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Abstract

An unsorted linear list is one of the simplest data structures on which
one can perform insertions, deletions and lookups. To perform a lookup,
the list has to be traversed linearly until the requested item is found.
The performance of this data structure can be enhanced by making it
self-organizing. In general, the most recently requested item will be
moved closer to the front of the list. This is motivated by the empiri-
cal observation that, in many cases, requests to items are clustered over
time.

An algorithm that updates the list based on the current and past requests
is called a list update algorithm. These algorithms are cailldthe
since they do not know what the forthcoming requests will be.

A very simple algorithm is calledlOVE TO FRONT ( MTF) . Here,

the most recently requested item is moved to the front just after the
lookup. In 1985, Sleator and Tarjan proved 2-competitivene ddl &f
which is defined as follows: For any sequence of requests, the running
time of MIF is at most twice the running time of the optimatfline
algorithm OPT. Compared to online algorithms, offline algorithms are
therefore more powerful since they know the whole request sequence
in advance.

Using randomized techniques, one can find algorithms which are even
more competitive. The best algorithm known to date isltiiecompeti-

tive COVB algorithm due to Albers, von Stengel, and Werchner. It is
known that no algorithm can be better thikh-competitive.

The ultimate goal is, of course, to find the optimally competitive list up-
date algorithm. All results in this thesis are aimed to give more insight
into the structure of the list update problem.

The first result shows that, in the partial cost model, no algorithm can
be better than.50115-competitive. This is the first non-trivial lower
bound in this model. The partial cost model is much easier to analyze.
Furthermore, any-competitive algorithm in the partial cost model is
alsoc-competitive in the standard model.

The second result gives a characterization of all projective algorithms.



They are basically the only kind of algorithms which can be analyzed
so far. To prove that a projective algorithmdsompetitive, one only
has to prove this on lists with two items which is, of course, much
easier. Using this characterization, we give a matching lower bound for
projective algorithms in the partial cost model.

The third result shows that it j§"P-hard to comput©PT. Hence, there
is probably no efficient implementation &PT. Furthermore, there is
only little hope that a better understanding@?T might give new in-

sights into the list update problem.



Zusammenfassung

Unsortierte lineare Listen gehén zu den einfachsten Datenstrukturen,
auf denen sich die Operationen RigEn, Loschen und Suchen aust

ren lassen. Um ein Element in der Liste zu finden muss diese linear
durchsucht werden, bis man auf das gesuchte ElemesststDie Ef-
fizienz kann gesteigert werden, indem man die Elemente in der Liste
immer wieder umordnet. Man spricht ved bstorganisierenden Daten-
strukturen. Im Allgemeinen wird das gerade angefragte Element in der
Liste weiter nach vorne verschoben, da in vielen praktischen Anwen-
dungen die Anfragen auf die Elemente zeitlich gt 'sind.

Wir bezeichnen einen Algorithmus, welcher die Liste umordnet, stls
update Algorithmus. Es handelt sich hier uranline Algorithmen, da
der Algorithmus die zuliriftigen Anfragen an die Datenstruktur nicht
kennt.

MOVE TO FRONT ( MIF) gelort zu den einfachsten Algorithmen.
Bei jeder Anfrage wird das angefragte Element an den Anfang der Liste
verschoben. Sleator und Tarjan zeigten 1985, d4i$s 2-kompetitiv

ist. Dies bedeutet, dasarfjede Sequenz von Operationen die Laufzeit
von MTF hdchstens doppelt so lang ist wie die Laufzeit des optimalen
offline AlgorithmusOPT. Im Gegensatz zu online Algorithmen kennen
offline Algorithmen die gesamte Sequenz von Beginn weg und sind
damit sogar rachtiger als online Algorithmen.

Der beste bekannte Algorithmus ist deé-kompetitive COVB (Albers,

von Stengel, Werchner). Weiter ist bekannt, dass kein Algorithmus
besser al$.5-kompetitiv sein kann. Das Hauptziel des list update prob-
lems besteht darin, den besten Algorithmus zu finden.

Das erste Resultat der Arbeit zeigt, dass kein Algorithmus i1
Modell besser al$.50115-kompetitiv sein kann. Dies ist die erste nicht
triviale untere Schranke in diesem Modell. lm- 1 Modell kostet
ein Zugriff auf dasite Elemement der Liste nur— 1 Zeiteinheiten,
wahrend im standard Modell dafi Einheiten bezahlt werdenumssen.

Im 7 — 1 Modell lassen sich Algorithmen einfacher analysieren und die
Analysen lassen sich dann direkt auf das standard Mobelitiagen.
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Als zweites Resultat werden alle projektiven Algorithmen charakter-
isiert. Bis auf eine Ausnahme geteh alle bis jetzt analysierten Al-
gorithmen zu dieser Klasse. Um zu zeigen, dass ein projektiver Al-
gorithmusc-kompetitiv ist, reicht es zu zeigen, dass er dies auf Listen
mit nur zwei Elementen ist. Dies ist natlich viel einfacher als im all-
gemeinen Fall. Mit Hilfe dieser Charakterisierung wird sodann eine
untere Schranke voh.6 fur die Kompetitivieit von projektiven Algo-
rithmen gezeigtCOVB ist also ein optimaler projektiver Algorithmus.

Im letzten Kapitel wird gezeigt, es die Berechnung der optimalen of-
fline Kosten einN'P-hartes Problem darstellt. Dies bedeutet, dass
wahrscheinlich kein effizienter Algorithmus daféxisitert. Es besteht
damit wenig Hoffnung, dass ein besseres \drdtiis vonOPT zu ef-
fizienteren online Algorithmerutiren wirde.
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Chapter 1

| ntroduction

1.1 TheSeator Tarjan Result

One of the simplest ways to implement a dictionary is an unsorted lin-
ear list. Here, the time needed in order to insert an item into a list
containing! items isl 4 1 since the entire list has to be scanned in order
to prevent duplicates. The time required for deleting or accessing an
item at positiory in the list is¢ units.

Many programmers try to speed up their data structure by reorganizing
the items in the list. Usually, a policy is implemented that moves a re-
guested item closer to the front of list in order to save access time on the
next request to this item. If one assumes that the items are requested
uniformly at random, such ideas can of course not improve the data
structure. Still, in most applications, requests will be clustered. For
example in the case of a parser for Pascal source code, the keywords of
the Pascal programming language will appear very frequently through-
out the whole program, while local variables live only in a limited part

of the program, but may have an even higher frequency there.

Let us restrict to so-called free exchanges in this section. That is, after
item x was accessed, one is allowed to meve any position closer to

the front of the list. This shall be instantaneous, hence we do not charge
any time for this update step.



2 Chapter 1. Introduction

The classical list update algorithms aveve To Front (MIF),
Transpose, andFr equency Count. MIF moves the requested
item to the front of the listTr anspose lets the requested item swap
positions with its predecessor. In contrast to the previous algorithms,
Frequency Count maintains additional information in its items in
order to perform the updates. Namely, every item owns a counter which
keeps track of the number of requests performed to it so far. Using this
information, the items are maintained in non-increasing order of the
counters in the list.

In 1985, Sleator and Tarjan [31] gave a theoretical explanation for the
empirical finding thaMTF in general performs best. Theorem 1.1 made
competitive analysis and online algorithms a very popular subject in
theoretical computer science. The tezompetitive analysis was intro-
duced by Karlin, Manasse, Rudolph, and Sleator in [22].

Theorem 1.1 No algorithm is faster than MTF by more than a factor
of (2 — %) on any sequence of insertions, deletions, and |ookups, where
n isthe maximal number of items ever contained in thelist.

Proof. In order to prove the theorem, Iét be the algorithmMI'F
competes against.

Let o be a sequence af requests to be performed in turn. The requests
are either lookups, deletions or insertions. Let furtigrbe the list
state the algorithm\ maintains just before it serves thih request of

o. The statesLL.Vrr F are defined analogously. Both algorithms start from
the same initial list state. That is, we hakg = L)F.

The proof is based on a potential functi@rthat translates the joint list
states oMI'F andA to a natural number. Let be the timeVITF spends
on theith request and® the time ofA for the same request. We define
the amortized cost

a; =t; + AP, =t; + &, — D,_1. (1.1)
If we can show that

1
a; <(2- =)t (1.2)
T
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we are done because the total runtimé/bf can be written as

m m
th’ :ZCLZ’ —(I)m—l—q)o.
=1 1=1

With &, = 0 and®,,, > 0, we conclude

m 1 m
< (2-=)- A,
-3t
=1 1=1
The potential function that allows us to prove (1.2) is based on the
relation between the list states of the two algorithms. More precisely,
®; is the number of inversions between the two list stdfeand LM .
An inversion is a pair of items whose relative order differs in both lists.

In order to prove (1.2), we have to distinguish between lookups, inser-
tions and deletions. Each of the three cases has a successful and an
unsuccessful subcase. The most interesting case is whéh tiegjuest

Is a successful lookup to an item Figure 1.1 shows the two list states

LMIF S U X T

LA T S =z U

Figure 1.1: List state before the sth request

just before the lookup. By we denote the set of items which are in
front of z in both lists.T denotes the items which are behinéh MF
but in front ofz in L2. Finally, U contains the set of items which are in
front of z in LMF and behind: in L£. We have

' = |S|+ Ul +1,
ty = |S|+|T|+1,
A®; < [S]-|U|,
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the latter because the change in potential only affects inversions involv-
ing z. The inequality holds with equality if only moves inI}* of
Figure 1.1. IfA also moves: closer to the frontA®; becomes even
smaller. Plugging this into 1.1, we obtain

a; = t@+A(I)Z§|S|+|U|+1+‘S‘—|U|

= 2.8 +1<2-th-1< (2—%).75?.
The case of an unsuccessful insertion is similar to a lookup. An un-
successful deletion or lookup costs the same for itk and A while
the potential function remains unchanged. Thus in this case, we have
a; < t. In the case of a successful insertion (items are inserted at the
end of the list), we again havg = tZ.A. Since themA®; < t; — 1, we
obtaing; = t; + A®; < 2-¢8 — 1. ]

1.2 Thelist Update M odel

The subject of the list update problem is to find algorithms which beat
the constan® — % of MTF. In order to do that, we have to define the
model more rigorously.

In the remainder of this thesis, we will stick to the static list update
problem. This means that we start from an initial list state containing
items. Instead of insertions, deletions, and lookups, the only considered
requests are lookups to one of th@ems in the list. In general, we will

use the term “request td’ to denote a lookup of itens.

List states will be denoted in brackets with the items ordered from left
to right. Usually,L stands for list states but also for the set of items in
the list. Request sequences are denoted agd their length byn.

The algorithms we consider are online algorithms. That is, their be-
havior can depend only on the current and the past requests, but not on
future requestsMI'F clearly is online. Since we would like to imple-
ment our algorithms to speed up our dictionary, the online property is
crucial because in general the algorithm has no knowledge about future
requests.
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On the other hand, the proof of Theorem 1.1 does not require the algo-
rithm A to be online.MI'F has to behave well on any request sequence
and against any algorithm. Given we can design an online algorithm

A such that it behaves optimally @n Therefore we can assume tiat

Is an optimal offline algorithm.

We will measure the runtime of the algorithms by cost units we charge
to the different operations.

Definition 1.2 Let A(o) be the cost an online algorithm A spends to
process a regquest sequence o and let OPT(o) be the cost the optimal
offline algorithm spends for that task. We say Ais c-competitive if there
exists a constant b such that for all request sequences o

Alo) <c-OPT(o)+b (1.3)

holds. In general, we will treat the number of items n as constant.
Hence, b isallowed to depend on . An algorithmis called competitive
if it is c-competitive for some real number c.

Aisdtrictly c-competitive if for all request sequences ¢ we have

A(o) < ¢+ OPT(0). (1.4)

For the case of randomized algorithms, the téxfm) denotes the ex-
pected cosA spends on the sequenge

The cost model that we will stick to for the rest of this thesis isg#ie

tial cost model, meaning that we only paiy— 1 units in order to access
the item at positiont in the list. It turns out that this model is much
easier to analyze than thell cost model we used in Section 1.1. Still,

if an algorithmA is c-competitive in the partial cost model, it is also
c-competitive in the full cost model. Usually with some dependence
onn, the number of items in the list. To see this, note that because of
¢ > 1, inequalities (1.3) and (1.4) remain valid if we subtradtfrom

A(c) andOPT(o) on both sides.

In the partial cost modeMTF is 2-competitive. IndeedMTI'F is an op-
timal deterministic algorithm. Algorithms which beat the competitive
ratio of 2 for arbitrary long lists need to be randomized.
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Concerning the updates, we distinguish between free exchanges and
paid exchanges. At the expense of one cost unit, any consecutive pair
of items can swap its order at any time. On the other hand, just after a
request to an items, this item may be moved to a position closer to the
front of the list without cost.

Note that free exchanges can be modeled by paid exchanges. Instead
of first paying k£ units in order to access item and then move it at

no charget positions closer to the front, one can first move the item

t positions and then access the item. In both cases, we pay exactly
k units. Although stated as Theorem 3 in [31], the converse is not
true. For an example, gt = [abc] ando = cbbc. Here, an optimal
algorithm moves: behindb and ¢ before the first request ta This
requires paid exchanges. This can be proved formally by projectivity
arguments we will encounter later in this section.

Although paid exchanges are more general, most algorithms known to
date can be stated such that only free exchanges are used. It is not clear
whether paid exchanges can lead to better algorithms. On the other
hand, proofs and definitions often become more elegant if only paid
exchanges are considered.

If we forget about free exchanges, we can specify any deterministic
online algorithmA by a function

SA Y 5 L.

HereX: denotes the set of request sequences, wheleamnotes the set
of the n! states the: items can attain.5"(c) denotes the list state in
which the last request af is performed if algorithmA is used. Using
this notation, the initial list state can be denoted®). We will omit
the Ain SA(c) when the algorithm used is determined by the context.

The list update problem can be stated in terms of game theoretic con-
cepts, namely as an infinite two-person zero-sum game. The first player
is calledadversary. His pure strategies are the set of finite request se-
guences. The strategies of the second player, called online player, are
the set of deterministic online algorithms. lidbe a fixed constant and

let (o, A) be a pair of pure strategies for the adversary and the online
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player. Then the payoff is

A(o)
OPT(o) + b’

The goal of the online player is to choo&esuch that

S )
L OPT(0) + b

IS minimized. On the other hand, the adversary choessasch that

A0
A OPT(o)+b

Is maximized. If the set of strategies of the two players was finite, an
application of the famous minimax theorem would prove the existence
of a pair of randomized strategies for which (1.5) and (1.6) are equal.
This is called an equilibrium and the corresponding value is referred
to asthe value of the game. Although the minimax theorem cannot be
applied in our case, we prove in Section 2.8 that the list update problem
indeed has a value. However, approximating it via brute force compu-
tation is hopeless.

A c-competitive algorithm proves that the value of the game cannot be
larger thanc, while randomized strategies for the adversary can give
lower bounds on the game value. For the full cost model, the known
lower and upper bounds aide5 and 1.6. We will give an improved
lower bound of1.50115 for the partial cost model in Chapter 2 of this
thesis.

A randomized strategy is defined by a probability distribution over the
set of all deterministic strategies. Hence in the case of the online player,
randomized algorithms can be defined as follows. Before serving the
first request, one of the deterministic strategies is chosen according to
the probability distribution. This strategy is then used for the whole re-
guest sequence. A randomized strategy of the adversary is just a prob-
ability distribution over the sex.

This game theoretic model nicely covers the notion of an oblivious ad-
versary. The adversary cannot observe the random choices made by the

(1.5)

(1.6)
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online algorithm. If he could do so, his pure strategies would depend on
the current list state of the online algorithm. This kind of adversaries
are called adaptive. It is easy to see that in this case, randomization
Is pointless and no algorithm can be better tBasompetitive. Hence,
MTF is optimally competitive against adaptive adversaries.

1.3 Projective Algorithms

In order to describe projective algorithms, we have to introduce the
concept of projections of request sequences and list states.

Let a request sequeneebe given and fix a pair of items, y, the
projection ofo to z andy is the request sequeneewhere all requests
which are not ta: or y are removed. We denote the projectiorvdd =
andy by o,,. Given a list statd., the projection tar andy is obtained
by removing all items but andy from the list. This is denoted b, .

Definition 1.3 Let S, (o) be the projection of S(o) to z and y. A
deterministic algorithm Ais projective if for all pairs of items z, y and
all request sequences o we have

Sy () = Sy (0ay). (1.7)

A randomized algorithm is projective if all deterministic algorithms
chosen with positive probability are projective.

In words, an algorithm is projective if the relative position of any pair
of items depends only on the initial list state and the requestsatad
y in the request sequence.

Already in [13], Bentley and McGeoch observed ti\dtF has this
property. To see tha¥iTF is projective, observe that is in front of

y if and only if y has not been requested yet or if the last request to
took place after the last requestito

With the exception of Irani’Spl i t algorithm [20, 21], projective al-
gorithms are the only family of algorithms one can analyze so far. The
next theorem is responsible for this fact.
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Theorem 1.4 Let A be a (strictly) projective algorithm. If it is c-
competitive on lists with two items, it is also (strictly) c-competitive
on lists of arbitrary length.

Proof. LetA;,(o4y) denote the cost the projective algoritifspends
in order to server,, from the initial list.S,, (), which is the list with
only the itemsr andy, initially ordered like inS(().

It holds that
Alo) = ) Anylow). (1.8)

{z,y}CL

To see this, consider théh request to some itemin o. Let o be the
prefix of o up to this request. And leB be the set of items which are

in front of z in S(o’). Because of (1.7), we havg,,(¢') = [yz] if and

only if y € B. Therefore the access cost for any request is the same on
both sides.

Concerning update costs, lét:= oz for some request sequengand

some itemz € L. We again use (1.7) to note théit, (o) # Syy(o’) if

and only if Sy, (04y) # Szy(oy,). Hence there is a bijection between

the transpositions on both sides. Therefore the update cost is again the
same on both sides. A similar idea works @®T. By OPT,,(0,,) we
denote the minimal cosPPT would pay on the sequeneg, starting

from S,, (0). One (not necessarily optimal) way to sepyg is to force

for all pairsz, y and all prefixes’ of o

S@T”y(agy) = Sg;T(O',).

In this way, (1.8) would also hold fd@PT. Hence if we really serve the
pair lists optimally,

OPT(0) > OPT(0) := Y OPTyy(omy). (1.9)
{z,y}CL

SinceA is c-competitive on two items, we find for every pair of items
x, y a constanb,, such that for alb we have

Ay (0zy) < ¢ OPTyy(0sy) + byy.
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Using this fact we get

Alo) = Z Ary(0ay)
{z,y}CL

Z (¢ OPTay(owy) + bay)
{zy}CL
c-OPT(0) + ) bay

{zy}CL

= ¢-OPT(o) +0 (1.10)
< ¢-OPT(o) +b.

IA

INA

For the strict case, just set all, := 0. L]

Hence the case of pair lists seems to be crucial for the analysis of pro-
jective algorithms. Luckily enough, there is a very simple implemen-
tation of OPT for this case. See [28] for a proof that the following
algorithm is indeed optimal.

Algorithm 1.5 (OPT on two items) Assume w.l.0.g. that the current
list state is [xy]. Move y to the front if and only if the upcoming two
requests areto y.

Note that the above algorithm only examines the current request and the
next request to determine the optimal move. We say this algorithm uses
lookahead one. Already for lists with three items, all future requests
may be needed to serve the sequence optimally [28, 2].

Using the fact thaMT'F is projective, the proof of Theorem 1.1, reduced
to the static problem, now becomes very simple.

Proof of Theorem 1.1 (projective version). All we have to show is
thatMT'F is strictly competitive on lists with two items andy.

Let o be a request sequence on two itemandy. We breaks into
subsequences in an iterative way. We let subsequences end just before
OPT has to pay for a request. Hence in every subsequence except the
first, OPT has to pay for the first request. All other requests are free
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for OPT. The first subsequence is either a regular subsequence or it is
free for both algorithms and therefore can be skipped. Regular subse-
quences are either of the forth o, 21!, oryz!, 1 > 0. On all of these
subsequencedTF pays at most two units. If we add up the cost for
both algorithms, we find that

MIF(o) < 2-OPT(0).
[

In Chapter 3, we will give a complete characterization of the set of pro-
jective algorithms. A simple subset of these which covers all reasonable
projective algorithms is the set of critical request algorithms [11]. As
we have already seen, algorithms are defined by functions that trans-
late a request sequence into a list state. In the case of a critical request
algorithm, S(o) is obtained as follows.

Algorithm 1.6 (critical request algorithms) Let us first see how de-
terministiccritical request algorithms are defined.

Every item z inthe list has a so-called critical request function
F, : N — Ny, with F,. (i) < i,

whereN = {1,2,3,...} and Ny = {0,1,2,...}. Let |o,| denote the
number of request to = contained in o. We call the F;(|o,|)th request
to = in o the critical request to z. Snce F;(|o,|) can be zero, some
items may have no critical request. In S(o), all items with critical re-
guest are grouped together in front of the items without critical request.
Theitemswith critical requests are ordered according to the time of the
F;(|oz|)thino. Thelater a critical request took place in the sequence,
the closer the itemis to the front. The remaining items are placed be-
hind, according to their order in theinitial sequence.

Randomized critical request algorithms are just a probability distribu-
tion over the set of deterministic critical request algorithms.

As an example, let the online algorithm for three item$, andc be
defined by functions,, F}, andF,.. The table below lists the values
for the arguments to 4.
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&
P O Rk
NN OIN
N W Wl w
N DN

Let the initial list state béubc]. Let us determine& (o) for o = abbcabd.
We haveF,(|o,|) = F,(2) = 0, hencea does not have a critical re-
quest. Forb we haveFy(|oy|) = 3, therefore the third request to

in ¢ is its critical request. Fot we haveF,(|o.|) = 1. Thus we have
S(o) = [bea] since the third request tohappened after the first request
to c. Iltema, not having a critical request, must be at the very end.

Algorithms based on critical request functions clearly are projective,
since the relative order of any pair of items just depends on the relative
order of the requests toandy in o and the relative order of andy in

the initial list state.

The currently best list update algorithm @OVB due to Albers, von
Stengel, and Werchner [SCOMB is a combination of two simpler al-
gorithms.

Algorithm 1.7 (COVB) Before the first request, toss a biased coin to
decide which algorithm to use for the whole sequence. Use BI T with
probability 0.8, with probability 0.2 use TS.

Bl T is an elegant.75-competitive algorithm due to Reingold, West-
brook, and Sleator [29]. It is a member of a more general class of
algorithms calledRANDOM RESET algorithms. The best algorithm in
this class is,/3-competitive.

Algorithm 1.8 (BI T) Every item maintains a bit. Initially, each bit is
set to O or 1 using a fair coin. On a request to item x, the bit is flipped.
Only if the bit changes to 1, we move the item to the front. Otherwise
the position of z is unchanged.

TS is a deterministic member of the claSE MESTAMP(p) due to Al-
bers [1]. TS is 2-competitive. Al TI MESTAMP algorithms are pro-
jective. While all previous algorithms either moved the requested item
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to the front of the list or left its position unchanged, MESTAMP al-
gorithms sometimes move the requested item to a position within the
list.

Algorithm 1.9 (TS) After each request, the accessed item z is moved
in front of exactly the items that have been requested at most once since
the last request to z. On its first request, every item remains at its
position.

While BI T is well defined, it is not clear whethdiS actually defines

an algorithm. We first would have to prove that the items that have to
be passed by are situated in a consecutive block just in frontzof
Only if this holds, the algorithm can run as described.

Additionally, we would have to prove that both algorithms are projec-
tive. At least in the case dfS, this is not trivial. Using the critical
requests, both algorithms can be described very easily and in such a
way that their projective behavior becomes obvious.

In order to overcome special cases in the description, we first define
the concept of armugmented request sequence. Given an initial list
state[z,x2...z,] and a request sequenee the augmented request
sequence i$,z,x,_1Zn_1 ... 21210. The two additional requests for
every item will have request numberl and0 and will allow critical
request functions to attain the value@snd —1. Note that this prefix

will never actually be served. The augmented request sequence is just
a concept in order to describe algorithms in a compact way.

With this trick, TS can be described very easily in terms of critical
request functions by
Fo(1):=1—-1

for all itemsz. Hence the critical request of every item is just the
second-to-last request in the augmented request sequence.

As an example, the list state after= abbcbba with initial list state
[abc] is [bac] because of the ordering of the second-to-last requests in
ccbbaaabbebba. 1f we add another request to the new list state will
be[bca] because the second-to-last requestitonow more recent than
the second-to-last requestdo
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Y Y
0
x x

Figure 1.2: Automaton describing the two items case.

SinceBI T is randomized, the critical requests are also randomized. For
every itemz, its critical request function can be written as

Fy(i):==i— ((i +b;) mod 2)

whereb,, is x’s bit initialized by a fair coin. Hence the critical request is
the last or the second-to-last request with equal probability. The corre-
spondence to the definition using the bits is the following. The critical
request is on the last request if and only if the current value of the bit is
1.

Viewing Bl T andTS as critical request algorithms, we can give a sim-
ple proof forCOVB's competitiveness based on a potential function.

COWVB's critical request functions are static in the sense that the proba-
bility for the last request in the augmented request sequence to be the
critical one is always 0.4, while the second-to-last request has probabil-
ity 0.6. Hence in order to deduce the expected access cost of a request,
all we need is the relative order of the last two requests to each item.
Since bothBI T and TS use only free exchanges, the update costs are
zero.

We want to describ@®PT for two items in an online fashion, hence get

rid of the lookahead needed in algorithm 1.5. This can be done by a
state diagram where we encode into the states the fact that the current
list state might depend on a future request.

The diagram in Figure 1.2 indeed does this job. If we are in the left
state, the optimal list state [3y]. In the right state, it idyz]. The
middle state is the state we move into if the item at the second position
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in the current list has been requested. [Byy], we denote the fact that

the items are in some sense parallel since we do not know whether the
optimal list state igxy] or [yx]. If the next request i, the optimal
choice was|zy], otherwise[yx]. In any case, a request leaving the
middle state is free of charge. In order to compute the optimal cost
of a request sequence, one just moves in the diagram according to the
request sequence like in a deterministic finite automaton. The starting
state is either the right or the left state, depending on the initial list.
ThenOPT(o) is equal to the number of times one moves into the middle
state.

With this preparatory work, we are now ready to prove
Theorem 1.10 COVBisdtrictly 1.6-competitive

Proof. It turns out that the joint behavior ZOVB and OPT can be
described by a four state diagram like in Figure 1.3. Each of the four
states in labeled by one of the labels of Figure 1.2 and a permutation
of zxyy, which represents the ordering of the latest two requests to the
two items.

These labels allow to compute ba@@VB’'s andOPT'’s cost for the next
request. In the case @PT, we already know from Figure 1.2 how

to determine the cost of a new request depending on the state. On the
other hand, sinc€OMB has its critical requests either on the last or the
second-to-last request, we only need to know the ordering of the two
latest requests per item in order to determine the cost of a new request.

Sincex andy use the same critical request functions, we can merge
states like{zzyy, [xy]} and {yyzz, [yz]}. The starting state isy.

Any request sequence translates to a path in the automaton starting in
Sp. Each request corresponds to a transition. Using the information
stored in the states, we can giZ&VB's as well asOPT’s cost for any
transition leaving the state. The cost @DVB and OPT is indicated

by the small numbers as the paC®VB/OPT. Note thatCOMB's cost

are expected cost. The cost for serving a request sequefareboth
algorithms is the sum of the cost assigned to the transitions used.

In order to show thaCOVB is 1.6-competitive, we use a potential func-
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0.4/0

Figure 1.3: Automaton describing COVB and OPT in the partial cost
model.
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tion. It is indicated by the value$; for each state5;. Note that the
value ®; equals the maximum co§IOVB has to pay on a path starting
at.S; which is free forOPT. Lett; andt>T be COVB's and OPT’s cost
for the ith request in a request sequenc®f lengthm. Let thesth
request move from stat§;, to 5.

The amortized cost is then
a; =t + A® =1, + ¢}, — Dy
By checking all eight transitions in Figure 1.3, one can prove
a; < 1.6 - tFT (1.11)

Indeed, (1.11) holds with equality except for the transition fr§nto
Sp. Let S; be the state where ends. Since the potential of the starting
stateS, is zero andb; > 0, we obtain

COMB(o) = ) #

[]

COMB is by far not the onlyl.6-competitive algorithm, but it seems to
be one of the simplest. Oth&r6-competitive algorithms are obtained
by choosingTS, BI T andMT'F with different probabilities thalcOVB
does. A different way is to choose randomly for each item whether it
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should use the critical request functionsT@, BI T, or MTF. In Chap-
ter 3, we will show that no projective algorithm can beaivB.

The original proof of Theorem 1.10 is based on a partitioning of the
request sequences. The phases are those described in the following
lemma.

Lemma 1.11 Consider a list with the only items z and y with initial
state [zy]. The following table shows the expected cost for the algo-
rithms BI T, TS, COVB and OPT for a set of request sequences. We
assume! > 0and k > 1.

request sequence BI' T TS COovB oPT
zlyy 3 2 1.6 1
ot (yx)Fyy %k’ +1 2k 1.6 +0.8k k+1
ot (yz)ka Sk++ 2k-—1 1.6k k

Proof. Note thatBl T and TS only use free exchanges. Therefore,

we only need to count expected access costs. The expected cost spent
for the request t@ in the sequenceyd’ is the probability thatr is in

front of y in the list after servings. Since the order of the items in the

list is determined by the order of the critical requests in the augmented
request sequence, this is not a hard task. The following tables give the
cost of the sequences. Note that in the tables the augmented request
sequences are shown. Thus the actual request sequences start at the
fifth request.
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’—l
<
o

BI T 0
TS 0 1 1

y y sz y z (y o' g

BI T 0 1 05 075 075 0.25
TS 01 0 1 1 0

y y z z 2y x (y o) oy oy
BI T 0 1 05 075 075 0.75 0.25
TS 01 0 1 1 10

[]

Using Lemma 1.11, the prove of Theorem 1.10 goes as follows.

Proof. We partition every request sequence into subsequences, each of
them terminated by two consecutive requests to the same item. Assum-
ing initial list state[zy], the first sequencé is one of those described

in the lemma. If that subsequence terminates:in the next subse-
guences” will again be of one of the three forms. Note that the cost
of ¢/ will again be like stated in the lemma because the initial list state
for ¢” is again[zy| for Bl T, TS andOPT and the double request 1o
works like an augmentation prefix. &f terminates inyy, o’ will be

one of the three forms with andy interchanged. Again the cost here

Is the same because also in the initial state and in the ‘augmentation
prefix’,  andy change roles.

According to the table of Lemma 1.1COVMB's cost is bounded by 1.6
times OPT’s cost for all these subsequences. But the very last subse-
guence might not belong to one of the three types. However it will be a
prefix of one of the three types with only the last request missing. Since
OPT never pays on the last request, adding it would leave the cost of
OPTunchanged and merely overestimate the cosI(@B, so the cost
ratio of COVB versusOPT is even better in this case.
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Y Y
0/0 x 1 Y 0/0
0.5/0
x Zz

Figure 1.4: The optimal algorithm on two items.

Since we haveCOVB(o) < 1.6 - OPT(o) for all subsequence€OVB
Is strictly 1.6-competitive on two items. From Theorem 1.4 it therefore

follows thatCOMVB is strictly 1.6-competitive on lists of arbitrary length.
[]

On two items, there exists a5-competitive online algorithm. Unfor-
tunately, one cannot express it in terms of projective algorithms.

Algorithm 1.12 The algorithm uses of Figure 1.2 by keeping track of
OPT's state in the figure. If OPT isin the left or the right state, both
algorithms have the same list state. Whenever OPT moves into the
middle state, that is, the item at the second position in the list was
requested, the online algorithm moves the item to the front only with
probability 0.5.

The cost of the online algorithm ai@PT are given in Figure 1.4. From
Figure 1.4 it is easy to see that between two visits of the middle state,
OPT pays exactly one unit, whereas our online algorithm pays 1.5 units.
Therefore our algorithm i$.5-competitive. A proof using a potential
function would assign potentiél5 to the statgz||y] ando to the others.

On two items, a lower bound af5 is very easily obtained. Let()) :=

[xy] be the initial list state. If the adversary chooses the request se-
guencesyyy and yxzx with equal probability, no algorithm can be
strictly c-competitive withe < 1.5. Note thatOPT pays one unit on
either sequence. To do this, it has to mavéo the front in the first
sequence, but leave it at the second position in the second sequence.
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Otherwise, it pays at least two units. Any online algorithm makes a
mistake with probability).5. Therefore, its expected cost dré.

For the non-strict case, one has to repeat this process arbitrarily many
times. This can be done because one can assume that the list states are
equal after one round. Depending on whether [kig or [yz], the next

round uses the same sequences again or itxsesndzyyy.

As we have seen earlier,cacompetitive algorithm in the partial cost
model is alsac-competitive in the full cost model. Concerning lower
bounds, it is the other way round. Lower bounds in the full cost model
generalize to the partial cost model.

1.4 The Offline Problem

Since the performance of an online algorithm is compared with the op-
timal offline algorithmOPT, understanding the problem of computing
OPT(o) becomes an issue itself.

A simple algorithm has running tim@((n!)?>m) on a list withn items
and a sequence witlv requests. It is based on a straightforward dy-
namic programming algorithm for metrical task systems [19] which
works as follows.

Letd(s, L) be the minimal cost needed to serve the firsiquests of the
request sequenceeand end up in the list state. By £ we denote the
set of alln! possible list states. Using dynamic programming, we have
to fill a table withm + 1 rows andn! columns with the values(i, L),
i=20...m,L € L. Once the table is filled)PT (o) is obtained by

mind(m, L).
Lel

To fill the table, we use the recursion

d(i, L) = Elé%(d(’ —1,L") + trans(L', L)) + acc(z, L). (1.12)

Here,trans(L', L) denotes the minimal cost to move from stéfeo
L andacc(i, L) denotes the cost for accessisign L. The base case is
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d(0,L) = trans(L,S(0)). The time needed to compute dlli, L) is
O((n!)?m).

This runtime can be reduced 2" n!m) by using the fact that there is

an optimal algorithm which uses only so-calledbset transfers [28].

In a subset transfer, one moves a subset of the items preceding the re-
quested itemr just behindz without changing their relative orders.
Only O(2™) among the:! possible transformations are subset transfers.

In his semester thesis, Pietrzak [26] showed that the problem can be
solved in timeO(n!n3m). As a first step, we break equation 1.12 into

d(i,L) := ?é%(d(z —1,L'") + trans(L', L)) (1.13)
d(i,L) := d'(i,L)+ acc(i, L). (1.14)

The hard part now is to compute for a fixeéthe values/(i, L) when

the valuesi(: — 1, L) are given. In the simple algorithm, we compute

n! values in order to compute the minimum in (1.13). Hence alkthe
ways of reordering the list state are considered to compute just a single
value. This has to be done for every list state

Pietrzak computes a#t! valuesd (i, L) at the same time. The algo-
rithm is based on the fact that a reordering of a list state breaks down to
applying a series of at moé}) paid exchanges to the list state.

Let L' be a list state that minimizes the expression on the right hand
side of (1.13) and let/ = Ly, L4, ..., L, = L be the sequence of list
states we obtain when reordering the list state fidmo L using single
paid exchanges. Itis easy to see that

d(i,Ljp) =d(i,L)+1 Y0<j<k

This allows to computé' (i, L) as follows. Letd’(k)(z‘, L) be the value
of the right hand side of (1.13) when we consider fbonly list states
that we can obtain fronk by at mostk exchanges. Defin&/ (L) to be
the set of list states that can be obtained from list stabg applying at
most one paid exchange. Using

(06, L) = d(i—1,L)

' L . ' - '
(L) = L'gl]%f?L) (d(k_l)(z, L") + trans(L,L"))
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we can computei’((n))(z‘,L) = d'(i, L) for all L in time n3. This
2

concludes the description of the algorithm.

Since we prove in Chapter 4 that computi@gT is A'P-hard [9], a
polynomial algorithm does not exist unleBs= N P.

1.5 Other Models

Besides the full cost and the partial cost model, various other models
have been considered. T model is a generalization of the stan-
dard model where no free exchanges are allowed and each paid ex-
change costd units, whereas the definition of the access costs remains
unchanged.

Reingold, Westbrook, and Sleator [29] show that t@SKNTER(k, {k—
1}) algorithms are
kE+1 1 kE+1

1+ — 14+ —(2 —_—
competitive. These algorithms maintain a randomly initialized counter
modulok for each item which is increased on every request to its item.
Whenever a counter reachks- 1, its item is moved to the front. For
eachd, there exists & such thaCOUNTER(k, {k—1}) is c-competitive
for ¢ < 2.75. The best competitive ratio i& + v/17)/2 =~ 2.28 for
d — o0.

Sleator and Tarjan also analyze models where accessing an item at po-
sition 4 costsf(z) units [31].

There are many results concerning average case analysis for list update
algorithms. Here the request sequences are generated by a probability
distribution. The requests are independent and the probability for the
next request to be to; is p;. The performance is usually compared to
the optimal static algorithf®TAT. This algorithm maintains the items

in non-decreasing order by the probabilitigsRivest [30] showed that
there exists a constahtsuch that

E[FREQUENCY COUNT(c)| = E[STAT(0)] + b.



24 Chapter 1. Introduction

However,b has to be chosen very large. Chung, Hajela, and Seymour
[16] proved a similar result fOMTF:

E[MIF(0)] < JE[STAT(0)] +b

for a much smaller constadt Gonnet, Munro, and Suwanda [18]
proved that this ratio is tight foMI'F. Recently, Albers and Mitzen-
macher [4] showed

E[TS(0)] < gE[CPT(o)] +b.
This result is stronger sing@T performs much better the®lr'AT. Re-
member that this ratio only holds for sequences generated by a proba-
bility distribution as described above.



Chapter 2

A Lower Bound for the
Partial Cost M odd

2.1 Introduction

In this chapter, we show a lower bound 1050115 for the partial cost
model. This improves the trivial lower bound o5 presented in the
previous chapter. While the improvement over the previous bound is
tiny, the significance of the result lies in the fact that the new value is
strictly larger thanl.5. This number is important because it is a tight
bound for two-item lists. Previously, many researchers believed that
there is al.5-competitive algorithm for arbitrarily long lists. Our result
shows that this is not possible in the partial cost model and indicates
that there is no such algorithm in the full cost model either.

In order to show that no algorithm can be stricthcompetitive, one
usually gives a probability distribution over the set of finite request se-
guences: for which one can prove that any algorithdhhas expected
cost

E[A(0)] > ¢ E[OPT(0)]. (2.1)

The expectation is taken over the request sequences chosen in the prob-
ability distribution. Inequality (2.1) makes sure that for a given algo-

25
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rithm A, one can always find a request sequence for which
A(o) > c- OPT(0o).

Because of Yao’'s theorem [34], we only have to check against all de-
terministic algorithms.

Theorem 2.1 (Yao) If thereisa probability distribution on request se-
guences so that (2.1) holds for any deterministic online algorithm A,
then (2.1) holds also for any randomized algorithm A.

In order to show a lower bound for non-strict competitive algorithms,
one has to give a whole family of probability distributions, one for each
value ofb, such that

E[A(0)] > c- E[OPT(0)] +b (2.2)

holds. In general, the expected optimal offline cost of the request se-
guences considered will have to grow with the valué.of

Our construction usesgame tree where alternately the adversary gen-
erates a request and the online algorithm serves it. The adversary is
oblivious. That is, he is not informed about the action of the online al-
gorithm. So the game tree hamperfect information [25]. We consider

a finite tree where — after some requests — the ratio of online versus op-
timal offline cost is the payoff to the adversary. This defines a zero-sum
game, which we solve by linear programming. For a game tree that is
sufficiently deep, and restricted to a suitable subset of requests so that
the tree is not too large in order to stay solvable, this game has a value
of more thanl.50115. This shows that any strictl-competitive online
algorithm fulfillsc > 1.50115. In order to derive from this a new lower
bound for the competitive ratioaccording to (1.3) with a nonzero con-
stantb, one has to generate arbitrarily long request sequences. This can
be achieved by composing the game trees repeatedly, as we will show.

A drawback is our assumption of the partial instead of the full cost
model. In the latter model, where a request to dtieitem in the list
incurs cost, the known lower bound i5.5 — 5/(n + 5) for a list withn
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items. This result by Teia [32] yields a lower bound for the competitive
ratio much belowl.5 when the list is short. In fact, there is1ab-
competitive algorithm for lists with no more than 13 items, as we will
show in Section 2.7. To prove a lower bound abovefor the full cost
model, we would have to extend our construction to lists with at least
14 items.

One reason why it is so hard to find lower bounds might be that the
game defined by the list update problem does not have a value, meaning
that the competitive ratio of the best online algorithm is larger than the
best possible lower bound (Remember that lower bounds are specified
by a probability distribution on the request sequences). However, this
Is not true, as we show in Section 2.8.

2.2 Taa'sresult

Teia [32] has constructed a lower boundldf for the competitive ratio

in the full cost model. Since we will use his ideas for an improved lower
bound in the partial cost model, we explain his proof in the simpler
partial cost model.

Teia constructs an adversary strategy for which (2.2) holds with

1.5. The request sequences are generatading which are repeated
indefinitely. The runs are defined by list states. For the first run, the
initial list stateS(() is considered. To obtain the run from the list, we
traverse the list from front to back, requesting each item with equal
probability either once or three times. If an item is requested three
times, it is moved to the front of the list, otherwise it is left in place.
This results in a new list, which determines the next run.

It turns out that the optimal offline algorithm on these sequences can be
described as follows.

Algorithm 2.2 (3MI'F) Move z to the front if and only if the next three
requests are all to x.

To see thaBMTF is optimal on any of Teia’s sequences note that
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3MTF is projective ornr since we have
3MIF,
SHT(0) = Say " (0ny).
Therefore, using (1.8), we obtain

BMIF(0) = > 3MIFyy(0gy). (2.3)
{zy}CL

Note that Definition 1.3 does not require an algorithm to be online.
Furthermore, Equation (1.8) clearly also holds for offline algorithms
which are projective.

Because of (1.9), we only have to prove tBa&ITF is optimal on two
items. This holds becausMTF pays exactly one unit per run in this
case, which also is a lower bound since in each run, there is at least one
request to each item.

Concerning the online player, we have
E[A0)] > ) E[Aylow)]. (2.4)
{z.y}CL

Here, A, denotes the optimal online algorithm on the projections of
Teia’s adversary strategy. The explanation for (2.4) is very similar to
that of (1.9).

Teia’s proof is based on a potential functign &; is the number of
inversions betweei's and OPT’s list state after theth runp. Since
both algorithms start in the same list state, it halgs= 0. He proves

E[A(p) + ®; — ®;—1] > 1.5- OPT(p). (2.5)
For sequences with k& runs, we get
E[A(0) + &), — §g] > 1.5 OPT(0).

Since we have < @, < () for lists withn items, there exists & for
eachs > 0 such that

E[A(0)] > (1.5 —¢) - OPT(0),
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OPT Awith [zy], ®;—1 =0
Py with cWAILT| zMF |zWAIT | =z MTF
[zy] yWAIT| yWAIT | y MTF | y MTF
ti ©; |t D, | t; Dy t; D,
Ty 1 1 0] 1 0|1 111 1
TTTY 1 1 0|1 0|1 111 1
TYYY 1 2 0] 2 0|1 01 0
TTTYYY 1 2 0| 2 0 |1 0|1 0
4-Elti+®—®;_1]| 640 | 6+0 | 442 | 442

Table 2.1: Expected onlinecost if ®;_; =0

which proves the result.

In order to prove (2.5), let,, be the projection of théth run toz and
y. Because of (2.4) and (2.3) a@¥T,,(p,,) = 1, we can prove (2.5)
by showing that

E[Aacy(paﬂy) + ®; — (I)i—l] > 1.5- GDTmy(Pmy)- (2.6)

To keep the notation simple, we also Wgego denote the projection of
the potential function ta: andy here. We haved;, = 0 if there is no
inversion between andy, and®; = 1 otherwise.

The Tables 2.1 and 2.2 show (2.6). Because of symmetry, we only
consider runs wher@PT'’s list state initially is[zy]. There are four
cases forp,,, all have the same probability to be chosen. Table 2.1
refers to the case;_; = 0. In Table 2.2, we assumi&,_; = 1. We can
assume thah moves the requested item to the front whenever there are
two requests to it in a row. This holds because in this cagapws that
there is another request to the same item following. Therefore moving
it to the front is always optimal. Thus, there are only four different ways
to servep,,. MTF means that the item is moved to the front already at
the first request\WAI T moves it at the second request, if there is one.
By t; we denote the online player's cost. Sifd@T,,(p,,) = 1in all
cases, we obtain (2.6).
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OPT Awith inversion[yz], ®;—1 =1
Py with cWAIT| o MIF | zVWAI T | x MTF
[zy] yWAIT [yWAIT| y MIF | y MTF
t; D, t; P, ti P, ti P,
Ty 1 1 1|2 01 1|2 1
TTTY 1 3 0|2 0|3 1|2 1
TYYY 1 1 03 011 012 0
TTTYYY 1 4 0|3 0|3 012 0
4-Elt; +®;,—®;_1]| 9-3 | 10—-4 | 8-2 8§ —2

Table 2.2: Expected online cost if ®;,_; =1

2.3 Poset algorithms

Using partial orders, one can construct &5-competitive list update
algorithm for lists with up to four items [6]. The partial order is initially
equal to the linear order of the items in the list. After each request, the
partial order is modified as follows, whetdy means that andy are
incomparable:

partial order after request to
before |z & {z,y} x Y
x|y zlly  |z<y|ly<z
<y r<y |z<y| x|y

That is, a request only affects the requested item relation to the
remaining items. Them is in front of all itemsz except ifz < y

held before, which is changed id|y. The initial order in the list and

the request sequence determine the resulting partial order. Note the
similarity to Automaton 1.2. One can generate an arbitrary partial order
in this way [6].

The partial order definesgosition

p(z) =Ny ly <z} + Ry | yllz}/2

for each itemz. If the online algorithm that only uses free exchanges
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can maintain a distribution on lists so that the expected cost of access-
ing an itemz is equal top(z), then this algorithm id.5-competitive

[6]. One can show that then with probability omas behind all items

y with y < z, and precedes with probability 1/2 those itegnehere

z|ly. Incomparable elements reflect the possibility of a “mistake” of
not transposing these items, which should have probability 1/2. For
lists with up to four items, one can maintain such a distribution using
two lists only. Thatis, the partial order is represented as the intersection
of two linear orders represented by the lists, where each list is updated
by moving the requested item suitably to the front, using only free ex-
changes. The algorithm works by choosing one of these lists at the
beginning with probability 1/2 as the actual list and serving it so as to
maintain the partial order (with the aid of the separately stored second
list).

The partial order approach is very natural for the projection on pairs
and when the online algorithm can only use free exchanges. A lower
bound abové.5 must exploit a failure of this algorithm. This is already
possible for lists with five items, despite the fact that all five-element
partial orders are two-dimensional (representable as the intersection of
two linear orders). Namely, let the items be the lettets e and let the
initial list be [abcde], and consider the request sequences

o1 = dbed and o9 = dbec. (2.7)

After the first request ta, the partial order states at#a, d||b, d||c,
andd < e, and otherwiser < b < ¢ < e. Using a free exchange,

d can only be moved forward and has to preced®, a each with
probability 1/2. This is achieved uniquely with the uniform distribution
on the two listdabede] and|dabee] (this, as well as the following, holds
even though distributions on more than two lists are allowed). The next
request tab inducesb < d, sob must be moved in front ofl in the

list [dabce], whereb already passes, which yields the unique uniform
distribution on[abcde] and[bdace]. The next request te entails that

Is incomparable with all other items. It can be handled deterministically
in exactly two ways (or by a random choice between these two ways):
Eithere is moved to the front ifbdace], yielding the two listdabcde]
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and[ebdac] with equal probability, oe is moved to the front ifabede],
yielding the two list§eabed] and [bdace] with equal probability. If the
two lists are[abede] and[ebdac], the algorithm must disagree with the
partial order after the request #as ingy, since thend must precede
botha ande in both lists (sad is moved to the front in both lists) but
then incorrectly passéswvhere onlyb||d should hold. Similarly, for the
two lists [eabed] and [bdace] the request te as ino, movesc in front

of e andd in both lists, so that it passesviolatinga||c. Thus, either

or oy in (2.7) causes the poset-based algorithm to fail, which otherwise
achieves a competitive ratio of 1.5. These sequences will be used with
certain probabilities in our lower bound construction.

2.4 Gametreeswith imperfect information

As we have seen in Chapter 1, the list update problem can be phrased
as a zero-sum game between two players, the adversary and the online
algorithm (oronline player). A lower bound for strictly competitive
algorithms can be shown by giving a finite adversary strategy for which
(2.1) holds.

In order to deal with finite games, we assume a finite$et > of
request sequences (for example all of a given bounded length), which
represent the pure strategies of the adversary. These cauxésk by
randomization. There exist only a finite humhk¥rof possible ways

of deterministically serving these request sequenceS. iThese de-
terministic online algorithms can also be chosen randomly by suitable
probabilitiesp; for 1 < 57 < N. In this context of finitely many re-
guest sequences, an arbitrary constamt (1.3) is not reasonable, so
we look at strict competitiveness. To be stricthizompetitive against

the adversary strategies §) it must hold for allo in S that

N
> pjAi(o) <c OPT(0), (2.8)
Jj=1

whereA; (o) is the cost incurred by thgh online algorithm an@PT (o)
is the optimal offline cost for serving. We can disregard the trivial se-
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quencess with OPT(o) = 0 that consist only of requests to the first
item in the list. In this case (2.8) is equivalent to

= Ajlo)
;pj C];T(a) <c. (2.9)

The termsA;(o)/OPT(o) in (2.9), forl < j < N ando € S, can

be treated as a payoff to the adversary in a zero-sum game matrix with
rowso and columng. Correspondingly, a lower bountifor the strict
competitive ratio of list update algorithms is an expected competitive
ratio [15] resulting from a distribution on request sequences. This dis-
tribution is a mixed strategy of the adversary with probabilige$or

o in S so that for all online strategies=1,..., N

> g g‘ﬁ((;;) > d. (2.10)
ogES

Note that the bounds in (2.9) hold only for the strategieS,iwhereas
the lower bounds in (2.10) hold in general.

In the finite case, the minimax theorem for zero-sum games [34] asserts
that there are mixed strategies for both players and reatsld so that

(2.9) and (2.10) hold witld = c. Thenc is the “value” of the game and

the optimal strict competitive ratio for the chosen finite approximation
of the list update problem. Note that it depends on the admitted length
of request sequences. Due to the complicated implicit definition and
large size of the game matrix, the best known bounds &ordd in (2.9)

and (2.10) that hold irrespective of the length of the request sequences
do not coincide.

The number of request sequences is exponential in the length of the se-
guences. The online player has an even larger number of strategies
since that player’s actions are conditional on the observed requests.
This is best described by game tree. At each nonterminal node of

the tree, a player makes a move corresponding to an outgoing edge.
The game starts at the root of the tree where the adversary chooses the
first request. Then, the online player moves with actions corresponding
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to the possible reorderings of the list after the request. There!lare
actions corresponding to all possible reorderings. (Later, we will see
that most of them need not be considered.) The players continue to
move alternatingly until the last request and the reaction by the online
player. Each leaf of the tree defines a sequene@md an online cost
A(o) (depending on the online actions leading to that leaf), with payoff
A(0)/OPT (o) to the adversary.

The restricted information of the adversary in this game tree is mod-
eled byinformation sets [25]. Here, an information set is a set of nodes
where the adversary is to move and which are preceded by the same
previous moves of the adversary himself. Hence, the nodes in the set
differ only by the preceding moves of the online player, which the ad-
versary cannot observe. An action of the adversary is assigned to each
information set (rather than an individual node) and is by definition the
same action for every node in that set. Hence, the probability for choos-
ing an item, say;, as a next request must be the same in all nodes of the
information set. On the other hand, the online player is fully informed
about past requests, so his information sets are singletons. Figure 2.1
shows the initial part of the game tree for a list with three items for the
first and second request by the adversary, and the first online response,
here restricted to free exchanges only.

A pure strategy in a game tree assigns a move to every information
set of a player, except for those that are unreachable due to an earlier
choice of that player. Here, the online player has information sets (like
in Figure 2.1) where each combination of moves defines a different
strategy. This induces amponential growth of the number of strategies

in thesize of the tree. The strategic approach using a game matrix as in
(2.9) and (2.10) becomes therefore computationally intractable even if
the game tree is still of moderate size. Instead, we have used a recent
method [33, 24] which allows to solve a game tree with a “sequence
form” game matrix and corresponding linear program that hasaime

size as the game tree.

Using game trees, a first approach to finding a randomized strategy for
the adversary is the following. Consider a list with five items, the min-
imum number where a competitive ratio abavé is possible. Fix a
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@ online player
() adversary

Figure 2.1: Game tree with information sets.

maximum lengthm of request sequences, and generate the game tree
for requests up to that length. At each leaf, the payoff to the adver-
sary is the quotient of online and offline cost for serving that sequence.
Then convert the game tree to a linear program, and compute optimal
strategies with an LP solver (we used CPLEX).

However, this straightforward method does not lead to a strict compet-
itiveness abové.5, for two reasons. First, “mistakes” of an algorithm
manifest themselves only later as actual costs. As an example, if
movesy to the front on the first request of = yxzx, we really need

the requests ta@ to makeA pay for this mistake. So there is little hope

for an improved lower bound using short request sequences. Secondly,
even if only short sequences are considered, the online playet!has
responses to every move of the adversary, so that the game tree grows
so fast that the LP becomes computationally infeasible already for very
small values o#n.

The first problem is overcome by adding the numbeimeérsions of
the online list, denoted b; in the tables 2.1 and 2.2 above, to the
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payoff at each leaf. This yields a strict competitive ratio greater than
1.5 for rather short sequences. The inversions are converted into actual
costs by attaching a well structured subgame to each leaf of the game
tree that generates requests sequences similar to Teia’'s lower bound
construction. The next section describes the details.

The second problem, the extremely rapid growth of the game tree, is
avoided as follows. First, we limit the possible moves of the online
player by allowing only paid exchanges of a special form, so-called
subset transfers [28]. A subset transfer chooses some items in front of
the requested iterm and puts them in the same order directly behind
(e.g. [abedex fg] — [acxbdefg]). Afterwards, the adversary’'s strat-
egy computed against this “weak” online player is tested agaihst
deterministic strategies of the online player, which can be done quickly
by dynamic programming. It turns out that the lower bound still holds,
that is, the “strong” online player who may use arbitrary paid exchanges
cannot profit from its additional power. Remember that using free ex-
changes does not help the online player since they can be simulated by
paid exchanges, as we have seen on page 6.

2.5 Thegametreegadgets

We compose a game tree from two types of trees or “gadgets”. The first
gadget calledrLUP (for “finite list update problem”) has a small, irreg-
ular structure. The second gadget call€dfor “inversion converter”)

is regularly structured. An instance i€ is appended to each leaf of
FLUP. Both gadgets come with a randomized strategy for the adver-
sary, which has been computed by linear programmindrkdyP. One

can prove that against this adversary strategy, the best online strategy
has an expected strict competitive ratio of at lelaSt+ 1/864, about
1.50115. To check all possible online strategies, one can use dynamic
programming. Thé&-LUP game we used is the shortest that we found,;
larger versions ofFLUP give higher lower bounds. If we allowed in
the FLUP game all request sequences of length at mosgihe limit of

the game value fok — oo would be the value of the list update game.
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requests offline list | probability | OPT
d. [dabce] | 552/1728 | 3
dbe. [eabed)] 168/1728 | 8
dbe. [ebacd] 56/1728 | 8
dbec. [abede] 360/1728 | 10
dbec. [acebd)] 60/1728 | 10
dbec. [cebdal] 300/1728 | 10
dbed. [bdace] 20/1728 | 9
dbed. [bdeac] 145/1728 | 9
dbed. [deabc] 58/1728 | 9

Table 2.3: The adversary strategy

This follows from Section 2.8.

Both gadgets assume a particular state of the offline list, which is a pa-
rameter that determines the adversary strategy. Furthermore, at the root
of FLUP (which is the beginning of the entire game), it is assumed that
both online and offline list are in the same state, [g@yde]. Then the
adversary strategy fdfLUP generates only the request sequenges
dbe, dbec, anddbed with positive probability, which are the sequences
in (2.8) or a prefix thereof. After the responses of the online player
to one of these request sequences,RhEP tree terminates in a leaf
with a particular status of the online list and of the offline list, where
the latter isalso chosen by the adversary, independently of the online
list. For the request sequendethat offline list is[dabce], that is, the
offline algorithm has moved to the front. If theFLUP game termi-
nates after the request sequedbe, the adversary makes an additional
internal choice, unobserved by the online player, between the offline
lists [eabcd] and [ebacd)]. In the first case, the offline player brought

e to the front but leftd andb in their place, in the second,was also
moved to the front. Similar choices are performed between the offline
lists for the request sequenadis:c anddbed.

The specific probabilities for these choices of the adversaRLidP
are shown in Table 2.3. The last column denotes the cost for the opti-
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mal offline algorithm. Thd=LUP tree starts withi as the first request,
followed by the possible responses of the online player. Next, the ad-
versary exits with probabilityp52 /1728, without a request, to the leaf
with offline list [dabce], and with complementary probability requests
item b, which is followed by the online move, and so on.

Each leaf of theFLUP tree is the root of anC gadget which gen-
erates requests (similar to the runs in Teia’s construction, see below),
depending on the offline list. The number of inversions of the online
list relative to this offline list is denoted b§. The purpose of théC
gadget is to convert thesk inversions into actual costs. Any request
seguence generated by tligadget can be treated with the same min-
imal offline costv, herev = 30. Thereby, the online algorithm makes
mistakes relative to the offline algorithm, so that the online co$€Cin

Is at leastl.5v + ©.

Since adding théC gadgets leads to a game far too large to compute
its value, we consider instead the game consisting only oftHgP

tree with the following payoffs at its leafs. Létbe the cost the online
player has to pay on its path from the root to the leaf. Then the payoff
to the adversary at this leaf is

A+ D+ 150
- OPT+wv

Note that the expected payoff to the adversary in this small game is at
most as large as in the one with th@és. Therefore, the value of the
small game is the desired lower bound.

The probabilities in table 2.3 have been computed by linear program-
ming. One can show that any online strategy, as represented in the
FLUP tree, has an expected strict competitive ratio of at Ieas%ﬁ,

or aboutl.50115.

At a leaf of theFLUP gadget, the adversary reveals his list state to
the online player and he chargés This he can do since, as we will
see later, there exists a strategy for the adversary which depends only
on the adversary’s list state which makes the online player pay at least
1.5v + @ in the expectation, whereas the adversary pays @niyence

at the leaf, the adversary can indeed guarantee pay.off

(2.11)
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The fact that the strategy does not depend on the online list is crucial,
since otherwise the adversary would not be oblivious any more. Reveal-
ing the adversary’s list to the online player is allowed since it merely
weakens the position of the adversary: Any online strategy without this
extra information can also be used when the online player is informed
about the adversary’s internal choice, so then the online player cannot
be worse.

The offline list assigned to a leaf of tlik&.UP gadget is part of an op-
timal offline treatment (computed similar to [28]) for the entire request
sequence. However, that list may even be part of a suboptimal offline
treatment, which suffices for showing a lower bound since it merely
increases the denominator in (2.10). Some of the offline costs in table
2.3 can only be realized witpaid exchanges by the offline algorithm.

For example, the requesisec are served with cost 10 yielding the of-
fline list [bedea] by initial paid exchanges that moweto the end of the

list. With free exchanges, this can only be achieved by moving every
requested item in front af, which would result in higher costs.

In the remainder of this section, we describe tGgadget. Its purpose

is to convert the inversions at the end of tRleUP game to real costs
while maintaining the lower bound of at lealsb. At the same time,
these inversions are removed so that both the online list and the offline
list are in the same order after serving ti

ThelC extends the construction by Teia [32] described in Section 2.2.
Let T, be the sequence that requests the firslems of the current
offline list in ascending order, requesting each item with probability
1/2 either once or three times. Assume that the offline algorithm treats
T}, by moving an item that is requested three times to the front at the
first request, while leaving any other item in place, which is optimal.
The triply requested items, in reverse order, are then the first items of
the new offline list, followed by the remaining items in the order they
had before. Theff;, is arun as used in Teia’s construction for a list with

n items. The random request sequence generated there can be written
asT, that is, aw-fold repetition ofI;,, wherew goes to infinity. Note

that the offline list and hence the order of the requebktsmges from

one runT;, to the next, sdl?, for example, isot a repetition of two
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identical sequences. We still have (2.3) for sequences consisting of
these runs. The optimal offline treatmentXfis still the same as in
the special case df, and cost{) units.

Next we show
E[A(Tk) —®,_ 1+ (I)Z'} > 1.5 ODT(Tk) , (2.12)

where®,_; and®; denote the inversions between the list states of the
two players before and after the run. All we have to do is to generalize
(2.6). Previouslyp,, was one of the four sequences of Table 2.1. In
the general case,, can also ber, zzx or the empty sequence.

In all three cases, we hav@PT,,(p.,) = 0. Additionally, we have
ElA(pzy) — ®i—1] > 0, because the online algorithm incurs cost at
least one if®,_; = 1. Hence,

E[A(pxy) —®,_1 +®]>15 CPT(pxy) + E[®] (2.13)

holds. In order to prove (2.6), we can simply omit the additional term
on the right hand side.

As in (2.5) above, (2.12) can be extended to concatenations of se-
quencesl. Let us first consider the randomly generated sequence
defined by the four runs

IC':=T, T3 T, Ti, (2.14)
which by the preceding considerations fulfills
E[A(IC")] > 1.50PT(IC) + ®¢ — E[®4] (2.15)
A more refined analysis shows
E[A(IC)] > 1.50PT(IC) + @ (2.16)

Namely, if we consider the projection € to any pair of items, the
last run is one where only one item is requested, hence (2.13) applies.
Therefore we obtain

E[A(IC') — ® + ®4] > 1.50PT(IC') + E[®y]
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which proves (2.16). HencéC' serves as an inversion converter with
v = 10.

However, the inversion converter we will use is
IC:=T; T? T T7, (2.17)
because this one allows to prove
E[A(IC)] > 1.50PT(IC) + &, + E[®s]. (2.18)

Note that if we projectC to any pair of items, the last two runs will be

x or zzx. Hence, the projection ends with at least two requesisito

a row. A simple case analysis shows that for the last two runs together,
one can prove

E[A(ny) —®; 5+ 0] > 1.5 CPT(ny) + 2 E[®] (2.19)

Here, we have,, € {zz,zzzz, rxzsre}, and®;_o, and®; count the
inversions before and after the last two runs. Again, we |G p,,) =
0. The following case analysis proves (2.19) and therefore also (2.18).

Q9 | i | E[A(pry) — ®io+ ®i] | 2 E[D4]
0 0 >0 0
0 1 > 2 2
1 0 >1 0
1 1 > 2 2

UsinglC, we obtain a lower bound aboves for the competitive ratie

in (2.2) for any additive constaitby arguing as follows. If we assume
that the online player us&4TF to serve the inversion converter, we have

dg = 0 at the leaves of th&C. Since the list states of the two players
coincide, we can add nei_UP games at the leaves of the inversion
converter. Doing this recursively, we can generate request sequences
of arbitrary length and offline cost. Hence, our bound holds for any
constant in (2.2).

Indeed, there is no use for the online player to have inversions at the end
of the inversion converter since by (2.18), he pays exactly the amount
he would have to pay for creating them as a first step in the FiedP
game.
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2.6 Freeexchange model

In the above construction, the value of the lower bound does not depend
on whether the online player may use paid exchanges or not, but the ad-
versary’s strategy does use paid exchanges. So it seems that the online
player cannot gain additional power from paid exchanges. This raises
the conjecture that by restricting both players to free exchanges only,
the list update problem might still have an optimal competitive ratio

of 1.5. However, this is false. There is a randomized adversary strategy
where the offline algorithm uses only free exchanges which cannot be
served better than with a competitive ratiolo§ + 1/3644.

In the previous case, the pure strategies of the adversary consisted of re-
guest sequences with at most four requests plus an inversion converter.
This is short enough such that one can allow all request sequences of
length four for the adversary. In the optimal randomized strategy com-
puted by the linear program, most of them are chosen with probability
zero.

In the free exchange model, one needs longer request sequences to find
lower bounds larger thah.5. Since the number of request sequences
grows exponentially, the brute force method is not tractable anymore.
However, there is a way to generate small sets of pure strategies with
serve as candidates for our method.

If one restricts the online player to a small number of random bits and
restricts the length of the request sequences, the problem can be viewed
as a finite two-person zero-sum game with full information. t+é&e

the number of random bits allowed to the online player. This can be
modeled as follows. Like in the case of the poset algorithms, the state
of the online player consists @f list states. These list states can be
observed by the adversary. As a first move of the online player, he uses
ther random bits to chose one of tBelist states uniformly at random

as the one he will use to update the list accordingly. This choice is not
revealed to the adversary.

A request is served by changing dlllist states by the online player.
The game trees end with a move of the adversary, where he chooses
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requests | offline list | probability| OPT
d. [abede] | 3312/7288 | 3
dd. [dabce] | 1587/7288 | 3
ddbe. lebdac] | 783/7288 | 9
ddbea. [aedbc] 120/7288 | 10
ddbea. [dabce] 165/7288 | 10
ddbea. [daebc] 75/7288 | 10
ddbeac. [dcabe] 396/7288 | 13
ddbeacb. [abeed] 238/7288 | 14
ddbeach. [bdcae] 102/7288 | 14
ddbeacbe. | [abced] 111/7288 | 17
ddbeacbe. | [ebeda) 111/7288 | 17
ddbeace. [aebed)] 35/7288 | 15
ddbeace. [aedbc] 35/7288 | 15
ddbeace. [ecdab] 70/7288 | 15
ddbeaceb. | [aebdc] 74/7288 | 17
ddbeaceb. | [bcaed] 74/7288 | 17

Table 2.4: Adversary strategy in the free exchange model

a list state which serves as inversion converter. The payoff is defined
by (2.11), whereA and ® are the expected total online cost and the
expected number of inversions taken overithrandom bits.

Settingr := 2, one finds a set of4 pure strategies of length at most
eight which allow to prove the desired bound.

In the case with paid exchanges, we had a simple argument why no
online player would ever preserve inversions afterltbe Namely we
showed that for every inversion the online player kept afterl@ée
would have to pay an extra cost. Instead of preserving inversions in the
IC, he could w.l.o.g. create them just after tli& spending the same
amount.

Changing our models slightly, we can use a similar argument in the case
with free exchanges. If we repeat thein (2.17) exactlyt times instead
of three times, preserving an inversion now casts2 units instead of
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requestg offline list | probability| OPT
d. [dabee] | 154173377 | 3

dbe. [eabed) 924/3377 | 8
dbec. [abede] 135/3377 | 10
dbec. [bacde] 405/3377 | 10
dbecch. | [cbade] 372/3377 | 11

Table 2.5: Adversary strategy in the MTF model

only one. Note that since there are only free exchanges allowed, it is
not possible to create a new inversion between ikeandy once the

last request ta: or y has been served. Of course the offline cost for an
|C grows witht¢. By allowing the online player to use paid exchanges
that costt — 2 units per exchange just after leaving tli2and before
entering the nexELUP game, we only strengthen the online player as
there is no obligation to use them. In the new model, we can again
assume that no inversions are kept in t@e as the online player can
perform these special paid exchanges beford-tiiéP game.

But this time, we really have to check whether the online player can
take advantage of the paid exchanges or not. This just needs a simple
extension of our dynamic programming approach. If he can, the value
of ¢ has to be increased.

For the adversary strategy in Table 2.4, the best online algorithm achieves

a competitive factor of.5 + %ﬁ using the original C.

The same can be done in the model where elements either stay at their
current position or are moved to the front of the list. The strategy pre-
sented in Table 2.5 also uses the regular inversion converter and proves
a lower bound ofl.5 + 52-.

2.7 Full cost model

The method we presented here cannot be applied to the full cost model
because one would have to use lists with at least fourteen items. The
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reason for this is the existence ot &-competitive algorithnCOVB13
for lists with up to 13 items in the full cost model. LikeOvB, COVB13
Is a combination offS and BI T. But this time,Bl T is chosen with
probability 5/6, whereas we choosES with probability 1/6.

Clearly, COVB13 is projective and we can prove its competitive ratio
along the lines of the proof of Theorem 1.10.

In the full cost model, accessing the item at positiooosts: units
instead ofi — 1 units in the partial cost model. This holds for both
COVB13 andOPT. In order to apply projective analysis, the additional
unit has to be equally distributed among all pairs involved in the current
request. There are exactly— 1 pairs involved in each request, namely
those which contain the currently requested item. If the first item in the
pair list is requested, we chargéT units. For the second iterﬂ]frﬁ

units are charged. Doing so, the access cost for the item at position
really becomes

1
n—1

(1) (1+——) + (=) (—) =

n—1

as we require in the full cost model.

As in the proof forCOVB, we show that the amortized cost projected to
any pair of items is bounded Hy5 timesOPT’s cost. Figure 2.2 shows
the access cost @OVB13 on pairs of items fon = 13.
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Y
6 ;1
212

|

Figure 2.2: Automaton proving that COMB1 3is1.5-competitive onlists
with up to 13 itemsin the full cost model.
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2.8 Thelist update game hasavalue

Think of the list update problem as a two-person zero-sum game. The
pure strategies of the adversary are the finite request sequences. Those
of the online player are the deterministic algorithms. Let us first assume

a fixed number of itema and a fixed constardt

Let ¢ be the best competitive ratio an algorithm can attain,

A
¢ = inf sup ()

A . m. (2.20)

We disregard the request sequences Wi (o) = 0 in order to have

a well defined payoff in all cases. Note that in (2.20), bdtland o
denote randomized strategies. On the other hdrghall be the value

of the best randomized adversary strategy, for simplicity also called
sigma,

L Ap)
d—Sgpll/Al\fm

Theorem 2.3 For n and b fixed, we have d = c.

To get an intuitive understanding, the reason why this theorem holds is
that the online algorithm can force the adversary to somehow restart the
whole game after a bounded number of requests. In this way, even very
large request sequences can be broken into subsequences of bounded
length for which the minimax theorem applies.

Let us first deal with strictly competitive algorithms in the full cost
model.

Proof. Assumed < ¢ and choosé& such that

(g)(c—i- 1)+ dn

k
> c—d

or equivalently
d-(k+n)+ (5)

k= (3)

< c. (2.21)
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Let A, be an online algorithm that is optimally strictly competitive on
request sequences with offline cost at mostn. Clearly,A; is strictly
d-competitive on such sequences, since the lower bounds increase with
the length of the request sequences one allows as adversary strategies.

A can be extended to an algorithm for arbitrary long request sequences
as follows. It behaves regularly unkil< OPT(o) < k+n. Atthis time,

we reset the game to the initial state. This meansAhatoves to the
initial list state which costs at mo@) units. Concerning the adversary,

he is allowed to execute a special update operation which moves its list
state to the initial one as well. The cost for this operation is negative.
His costs get reduced t(g) We can assume that the adversary always
performs this reset operation since the sa@dunits allow him to
move to any desired list state at the beginning of the next phase with
net cost at most zero for the two operations. Hence we are again in the
initial state of the algorithm and we can serve the next phase.

In each complete phaséy, pays at most - (k + n) + (5) units,
whereas the adversary pays at lelast (g) units. If the last phase
is not completed (it does not end with a reset operatidn)ays at
mostd - k' units, whereas the adversary pa&ysinits. Hence, the cost
ratio is strictly smaller tham in every phase. Therefow, is strictly
¢’-competitive ford < ¢, which is a contradiction.

Note that by introducing the reset operations, we bounded the adver-
sary’'s cost from below. Hence the ratio &f(c) and OPT(o) is not
larger. []

For the partial cost model, this proof does not work because there exist
infinitely many request sequenceswith OPT(0) < k and therefore

it is not clear whether there existsdacompetitive algorithm on these
sequences. However, the following lemma proves that there is at least
ad/(1 — e)-competitive algorithm for any smadl > 0. This allows to
apply the above proof, since we can choeseich that

d<d/(1-¢)<ec.

Lemma2.4 Let d be the best lower bound for strictly competitive al-
gorithms on list with n items. Then there exists, for every k& and any
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0 <e<0.5, ad%—j-competitivealgorithmiftheadversaryisr&ctricted
to request sequences with OPT (o) < k.

Proof. Let us restrict the adversary to request sequences of length at

mostw with
=
w=|—|+1.
e

Certainly there is a strictlyl-competitive algorithmX on sequences
of length at mostw. The value ofw is chosen such that all request
sequences for which OPT(0) < k holds andA pays at least for
every request satisfiy| < w. To see this, all we have to prove is
that there is no such with |o| = w. Note thatX would pay at least
we > dk for such a sequence. This contradicts the factAhiatstrictly
d-competitive on sequences of length

Let us now prove the lemma by designing an algoritAmvhich is
strictly d}%ﬁ-competitive on request sequences VIR (o) < k.

The algorithmA internally runs algorithnX. In general, the two algo-
rithms will be in the same list state. In the remainder of this proof, all
the costs are expected costs.

Upon each request to an itemit first checks whether the cost to serve
z in A'is larger thare. If this is the casey is fed toX and we perform
in Athe same paid exchanges agdirmnd access.

If serving z costs less thaa in A, algorithmA enters a so-called-

phase by moving: to the front of the list inA, which costs at most

units. As long as there are requestsctatem x is kept at the front of

the list. Hence, the access cost for all these requests are zero. None
of these requests is fed 8, though. On the first request to an item
different fromz, we leave the-phase by moving: back to the place
where it was before the-phase. This costs at masunits. Note that

for the request tg, both A andA will have to pay at least — ¢ units.
Hence if0 < e < 0.5, this request will be processed regularly.

Let o be a request sequence WIIRT (o) < k. Let furtherd be the
subsequence which was fedXo Since we havePT(¢') < OPT(0) <

k andA payed at least units for every request, we hay#| < w and
thereforeA is d-competitive on’.
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Note that we haved(o) < A'(¢') + r2¢, wherer is the number of
times thatA enters arz-phase. We claim than

Alo) < A (o).

1—c¢
The idea is that for any cost (1-eps) spent by A, algorithm A is allowed
to spend (1-eps+2eps). Note that we can charge«iier everys-phase

to the first request after the previog#phase, sinc& pays at least — ¢

for these requests. Note thatdfstarts with are-phase, this phase is
free for both algorithms since in this case, the requested item is already
at the front of the list. Otherwise, the first requestrois charged for

the firste-phase, since its cost is at least one unit. Hence we conclude

1+¢
1—¢

1
Alo) < re

Ao < d
—1—¢ (0)_

-OPT(0') < d -OPT(0).

1—¢
[]

The case wheré > 0 is similar. Namely, for any, we can choosé
large enough such that (2.21) holds fdr+ ¢) instead ofd and

Ar(o) < (d+¢)- OPT(o)

for all sequences with < OPT(o) < k + n. In this way, we are sure
that all the completed phases are fine. For the last phase, we use the
constanb.

What we are actually interested to prove is

lim lim ¢(n,b) = lim lim d(n,b).
n—00 b—00 n—00 b—00

First of all, the two limits to exists. This follows from
1 <d(n,b) <c(n,b) <1.6

and the fact that(n, b) andd(n, b) decrease monotonically for growing
b and increase monotonically for growing Furthermore, Theorem 2.3
makes sure that the limits indeed have the same value.



Chapter 3

Optimal Bounds for
Projective Algorithms

3.1 Introduction

Although (1.7) is a necessary and sufficient condition for projective al-
gorithms, it gives not much insight of how projective algorithms can
be constructed and whether there are better algorithms than the known
families of algorithms. Consequently, obtaining a lower bound for pro-
jective algorithms seems to be very hard.

In this chapter, we present a simple characterization of all projective
algorithms. The crucial part of the characterization was already pre-
sented in the introduction of this thesis in terms of the critical request
algorithms.

A key observation for our result is to look at algorithms in a more static
way. The classical definition of algorithms BET or TS is in terms

of how the current list state changes upon a new request. Our approach
tries to understand ho®/(o) is determined by and the initial list state,
without considering the evolution of the list states. More specifically,
we ask howS (o) changes if the requests @fare permuted.

While the critical request algorithms cover already all “efficient” pro-

51
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jective algorithms, we have to extend their definition in order to really
cover the whole class of projective algorithms. Namely, two functions
for every item are needed. The functiofts are basically the critical
request functions known from the introduction. Note that if the relative
ordering of two items inS(o) is defined by critical requests of it is

not possible to have a pair of items whose relative order remains un-
changed on shuffling the requestssinHence, FREQUENCY COUNT

for example, although projective, cannot be described as a critical re-
guest algorithm. We extend the critical request algorithms by additional
functionsC,, which group all items into so-called containers. The con-
tainers are totally ordered. The ordering of items in different containers
is then determined by the ordering of the containers, while items within
a container are generally ordered by their critical requests.

The following theorem gives the desired characterization. For a request
sequence with ¢ requests ta, leto, = z* (the:-fold repetition ofz)
denote the subsequence consisting only of the requests ta:item

Theorem 3.1 Ais a deterministic projective algorithm for a set L of
list items, if and only if there exists an ordered set W = WH UW~ and
two functions

C : LxNy = W, Clz,1)#C(y,0), V(1) #(y,0),
F : LxN — N, F(z,i) <1, V(z,1)

with the following properties. given any two items z # y, and any
request sequence o such that o, = z*, 0, = ¢/, z isinfront of y in the
online list after A has served o if one of the following three conditions
holds.

@ C(z,i) <C(y,4),0r

(bl) C(z,i) € Wt and there exists a pair (z, k), z # x,y such that
C(z,1) = C(y,j) = C(z,k), and the F(z,i)-th request to =
appears after the F'(y, j)-th requesttoy in o, or

(b2) C(x,i) € W~ and there exists a pair (z, k), z # z,y such that
C(x,i) = C(y,7) = C(z,k), and the F(z,)-th request to x
appears before the F'(y, j)-th request to y in o.
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If none of these conditions hold, both relative orderings of z and y are
allowed.

We will also writeC'(z, 1) asC,.(i) andF'(z,1) asF, (i). All pairs (z, 1)
which map to the same value € W underC define an equivalence
class which we call @ontainer and identify withw. We say that: is
in containerw with respect tar if C(z,|o;|) = w. As a shortcut, we
write z* € w, i = |o,|. By [2°] we denote the containes for which
C(z,1) = w. Initially, each itemz is in a containeC'(x, 0) of its own,
whose position in the order represents the initial list state.

If at least three items are in some container with respeet, the rel-
ative order of any two of themz(andy, say) after serving is deter-
mined by the order of theieritical requests F;(¢) and Fy,(j) in o. In
case ofC,(:) € W, we have the item in front whose critical request
iIs more recent. In this case, we havatandard container, otherwise a
nonstandard one.

The theorem does not completely specify the behavidrinfcase there

are containers with only two items. In this case, there is no restriction
on the order of the two items, except the obvious condition that this
order does not depend on requests to other items. In particular, any
algorithm over a two-item list is projective, in which case the theorem
holds with suitable”” and arbitraryF'.

Let us illustrate this theorem for a few projective algorithms over the
set of itemsL = {z1,...,z,}, with initial list state[z;,...,z,]. In
this caseMI'F usesV = W+ = {0,...,n} and

| k, ifi=0
Cla.i) = {07 otherwise

F(l’k, Z) = 1.

Thus, MTF moves all items into a common container after their first
request. This container is a standard containerz $®in front of y

in the online list if and only ifz was requested more recently than
UsingW = W~ = {0,...,n} instead would result in th&OVE-

TO BACK algorithm, which is not competitive. We will see later that
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no competitive algorithm will use nonstandard containers with positive
probability.

The algorithmTI MESTAMP moves all items into a common standard
container after their second request; within that container, items are
ordered by recency of their second-to-last request. This behavior can
be obtained by usingy = Wt = {0,...,2n} and

2k, if:=20
C(zg,i) = 2k—1, ifi=1

0, otherwise
F(zg,i) = max(l,i—1).

The randomized algorithiBl T tosses a coin for each itemndo decide
whetherz will be moved to the front after an even number of requests
to z (and stay in place after an odd number of requests), or vice versa.
Thus,BI T usesW = Wt = {0,...,2n} and for eacht randomly
decides between the two pairs of functions

2k, if:=0
Cl(l‘k,i) = 2/4?—1, ifi=1
0, otherwise

Fl(il}k;, Z) = max(l, QLZ/QJ)

and

(i) { 2k, if2=0

0, otherwise
FQ(JZk,i) = 2[2/21—1

Finally, we consider the algorithfAREQUENCY COUNT which main-

tains the items sorted according to decreasing number of past requests;
two items which have been requested equally often are ordered by re-
cency of their last request, like MTF. This corresponds to the choices

of W=WT =Zand

Clanyi) = {
flzp,i) = i

k, ifi=0
—1, otherwise
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FREQUENCY COUNT is not competitive; in fact, we will prove that no
competitive algorithm maintains more than one container in the long
run with positive probability.

Using the characterization of Theorem 3.1, we will derive the lower
bound for the competitive ratio of any projective algorithm.

Theorem 3.2 For any ¢ > 0, any b € R and any projective algorithm
A, there exists a finite sequence A such that

E[AN)] > (1.6 — €)OPT()) + b.

These results are significant in two respects. First, they show that the
successful approach of combining existing projective algorithms to ob-
tain improved ones has reached its limit with the development of the
COMVB algorithm. New and better algorithms (if they exist) have to be
non-projective, and must derive from new, yet to be discovered, design
principles.

Second, the characterization of projective algorithms is a step forward
in understanding the structural properties of list update algorithms. Un-
der this characterization, the largest and so far most significant class of
algorithms appears in a new, unified way.

Projective algorithms have a natural generalization, where we demand
the relative order of any:-tuple of list items to depend only on the
requests to thesk items. It turns out that for lists with more than
items, only projective algorithms satisfy this condition. This follows
from the fact that e.g. fok = 3,

Sa'L;-\y,z(U) = SxAyz(UmyZ) and
Sﬁyw(a) = S:?yw(amyw)

imply that the list state5,, (o) depends only on,,, because it must be
independent ofv andz.

We define aandomized online algorithm as projective if it is a discrete
probability distribution over deterministic projective algorithms. A less
restrictive definition is conceivable, but would not allow us to prove
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the lower bound for projective algorithms that we intend and that we
think is useful. Namely, one could call a randomized online list update
algorithm projective if serving any request sequeacaduces a dis-
tribution on list statesS,, (o) that only depends oa,,. Under these
weaker requirements, one can indeed find 1.5-competitive algorithms
for lists with few items. For the case of two items, Algorithm 1.12
trivially is projective. Furthermore, the Poset algorithms described in
Section 2.3 are also projective in this generalized sence. Unfortunanely,
they are defined only for lists with up to four items.

Theorem 3.1, discussed further and proved in the following sections,
characterizes the deterministic projective algorithms in a way that makes
their projective behavior transparent, and unifies many known algo-
rithms. By our above assumption that considers a randomized projec-
tive algorithm as a probability distribution over deterministic ones, we
will be able to use this characterization in the lower bound proof of
Theorem 3.2 later.

An open problem is to extend the lower bound to the full cost model,
even though this model is not very natural in connection with projective
algorithms. This would require request sequences over arbitrarily many
items, and it is not clear whether an approach similar to the one given
here can work.

3.2 Containers

Consider a deterministic projective algoritover a sef of list items
with fixed initial list state; our intended characterization in the form
of Theorem 3.1 addresses the relative order of two itemg y in
the online list after a sequeneewith o, = z',0, = 3’ has been
served. An easy case occurs if this order only depends amd 7,

but not on the pattern in which the requests appeat. iRor example,
FREQUENCY COUNT hasz in front of y whenever; > j. This leads
us to the following
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Definition 3.3 Let z,y € L,z # y and 4,5 > 0. We define
' —ay! o Joiop=1' 0, = yj,Sﬁy = [zy].

Observation 3.4 If 2,y and z aredistinct and 7, j, k > 0, then 2 —4
k

y) and y? — 4 2F implies ¢ — 4 2F.
To see this, consider soneewith o, = 2*, 0, = 3/ and Sy, = [zy].
Without affectingo,,, we can insert requests tor into o, and be-
cause ofy/ —a z*, this can be done in such a way tH#t (o) = [y]
BecauseA is projective, we then havé(c) = [zyz] which proves
zt —a 2P

For distinct items;—4 is transitive by Observation 3.4. In general, we
obtain a reflexive and transitive relation fropn as follows.

Definition 3.5 Let =54 be the reflexive and transitive closure of the
relation — 4. Then

2 ~ay! e 2 Say) andy! St

defines an equivalence relation whose equivalence classes are the con-
tainersdetermined by A.

By [z] we denote the containef belongs to. A containew is grown
if there exist distinct items;, y, andz ands, j, & > 0 such thatw =

2] = [y7] = [2"].
Lemma3.6 If [z¢] isgrown, ¢/ € [z] and = # y,then 2% — 597,

Proof. Becausdz’] is grown, there is a projectiogf € [2%] with z
distinct fromz andy. Hencez! 554 2% andzF 555 y7. Therefore there
exists a chain

) k k kn—1 k j
' =q" 2Aqy” A —AG —AG =Y

with z = ¢, for some? # 1, n. By successively removing all interme-
diate elements of the chain, we will derive— A y?. Consider the first
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indexs such thafq, . . ., gs} contains three distinct elements. Because
of ¢ # q;+1 for: = 1,...,n — 1, the itemsy,, gs—1 andgs_o must

be distinct. By Observation 3.45:1 can be removed from the chain
without affecting its validity, becauezﬁs_;2 —A G55,

Only for s = 3, this might result in a chain containing projections to
only two distinct items. In the case = 3, this is okay since we then
obtainz’ —a 37, which we were looking for. In the case > 3, it

Is easy to check that_, g andg,.; are distinct, and the removal of
¢"s yields a shorter chain, again containing projections to three distinct
elements.

C_ontinuing in this fashion, we finally arrive at the desired chéinsa
Y. []

Corollary 3.7 If w is a grown container and #,3’ € w, then there
exist sequences o, 0’ with o, = 0, = 2*, 0, = 0, = y* and

Sey(0) = [zy],
Sey(0") = lyal.

This means that, for projections in the same container, the order of the
respective elements depends on the pattern in which the requests to
them occur ino. For projections in different containers, the order can
be derived from a suitable order on the containers.

Lemma 3.8 There exists a total order <4 on the containers such that
wy <a we for distinct wq, wo implies that for all pairs z* € wq, ¢/ €
wo, x Y. ¥ —ay) and not i/ — 4 xt.

Proof. The relation
wy <p W2 & Iz € wl,yj € wy: 't *_>ij

is a partial order which can be extended to a total order; it follows
that for any pairlz’] # [y/] with & # y, [2'] —a [¢7] if and only if
2] <a[y].
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To see that<, is indeed a partial order, we have to show that it is
reflexive, transitive and antisymmetric. The first two hold becakge

has these two properties as well. The last property holds because of the
definition of the containers in Definition 3.5. []

Concerning the proof of Theorem 3.1, we have defined the container
functionsC and have dealt with case (a) of the theorem.

3.3 Critical Requests

In this section, we deal with the case whérér, |o,|) = C(y, |oy]).

The interesting case here is when this container is grown. Under this
condition, the relative order af andy in the online list after serving

can be characterized in termsaftical requests.

Theorem 3.9 Let A be a deterministic projective algorithm over a set
of items L. Then there exists a function

F : LxN" +— NF, F(z,i) <1, ¥Y(x,1)

such that for all grown containers w exactly one of the following con-
ditions holds.

(b1) For all pairs 2, 4/ with w = [2°] = [’], and all & such that
op = a',0y = 47, S5, (0) = [zy] if and only if the F(z,i)-th
reguest to = happens after the F'(y, j)-th request toy in o.

(b2) For all pairs z*, y/ with w = [2¢] = [¢/], and all o such that
oy =zt 0, = 17, S’;\y(a) = [zy] if and only if the F'(x,%)-th
request to z happens before the F'(y, j)-th request to y in o.

In case 1), we say thatv is astandard container, in casé@) we have
anonstandard one. This also yields the partition of the set of containers
W into Wt andW™ that we have stipulated in Theorem 3.1.

As a simple illustration, observe that the algoritMiF usest'(z,i) =
¢ for all z and satisfies conditiorby).
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Proof. Leto be a request sequence with = xi,ay =yl,i,7 >0

and|o| = i + j such thafz'] = [4/], and[z’] is grown.

We label each request to an item with its position in the unary projection
to that item (e.g. the fifth request towill be labeledzs)). Theno

can be considered as a permutation of labeled requests. Because of
Corollary 3.7, there exists a permutatiehof o such thatSQy(a) #*
Sﬁy(o’). This means that, we can as well assume that, iwe have a
consecutive pair of items,), ), such thatsy, (o) # S5, (o”), where

o' arises fronmy by transposing; ) andy;).

This behavior does not change if we akld> 0 requests ta: # =, y
to o. We chooser andk such thatz*] = [z']. Becausdz’] is grown,
such a pair must exist.

We add these requests gosuch thatr,y andy) stay consecutive
and such that there exists a consecutive pair of requestsysagnd
Z(m) Such that transposing this pair changgs(c). Again because of
Corollary 3.7, this must be possible.

We claim thatg = ¢/. To see this, assumg # ¢. Then we can, if
necessary, transpose any of the two pajis, y) andz gy, 2(m,) IN

o such thatS(o) = [yzz]. Leto beo with the two pairs(z,), y())

and (z (4, 2(m)) transposed. By projectivity, we hav{(s) = [zzy].
HenceS,.(oc) # Sy.(¢), althougho,, = &,,. This contradicts the
projectivity of A.

In particular, there is a unique value @such thaty,, participates in

any transposition that reordetsand z in the list. By symmetry, this
uniqueness also holds for the paiandy. Because the value gfis the
same in both cases and by projectivity, it only depends,oifherefore

itis a function ofi = |o,|. We callz,) the critical request aof and set
Fy(i) = F(z,i) = q.

By a symmetric argument, the requesgt defines the unique critical
request foty, andFy(j) = F(y,j) := <.

To see that the relative order of two items in the list must change when-
ever the two critical requests are transposed in the request sequence,
think of a request sequeneeon two itemsz andy where the critical
requests of andy are consecutive. Let be the sequence obtained by
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swapping the critical requests. Now assume that this swap does not al-
ter the list state. Then we can obtain any permutation of the request se-
guence by successively transposing consecutive requests, starting from
eithero or ¢/, without ever transposing the critical requests. Thus, the
relative order ofr andy would be the same for all request sequences.
This contradicts our assumption thét~a 7.

We still need to argue that the itemsanare ordered either according
to caselfl) or (b2).

For this, consider a request sequecever ann-item list such that
S(o) = [z122 ... x,]. Letp; be the position of;’s critical request in
o. If we do not have

p1L>po > - >p, (casebl)) or
p1 <p2 <---<p, (casel2)),

we must have an indexsuch that either

Di < Pit1 > Dit2 or Di > Dit1 < Pit2-

In both cases, we can manipulatesuch that the critical requests of
x; andz; o change their order, but both keep their relative order w.r.t.
the critical request of;, ;. In the list obtained after serving, items
x; andx; o change their relative order under this manipulation, while
they keep their relative order with respectiq;. This is impossible.

[]

The assumption of grown containers in the preceding theorem is cru-
cial. If z # y andy’ € [z'], where[z!] is a non-grown container, then

z andy are adjacent irf*(c), for any o with o, = z* ando, = 1.

This holds because’] does not contain a projection to a third element.
In this case, the projective algorithm is free to choose any order of
andy which only depends omn,, without violating projectivity. In
particular, the algorithm is not forced to operate according to critical
requests.

Together with the results of the previous section, we have now proved
Theorem 3.1.
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3.4 ThelLower Bound

In this section, we use the characterization of projective algorithms
from Theorem 3.1 to prove that no such algorithm is better than 1.6-
competitive. Intuitively, it is clear that a good algorithm will maintain
only one container in the long run (which must be a standard container),
and it will have the critical request close to the last request for each
item. We prove this intuition in the next section; for the time being, we
restrict our attention to algorithms which satisfy these conditions.

Definition 3.10 For agiveninteger M > 0, a deterministic projective
algorithmiscalled M-regular if

(1) Cz(¢) = Cy(j) (and this container is a standard container) for
all itemsz,y and all 7,7 > M, and

(i) fo(1) =14 — Fy(i) < M for al itemsz and all 7 > 1.

A randomized algorithmis M -regular if it is a probability distribution
over deterministic M -regular algorithms.

Except FREQUENCY COUNT (which is not competitive), all the al-
gorithms discussed at the end of the introduction Mreegular with
M € {1,2}.

Given anye > 0 andb, we will show that there is a probability distri-
bution 7 on a finite set\ of request sequences so that

A(N)
gw(x)m > 1.6 — e, (3.1)

for any deterministicd\/ -regular algorithmA. ThenYao's theorem [34]
asserts that also any randomizktiregular algorithm has competitive
ratio 1.6 — ¢ or larger. This holds for any > 0, so the competitive
ratio is at least 1.6. This is achieved BYVB and therefore 1.6 is a
tight bound for the competitive ratio @f/ -regular algorithms.
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All X € A will consist of only two itemsr andy. In what follows, let
M > M andM > 3 and let

¢ = 2™ yrya™ ya yM yzy™ oy M M. (3.2)

¢ consists of eighblocks, each of which ends i oryM. Let K and
T be positive integers and

= |¢|/2 = 4M + 4. (3.3)
Then the set of sequences in (3.1) is given by

A=AK,T) = {cMFTyMTreK 1 0<h < HO0<t<TH)},

(3.4)
where anyA in A is chosen with equal probability/ BT by .
OPT pays exactly ten units for each repetitiongofwhich always starts
in offline list state[yx]). Assuming that also the initial list state[igr],
all sequences i\ have offline costOK + 2. This and the fact that
w(\) for A € A is constant allows us to conclude (3.1) once we can
prove

Lemma 3.11

Y A\ > 16KTH? — o(KTH?).
AEA

Namely, we then obtain

S () A(N) _ 2 aen AN
OPT(A) + b > e (OPT(A) + D)
16KTH? — o( KTH?)
(10K + 2 + b)H2T
1.6(b + 2) o(KTH?)
10K +2+b (10K + 2+ b)H2T
> 1.6 — ¢,

= 1.6 —

for K, T, M large enough.
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In the rest of this section we show that (3.4) yields Lemma 3.11. For
this, we distribute the total online cost amostgtes assumed by se-
guences\ € A.

Definition 3.12

(i) A € A assumes state (4, j) if there exists a prefix o =: \(i, j) of
Awith o, = z° and o, = 7. U denotes the set of states assumed
by sequences A € A.

(i) A € A switches at(i, j), if A(¢,7) contains the initial prefix
eMHtyM+E and one of the eight blocks of some repetition of

¢ starts immediately after A(7, 7). If the block starts with z, A
switches tar, otherwise )\ switches tay.

(iii) (4,7) iscalled a switchingstate if some A € A switches at (4, 7).
S denotes the set of switching states.

(iv) For (i,7) € S and X switching at (7, 5), A\(%,7) denotes the
online cost incurred by serving the block of ¢ that follows the
prefix A(z, 7). A(i, 7) isthe sumof these costs over all \ switching

at (i,7).
These definitions allow us to rewrite the total online cost as follows.

S A = S AGH+ S Aty

A€A (i,5)€S 0<h<H,0<t<TH

> Y AGY).

(4,5)€S
We see thah = zM+tyM+h K switches ati, ) if and only if

i = M+t+qH+r,

. 3.5
j = M+h+qH+s, (3.5)

for someg < K and

(r,s) € {(M,0), (2M +1,2),(3M + 1,3), (4M + 4,3M +4)}
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(switch toy), or
(r,s) € {(0,0), (3M+1, M+3), (3M+3,2M +4), (3M+4,3M+4)}

(switch toz). For a fixed paifr, s), the values of. andq (and hence of
t) that satisfy these equations are uniquely determined. It follows that
at most eight sequences switch at any given stato.

Definition 3.13 A state (i,5) € S is called goodif and only if the
following two conditions are satisfied.

(i) there are exactly eight sequences A € A that switch at (4, 5), and
(ii) property (i) also holds for the states (7 — 1,5) and (i,5 — 1).

(G denotes the set of good states.
Then (3.5) further yields

AN > ) AxL ). (3.6)

AEA (i,J)eG

This means, for every good state j) and each of the eight blocks in
¢, there is exactly one sequente= A such that\ continues with this
block after the prefixA(i, j). Moreover,A(i, 7) accounts for the online
cost incurred by serving these eight blocks.

We will now prove two claims, which together yield Lemma 3.11 and
therefore the lower bound at6.

Claim 3.14 For every state (i,7) € G, we have A(i,j) > 16. The
sequences switching to = and y, respectively, both provide eight units.

Claim 3.15 |G| > KTH? — o(KTH?).

Let us prove Claim 3.15 first. From equations (3.5), we see that exactly
eight sequences switch @t ) if and only if for all eight pairs(r, s),
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the solutionsy, h, ¢ to system (3.5) satisfy < g < K,0 < h < H and
0 <t<TH.Usingthefactsthat < H,0 <r—s < H, forall (r, s),
one proves that a sufficient condition for this is

H-1<j-M<KH, j+H<i<j+TH-H+1. (3.7

If both weak inequalities in (3.7) hold as strict inequalities, then)
Is guaranteed to be good. Hence there are at least

(K—1)H-(TH —2H) = KTH? — o(KTH?)

good states. This implies the claim.

To prove Claim 3.14, consider a good stéte/) and the four sequences
AW @ that switch toy in (4, §) (the argument for the sequences
switching tox is symmetric). FolA(i, j), we havge to count the total

online cost incurred by serving the four block¥, y"/, yr™, and
yzyzM following the prefixes\P) (i, j),p = 1,...,4, see Figure 3.1.

AL (4,7) Y+1)  YiG+2)

AD XD @) Ly Y2 Y+
AB)A®) (4,7) YG+1)  L(+1)  L(i+2)

AD AV ) |y Tasn Yot Tae)

Figure 3.1: Blocks in sequences switching from z in (i, )

Our goal is to show thaA incurs at least eight units of cost by serving
the four blocks. This is not always true: a certain choice of critical re-
guest values may result in an online cost of only seven units. However,
this particular choice will lead to nine units of cost in state1, j), one

of which we can “borrow” forA(i, 7). This results in eight amortized
units of online cost, for all good states.

BecauseAis M-regular, we know that andy are in the same standard
container after processiny? (i, j) (and also at any later time), for
all p. Moreover, the critical request af is among the precediniy
requests ta;, while the critical request aj is further away. Therefore,
four units are to be paid for the requestgyto ;). At least three more
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y vy y ¥ y y
Yy ¥ ¥ Yy ¥y Yy Y ¥

Y X X Yy X X Y I Xz

y Xy w y X y z y Ty =w
fy(G+1) =0, fy(G+1) =0, fy(G+1) >0
fe(i+1)=0 fe(i+1) >0

Figure 3.2: The seven unavoidable cost units

units are necessary to serve the remaining requests. Figure 3.2 depicts
the different cases (requests which incur a cost unit appear in bold). An
eighth unit will be spent, unless

fo(i+1)=0 and  f,(j +2)=1. (3.8)

Namely, f, (57 + 2) < 1 is necessary since otherwigewvould have to
pay a unit for the request tg; 3 in A2). But then we must also have
fy(j +2) =1andf.(i + 1) = 0 to avoid a cost unit for the request to
Z(i42) in )\(4).

Now we see that for the sequences switching o state(: — 1, 7),
two cost units are created by (3.8) in addition to the seven unavoidable
units. More specifically, the requesjs., »y andy,3) in the sequence

AV ADG - 19) |26 yge Tt Yo+ YG+s)

will cause two cost units which add to the seven unavoidable cost units
we spend for these sequences. From the nine cost units in total, we can
safely borrow one.
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3.5 Irregular Algorithms

Unbounded f—functions

We first show that the lower bound also holds for randomized algo-
rithms even if they use deterministic algorithms which do not satisfy
condition (ii) of Definition 3.10 with positive probability. The idea of
the proof is to show that by choosirdd large enough, one can still
charge enough to prove the previous lower bound.

In the regular lower bound construction, we have charged 16 cost units
for every statds, 7) such that

H<j-M<KH, j+H<i<j+TH-H, (3.9)

a consequence of (3.7). Let us denote this set of states.bys a
precondition, we need,, (i) < M to charge for the blocks switching
toy and f,(5) < M for those switching taz. In the case of larger
f-values, we can still charge

> AN >

AEA

> (8- (1 —prob(fu(i) > M)) + 8- (1 — prob(f,(j) > M))).
(i,7)e@

The probabilities refer to the probability distribution which defines the
randomized algorithm. We can do this because Claim 3.14 already
holds if f,(j) < M and f.(i) < M. The only case where this is
not obvious is the third one in Figure 3.2: in casegidf +1) > M, we
might not be able to charge a seventh cost unit. Nevertheless, we will
then have at least one cost unit for eithgr, ) or y(;9). Also, (3.8)
ensures that the ninth unit we might need to borrow from another state
is actually spent.

Using Claim 3.15 and (3.9), we obtain



3.5. Irregular Algorithms 69

> A(N) > 16KTH? — o KTH?)

AEA
KH+M-1 j+TH-H-1

-8 > > (prob(fz(i) = M) + prob(f,(j) = M))
j=H+M i=j+H

Lemma 3.16 If Ais c-competitive for ¢ < 1.6, then for i > M,
M—1
> prob(fa(i+£) > M) < E(AziyMzM)) < 3¢ +b, (3.10)
=0

and for j > M,
M-1 o
> prob(f,(j +0) > M) < B(A(y’z"y™)) <3c+b.  (3.11)
=0

Proof. We only prove (3.10) here, (3.11) is similar. For the first in-

equality, we only consider the access cost for thellsequests ta:

in the sequence on the right hand side. For each of them, one unit is

spent whenevef, (i + ¢) > M because then is behindy. The second

inequality holds becausg is c-competitive andZPT(zZyM M) < 3.
[]

Using (3.10), we can bound

KH+M—1j+TH-H—-1

> > prob(fs(i) > M)
j=H+M  1=j+H
KH+M-1 1 J+TH—-H-1 M-1

<y = > Zprobfxz+€)>M)

j=H+M i=j+H—(M—1) £=0

1
< (KH—H—1)E(TH—2H+M—2)(2c+b)

= O(KTH?/M)=O(KTM) = o(KTM?).
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Inequality (3.11) yields

KH+M—1j+TH—-H-1

Z Z prob(fy(j) > M)

j=H+M  t=j+H
KH+M-1 1 M-1
< > E(TH—QH—2 > prob(fy(j +£) > M)
j=H+M—(M-1) £=0

IA

. 1
(KH = H + M = 2)—(TH = 2H = 2)(3¢ + b)

= O(KTH?/M)=O(KTM) = o(KTM?).
As in Lemma 3.11, we get

> A(N) > 16KTH? — o(KTH?) — o( KT M?),
AEA

from which we conclude

A(A)
A%W(A)m > 1.6 —¢,

for K, T andM large enough.

Several Containers

Proving that our container cannot be a non-standard one is not too hard.
In a non-standard container a sequence dike zy would cause un-
bounded cost for growing while the offline cost is a constant. Thus

no algorithm can afford to use this kind of container with positive prob-
ability.

To show that our lower bound still holds if we allo&vto use more

than one container, we compahkavith an algorithmA. We deriveA by
usingA’s critical request functions, but ignoring its container structure.
Thus inA, all items are in a common container after their first request.
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As we already proved a lower bound for this kind of algorithms in the
previous sectiorm cannot be more competitive thars.

From the fact thaf\is supposedly1.6 —e)—competitive whilé\ is only
1.6—competitive, we derive that there must exigt:a 0 such that there
is a sequence of statég, j.), 1 < k < N, with 7, andj, increasing
strictly monotonically angrob(C;.(ix) # Cy(jx)) > p. Remember
thatA andA can serve a request differently only by using containers.

We will show that this contradicts the competitivenessadby exhibit-
ing a family of request sequences on whielannot be competitive at
all.

Let X} . be the indicator variable for the event ti@t(i,) # C,(jr).
If Xh,h =1, we get

Z (Xk:’,ﬁ’ + Xk:’,h + Xh’gl) > N2 (312)
1<k I'<N

This just follows from the fact thak} ;, = 1, Xy ), = 0, Xpp = 0
imply X/ » = 1. Define

P = E(Xp ) = prob(Cylix) # Cy(je)).

Then we get

> (pwe +pwptpre) =
1<k I'<N
Bl Y (Xpe+Xpp+Xne) >
1<K/ <N
prob(Xyp, =1) - E| Z (Xpror + Xprp + X)) X = 1] >
1<K/ I'<N
uN2.

We now sum up for alX}, 5, 1 < h < N and get

> > (pwe +pwp+pre)>pN”-N. (3.13)
1<h<N 1<k £'<N
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Observing that each term appears exagflytimes, we find

L
> pke_ N Z 3N2
1<k (<N

Define
P/ig = PrOb(Cm(ik) < Cy(jﬂ))y

Pp¢ = prob(Cy(ix) > Cy(je)),
and assume w.l.0.g. that

Zi”k

1<k, (<N

Oblt

Then there exists somec {1,..., N} such that

N

N
N b =D prob(Calis) < Cy(ir)) >
/=1

=1

N.

=R S

The request sequence we feedAds now o = z*y/¥ 1. We have
OPT(o0) < 2 but expected online cost at least6 - N, because already
the expected cost to serve the + 1)st request tg is at least

pre = prob(Cy(ir) < Cy(jr)),

forall 7 € {1,..., N}. Namely, with this probabilityy is at that time

in a container behind the onewas moved to in thg-th request ta,

in which casey incurs online cost of one. By lettiny tend to infinity,
this shows thaA cannot be competitive with constant ratio, which is a
contradiction.



Chapter 4

OfflineList Updateis
NP-hard

4.1 Introduction

In this chapter, we will be concerned with the offline version of the list
update problem@LUP). Given a request sequeneeand an initial list
stateL, we would like to compute the minimal offline cost to serve the
sequence. This value is denoted b@PT(L, o).

In competitive analysis, the cost of an online algorithm is compared
to the cost of the optimal offline algorithi@PT. UnderstandingOPT
might therefore lead to a better understanding of the list update problem
itself. Unfortunately, it will turn out in this chapter that the problem of
computingOPT(L, o) is N'P-hard. Hence, there is probably not much
structure to be understood. Some propertie®®F have already been
studied in the past [28, 29, 5, 2].

The significance of this result is increased by the lower bound presented
in Chapter 3. Since projective algorithms are analyzed on lists with two
items, the structure dDPT is not really an issue here because, as one
can see in (1.10), we actually prove the stronger result

A(o) < c¢-OPT(o) + b.

73
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Thus, it might be necessary to replddeT by better bounds in order to
beatCOVB.

The currently best algorithm f@LUP on lists withn items and request
sequences of length runs inO(n!n?m) [26] as presented in Section
1.4. From theNP-hardness we can conclude that there cannot be an
algorithm which is polynomial im andm unlessP = N'P.

An OLUP instance om items andm requests to these items can be
encoded i (log(n) - m) bits. But we can assume > n. Therefore,
an algorithm is still polynomial if its runtime is polynomial

A feasible (but not necessarily optimal) solution for an instance of
OLUP is here called achedule. Note that there are always optimal
schedules which do not involve free exchanges [14]. Therefore a sched-
ule is determined by the sequence of list stdies . L,,, whereL; de-

notes the state when thith request is performed.

As an important part of the proof, we introduce a generalization of
OLUP calledweighted list update problem (WLUP). Here, the items
have a weight that influences access and transposition cost. A version
of WLUP was considered already in [8], but our definitions and appli-
cations are different.

In the proof of the result, we assume the partial cost model. It is easy
to obtain the value dDPT(L, o) in the full cost model by addinfy| to

the optimal cost in the partial cost model. Therefore, the proof certainly
holds for the full cost model as well.

4.2 TheWeighted List Update Problem

In this section, we introduce the weighted list update probMiol{P),
which generalize®©LUP to items with weights. These weights have to
be non-negative integers. We denote weighted items by capital letters.

An instance ofVLUP consists of a request sequemcand an initial list

L over a set of weighted items. In general, we denote an instance by the
triple (L, o, W), wherew; is thesth entry of the vectoi¥ and denotes

the weight of theith item in L. We denote the optimal algorithm for
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this problem byWOPT and the minimal cost for an instance, L, W)

by WOPT (L, o, W).

The cost incurred by operating on weighted items is the following. Let
the items beX;,7 = 1...n. In order to transpose two itend§ and X;;

with weightsw; andw; respectively, we pay

Wy - Wy (4.1)

units. The access cost for an iteXjj with weightw; is the following.
Let S be the set of items in front oX; in L, then accessing; in L;
costs

wy - Z wg. (42)

I:X;e€S

From these definitions it follows that an instance consisting only of
items with weight one is identical to &dLUP instance. We call the
items in anOLUP instanceregular items. Note that if an item has
weight zero, it does not cause any cost at all.

Theorem 4.1 If all weights of a WLUP instance are bounded by a poly-
nomial in the number of items, then there is a polynomial reduction
from WLUPto OLUP.

The reduction is defined by a functigithat converts &L UP instance

into an OLUP instance. Let thaMLUP instance bg L, o, W) with
items X; for - = 1...n. The OLUP instance will be built by regu-

lar itemsz; ;, ¢ = 1...n,5 = 1...w;. We convert(L,o, W) into

an OLUP instance by replacing any occurrenceXyfin L ando by

the sequence; 1z; 2 ... z; ;. The theorem follows immediately from

the next lemma, since the sum on the left hand side of (4.3) can be
computed in polynomial time.

Lemma4.2 Let |oy,| denote the number of occurrences of X; in o.
Then we have

Wy

WOPT(L,0, W) + > ( )

) Joxi| = OPT(F(Lios W) (43)
X, €L
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Proof. Just for this proof, we introduce a new model where the access
costs, replacing (4.2), are defined by

S wiw | + (Q;’Z) (4.4)

I:X;€8

Hence, in this model, we shoWOPT (L, o, W) = OPT(f(L,o, W))
which is trivially equivalent to (4.3) in the old model.

To see thaWOPT (L, o, W) > OPT(f(L, o, W)), an optimal schedule

for (L,o,W) is transformed to th®©LUP instance as follows. Re-
member that a schedule is defined by a list state for every request in
the request sequence, denoting the list state in which the request takes
place. Leto; = X; be theith request in th&VLUP instance which is
transformed into a sequencewf requests in th&©LUP instance. The

list states for alkw; requests will be the same; namedly where f is
applied on.

What we obtain is a legal schedule f¢(L, o, W) with exactly the
same cost. This follows from the following observations. If we access
X; in (L,o, W), this translates to accessing all itemsg ... z; 4, in
f(L,o,W) inturn. In order to access; ; in our schedule, one has to
pass allr; , with X; € S plus all z; ;, with £ < 5. Summing up the
cost for accessing all itemg ;, j = 1...w;, we obtain (4.4). If two
weighted itemsX; and X; are transposed, every itety), passes every
item z,; in the OLUP schedule. This needs; - w; transpositions.

ProvingWOPT (L, o, W) < OPT(f(L,o,W)) is more involved. Let
us start with an optimal schedule for t@.UP instancef (L, o, W).
We can retransform this instance and its optimal schedule ihaP
instance by treating the items; of f(L, o, W) as weighted items with
weightl. Because there are now weighted items, we write theij as

For a general weight vectdi, the total cost of the given schedule
depends on the weights and can be expressed as

W; 4
CW)= Y figthd) ~ Wigwi+ ) ( 2”) Jox,|.  (4.5)
i

7:7k7j7l
i<k
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We denote byf(; ;) ) the number of timesY; ; and X;,; are trans-
posed in the schedule plus the number of timgs is in front of X, ;

when X, is requested and vice versa. The second sum accounts for
the second term in (4.4). We can writ there instead ok ; because

by construction, the number of requestsXg; is equal to the number

of requests taX; in the original sequence.

If we set allw; ; = 1, we haveC'(1) = OPT(f(L,o, W)). This holds
because items with weight one behave exactly like regular items.

Starting from this instance, we will now repeatedly apply a process of
merging items by changing their weights. Namely we choogek,

J # k such thatw; ; > 0 andw;, > 0. Let us rewrite (4.5) such that
we can more easily detect how its value changes if we changeand

CW)=Co + Cyr-wij+Cowik+ fij) k) WijWik

W;. 4 w;
b (M5 Yol (5 )l 46)

Here,Cy denotes all cost independent of baify andw; ;.. By C1-w; ;
andCs - w; ., we denote cost depending linearly only on one of the two.

Assume w.l.o.gC7 < Cs. The process sets the new value of the new
w; ; tow; ;j + w; , and sets the new; , to zero. To see that the value
of C(W') does not increase, observe tligtdoes not change at all and

Ci-(wij+wig) +Co-0<Ch-wij+ Co-wyg, (4.7)

and furthermore
wi.; Wi
Fig) (k) = Wi jwig + ( 2”) ox;| + ( 5 )IUXZ-I >

Wy i + W 0

Using £ j),(ik) = lox,| and

(3= () + (5) v
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inequality (4.8) is straightforward. This reweighting process must ter-
minate because in each step, the number of items whose weight is set
to zero increases by one. What we end up with is an instance where
for each: we have exactly ong € {1...w;} for whichw; ; = w;,

and all the othew; 5, & # j are zero. This instance is equivalent to
(L,o, W) we started with. Just rename thg ; with w; ; = w; to X;

and forget about th&; ; which have weight zero. Because we did not
increase the value af’ by changing the weights, we found a sched-
ule for (L, o, W) whose cost is bounded by(1), hence we proved
WOPT(L,0, W) < OPT(f(L,o,W)). []

4.3 A Lower Bound

Since no efficient algorithm is known to comp@eT (L, o), one often
replaces it by an easily computable lower bo®T (L, o) to show
(1.3). In this section, we generalize this idea to weighted items and
the WLUP problem. We denote the corresponding lower bound for
WOPT (L, o, w) by WOPT (L, o, W).

Instead of expressing a list state in the usual way, we can write it as
the set of relative orderings of all pairs of items. As an example, the
list [X1X3X5] can be written ag .X; < X5, X; < X3, X3 < Xo},
whereX; < X; means thafX; is in front of X;. The idea ofADPT is

to drop the condition that the only legal list states are the total orderings
of the items. E.g. the stateX; < Xq, Xo < X3, X3 < X3} is now
legal. Hence, the relative ordering of any pair of items can be chosen
independently of any other pair.

The access and update cost are still defined by (4.1) and (4.2). The set
S in (4.2) consists of the indicédor which X; < X;. Itis easy to see

that this defines a lower bound since a schedul NPT is also valid

for WOPT and has the same cost.

A nice feature ofAOPT is that it is computable in polynomial time.
To see this, remember that the p&iX;, X;} incurs a cost only if it
Is swapped or if one of the two items is requested. Since there are
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no restrictions on the relative ordering & and X; in VWOPT, their
optimal relative order depends only on the requestXitand X; in

the request sequence. Finding the optimal schedule for a pair of items
can be done in linear time using one of the algorithms described in
the introduction. Because there apé¢n?) pairs of items, the overall
running time isO(n?m).

Note also that the optimal schedule for an instance on two items does
not depend on their weights if both weights are positive. This holds
because the total cost of a schedule is of the fbrnfw; - w;), where

k € Nis independent ofy; andw;.

Hence, the hardness WWOPT seems to stem from the total ordering
that must hold at any time in a schedule.

4.4 TheReduction

By Theorem 4.1, it suffices to show a polynomial-time reduction from
an N'P-hard problem toWLUP in order to proveN P-hardness of
OLUP.

The minimum feedback arc set problem (MINFAS) [17] will serve well

for that purpose. Its decision varialliNFAS G, k) is defined as fol-
lows. Given a directed graghi = (V, E') andk € N, we want to decide
whether there is a subsé& C FE with |E’| < k such that the graph

G' = (V,E — E')is acyclic.

There is a second interpretation which is more natural for our purpose.
We interpret an arc pointing from to v; as a constraints; should be
ahead ofv;”. What we want to decide is whether there exists a total
ordering of the vertices such that less thaof these constraints are
unsatisfied.

We show a reduction frofMINFAS(G, k) to the decision version of
WLUP, denoted byMLUP(L, o, W, k’). Here we want to decide whether
there is a schedule which servedrom the initial statel, at maximal
costk’. More precisely, the reduction consists of a polynomial time
computable functiory that takesG and k as arguments and returns
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must not swap] (0) [ab] an
(1) [ab] baan
(2) | [ab]  (ba)*
can swap: (3) [ab] babbn
(4) | [ab]  (ba)*b
must swap: (5) [ab] bbbn

Table 4.1 optimal behavior on two items

(L,o, W) such that
MINFAS(G, k) < WLUP(L, o, W,WOPT (L,o, W) + k).  (4.9)

For this section, it is important to understand how an optimal schedule
of WOPT looks like. ASWOPT treats all pairs of items independently, we
have to investigate how sequences on two items are served optimally.
Remember that in the two items case, the behavior does not depend on
the weights if they are positive.

We consider a list containing only the itelmandb. In order to describe

how WOPT acts, we must find out in which cases it must, can or must
not swap the two items. Table 4.1 gives the answer for a few cases,
depending on how the remaining part of the request sequence looks
like. We will encounter these cases later in this section and then refer
to them by their number in angle brackets, like. The notation is
analogous to the one for regular expressions. Tlg; denotes the
empty sequence or any number of repetition$af The sequence

can be any sequence anandb. If there is non at the end of the
seguence, we assume that this is the end of the sequence. We say that a
(sub)sequence is servedperfectly if we do not break these rules when
servingo.

We now describe the functiofi which transforms #MINFAS instance
into aWLUP instance. For every vertex of G = (V, F), we have
a weighted itemi/; with weight% + 1. We call themvertex items and
definen := |V|. Additionally, we have two items andd both with
weight one. These are all the items we need.
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Let us check briefly that the weights are not too large in order to make
Theorem 4.1 work. Clearly, the haMINFAS instances obey <

|E| < |V]2. Hence, in those cases, the weights of the items are polyno-
mial in the number of items. Thus, the reduction frévhUP to OLUP

is polynomial.

We set the initial list state td, = [V V,V3... V,cd]. The sequence

is basically of the form

(ViVaVs... V),

with additional requests toandd. It consists of two parts’ ando”.
The first part is
o =ViVoVs...V,.

The second part consists of so-callea@ gadgets. An arc gadget for
(vi,v;) € F basically consists of 6 repetitions @fwith additional re-
quests ta: andd.

Here is the arc gadget for the ed@e, v4) in a graph with five vertices.

%CVz V},V4 d V5‘/1V2 CcC Vg dddccc V4‘/5(‘/1V2V3V4V5)4 (410)

The following gadget represents the edgg v9).

‘/'1V2V3 CV4V5‘/1V2 d V3V4 CcC V5‘/idddCCC V2V3V4V5(0')3

In general, the first request toin a gadget for edgéu;, v;) is always

just in front of the first request td;. Hence ifi > 7, the requests

to ¢ andd will be placed within the first three repetitions df The

case with five vertices is already general enough. The gadget works in
exactly the same way if one replaces V3, or V5 by any number of
vertices or omits them.

To finish up the description of the request sequence, let us partition the
set of arcs inG into two subsets.E™ contains the arcéu;, v;) with

i > 7, whereask~ contains those with < j. In ¢”, we have one arc
gadget for each arc i&, with the additional restriction that all the arc
gadgets of the arcs i precede those ift—.
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In order to prove (4.9), we first look at some properties of this instance.
From now on, we abbreviate the cO8OPT(L,o,W) by K. In a
schedule that costs no more thER-£ units, every pair of items involv-

ing a vertex item must be served perfectly. This holds because the cost
of such a pair is a multiple dft + 1). Therefore, any non-optimal step
involving a vertex item costs at lealsti- 1 additional units and there is

no way to compensate for that. Consider a pair consisting of two vertex
itemsV; andVj, s < j. Inthe initial state} is in front of V;. Therefore
WOPT, which serves each pair of items independently, has to serve the
following request sequence from the initial stéfe< V:

ViViViVi - ViV,

One way of serving this instance perfectly is to do nothing at all. But
there are other perfect schedules for this sequence: In order to stay
perfect, we are allowed to swap the two items exactly once (ct@ck

(2), and(4)). Because one should never mad¥ein front of V; when

the next request goes 1§ (0), this swap has to take place before a
request td’;.

It is easy to see that in a schedule which costs at fost £ units, the

list state before and after every gadget must haardd at the end of

the list state: Because there are at least three repetitiahsiothe end

of an edge gadget and becauseé®f the itemsc andd must be at the

end of the list. Furthermore, we can assume that all gadgets start with
c in front of d. This is certainly true for the first gadget. Movilagn

front of ¢ before the first request todoes not make sense. For the other
gadgets, we now have a closer look at the requestaiald only. Note

that such a projected gadget ends up with three requestard starts

with another one te. Therefore, there is no gain in havidgn front of

c in between two gadgets. Hence we may assume that any gadget starts
in a state having the subligtd] at the very end of the list.

To see howMOPT serves the gadget fov;, v;), we again have a look at
the casdwv,, v4) in (4.10). Note that we can serve that gadget perfectly
if and only if V4 is in front of V; at the first request td. The crucial
point is that in a perfect schedule, when the first requegtades place,

d must still be behind: (1), while ¢ must be behind4 (1) andd must
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be in front of V; (5). Only if V4 is in front of V, we can fulfill these
conditions. Note that andd can pasd;, k ¢ {4, 7}, but they do not
have to(3). At the next request te, we movec to the front of the
list (3,5). Later, at the first request of the request triple/tove move
d to the front as well5), butc will passd again later(5). Because of
the additional’” finishing (4.10), botke andd must be moved behind
all vertex items at the end without changing the relative orderanid
d (5).

If V5 is behindV}, not all the conditions mentioned in the previous
paragraph can be fulfilled at the first request/tdl' he only way to fix
this without paying more thah extra units is to move in front of ¢

at the first request td and thus pay one unit more than in the previous
case.

Now we are ready to prove (4.9). The easier part issthdirection. If

we can get an acyclic grap® by removing onlyk arcs, we sort the
vertices ofG’ topologically. The schedule which costs at mést+ &

looks as follows. We use the initial sequentdo rearrange the items

V; according to the topological ordet). For the rest ofr, we do not
change the ordering of the vertex items anymore. Thus, we serve all
vertex pairs optimally.

Concerning the arc gadgets, all those corresponding to the args in
can be served perfectly. For each arc we removed fegmve have
to pay one unit extra. As there are at mésif them, we pay at most
K + k units to serve.

It remains to prove the= direction of (4.9). There are at mgsgadgets
which were not served perfectly. We will show that if we remove the
arcs corresponding to those gadgets, the resulting graph will be acyclic.

Let C be a subset of such thatC' forms a cycle inG. We have to
prove that there is at least one arc gadget belonging wehich is not
served well. For any are = (v;,v;) and any list statd., we saye is

open if we haveV; in front of V; in L and closed otherwise. The arcs in

C C ET are those which are closed in the initial list. In order to serve
such a gadget perfectly, it has to be open when its gadget is served, but
remember that we cannot close it anymore afterwards without paying
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more thatt units extra(2). The arcs inC’ C £~ are open in the initial
list. If we want to serve them well, we can not close them before their
gadget is served because we cannot reopen tBem

Let us have a look at the list just after we served all arc gadgets for
ET in 0. In order to serve all gadgets belongingdawell, all of them
must be open at this time. This means for anyeate (v;, v;) in C that

the itemV; must be in front ofV; in the current list. Becausé forms

a cycle, at least one of them must be closed and hence was not (if it
belongs toE ™) or will not be (if it belongs toE~) served well. This
concludes the proof.



Outlook

As the title of this thesis suggests, the list update problem is far from
being solved. The gap between 1.50115 and 1.6 is small in absolute
values, but the problem remains interesting since closing the gap needs
an approach totally different from what has been done to date.

The main goal in the future must be to find good algorithms which are
not projective. Actually, the main problem here is to find techniques
that allow to analyze such algorithms.

Another direction might be to use complexity theory in order to get
more insights. Th&/P-completeness result discussed in Chapter 4 im-
mediately asks for better approximation algorithms and non-approxima-
bility results. A proof that the offline list update problem cannot be ap-
proximated within a factor ot.5 + ¢ would immediately imply that

no polynomial (1.5 + £)-competitive online algorithm exists unless
P =NP.

At first sight, it seems easy to obtair-@pproximation folOLUP for ¢
smaller thanl.5, sincel.5 is a rather trivial lower bound for online al-
gorithms and it is really the online property that boosts the lower bound
to 1.5.

On the other hand, online and offline algorithms behave very similar
when it comes to analyzing them. In both cases, one knows a lot about
the optimal relative order of pairs of items, but it is not clear how to
translate this information into total orderings of the items.

Like in the online case, projective algorithms seem to be the only class
of algorithms which allow to prove something about them. Extending
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projective algorithms to the offline case is straightforward. As a con-
cluding, somewhat speculative remark, this does not seem to lead to
algorithms which beat COMB. If this observation can be confirmed in
future research, the lower bound of 1.6 for projective algorithms is not
caused by the online property at all.
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