbrook, and D. D. Sleator (1994), Randomized
competitive algorithms for the list update problem.Algorithmica
11, 15–32.

[30] R. Rivest (1976), On self-organizing sequential search heuristics.
Communications of the ACM 19, 63–67.

[31] D. D. Sleator, and R. E. Tarjan (1985), Amortized efficiency of list
update and paging rules.Communications of the ACM 28, 202–
208.

[32] B. Teia (1993), A lower bound for randomized list update algo-
rithms,Information Processing Letters 47, 5–9.

[33] B. von Stengel (1996), Efficient computation of behavior strate-
gies.Games and Economic Behavior 14, 220–246.

[34] A. C. Yao (1977), Probabilistic computations: Towards a unified
measure of complexity.Proceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science (FOCS), 222–227.



Curriculum Vitae

Christoph Ambühl
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