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Abstract
Well-run datacenter application architectures are heavily in-
strumented to provide detailed traces of messages and remote
invocations. Reconstructing user sessions, call graphs, trans-
action trees, and other structural information from these mes-
sages, a process known as sessionization, is the foundation
for a variety of diagnostic, profiling, and monitoring tasks
essential to the operation of the datacenter.

We present the design and implementation of a system
which processes log streams at gigabits per second and
reconstructs user sessions comprising millions of transactions
per second in real time with modest compute resources, while
dealing with clock skew, message loss, and other real-world
phenomena that make such a task challenging. Our system
is based on the Timely Dataflow framework for low latency,
data-parallel computation, and we demonstrate its utility with
a number of use-cases and traces from a large, operational,
mission-critical enterprise data center.

CCS Concepts •Applied computing→ Enterprise data
management; Data centers; Enterprise computing infras-
tructures

Keywords Sessionization; Trace Trees; Resource Attribu-
tion; Streaming Log Analytics; Data Parallelism

1. Introduction
This paper describes TS, a system for recovering structural in-
formation (sessions, spans, call graphs, transaction trees, etc.)
from a large datacenter logging infrastructure in real time,
with low latency, using only modest computing resources.
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Reconstructing such information from traces is a crucial
first step in many common datacenter management and di-
agnostic tasks, and application middleware is often instru-
mented to facilitate such recovery by generating appropriate
log records. Such logs, however, are generally large (often
terabytes of data per hour for a reasonably-sized datacenter),
and so most existing approaches [19, 21, 24, 35] work by
applying parallel computing techniques to offline logs.

TS processes complete traces online, in real time. This
allows it to support all the functionality of existing offline
analyses, but also much more: online operation is a funda-
mental requirement for continuous monitoring of a datacenter
and rapid, interactive diagnosis of problems as they happen.
A first contribution of this paper is to show that not only
is this real-time functionality useful, but it is practical: we
show in Section 5 that on a single machine, TS can process
500MB/s of log traffic from over a thousand log servers in
a large, enterprise datacenter, and its architecture distributes
naturally onto multiple machines with little overhead.

Reconstructing datacenter application sessions and trans-
actions from individual log records is an aggregation problem
over distributed streams, so a natural approach is to use a
general-purpose stream processing engine. This turns out not
to be practical: we show how a state-of-the-art stream proces-
sor with built-in operators for such aggregations (Flink [15])
can only process a small fraction of the traffic that TS can han-
dle in real time, with the same CPU and memory resources,
and generates results with 71× higher latency (1493 msecs
vs 21 msecs) with respect to the best performance of both
systems on a commodity machine.

The traditional high-performance alternative to general-
purpose systems is custom code. However, the problem TS
solves is sufficiently complex that engineering a solution from
scratch would be a prohibitive engineering task. Instead, TS is
built on Timely Dataflow [5, 36]. A further contribution of this
paper is to show how, by exploiting this general framework,
TS admits a simple, concise implementation in 1770 lines of
code, while at the same time seamlessly integrating with man-
agement applications that exploit the session and transaction
information generated by TS online: transaction clustering,
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call-graph pattern extraction, and others we demonstrate in
Section 5.2.

Reconstruction of structural information from logs is
only a small part of the broad problem of understanding
the dynamics of a datacenter. However, we argue it is a
fundamental building block for further analyses, and being
able to perform such reconstruction efficiently is a sine qua
non for more elaborate online monitoring and diagnostics.
We elaborate on this argument, and discuss the problem itself
in more detail, in the following section.

2. The Reconstruction Problem
We now define the problem that TS addresses in more detail.
At a high level, modern enterprise datacenters run a range
of application services on behalf of external clients, which
submit requests to an application. Not only are individual
applications distributed in nature, they also rely on a further
range of shared services within the datacenter, which are
also distributed, for example in a so-called “Service-oriented
Architecture”. Each request or user session therefore consists
of a distributed call tree of invocations.

Understanding the dynamics of this request workload, and
how it is serviced by the datacenter as a whole, is a foundation
for most of the operations and management tasks in the
datacenter. Data centers undergo constant evolution, with
shifting workload patterns and infrastructure reconfiguration
hundreds of times throughout the day. Operations teams are
faced with the hurdle of understanding this complex and
layered stack in a timely fashion – they require rich, fresh
information about the state of the datacenter.

A concrete example with numbers will help to illustrate the
general challenge. The real-world datacenter which inspired
this work (and a snapshot of whose workload we use to
evaluate TS in Section 5) is operated by a major provider of
IT services to the travel industry. It consists of roughly 55001

physical machines (many running multiple virtual machines),
supporting about 2500 application instances, about 13,000
service instances. Traditionally, this datacenter has serviced a
workload from external clients (airlines, travel websites, etc.)
which resembles an Online Transaction Processing (OLTP)
model, though increasingly analytics (OLAP) queries are
deployed as well. The system as a whole sees a few hundred
thousand external requests each second, which translate into
multiple internal RPC calls. The datacenter must cope with
rapid workload changes (for example, due to natural events
like hurricanes) and configuration changes: new services,
capacity, etc.

2.1 Logging infrastructures
The basis for understanding the dynamics of a datacenter is
logging, and so many datacenters instrument their applica-
tions (and middleware) with functionality to emit log records
when messages are sent and/or received by each service or

1 Figures are approximate for confidentiality reasons.
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Figure 1: Hierarchical application tracing. Three sessions are
shown, two from the same user.

application process. The basic principle is to assign a unique
ID to a request on its entry to the system and propagate (and
add to) this metadata whenever the request is passed between
components. This leads to records of this form:

Time: 2015/09/01 10:03:38.599859
Session ID: XKSHSKCBA53U088FXGE7LD8
Transaction ID: 26-3-11-5-1

A common task then is to relate all pieces of work done
in individual components back to their originating request or
tenant (resource attribution). By combining the correlators
with other fields present in the logs, a detailed representation
can be re-built which contains all activities in the workflow
along with structure relating the individual facts.

Consider the example in Figure 1, where two clients
are issuing requests. A transaction spans a range covering
its constituent sub-requests. During a session, the client
may invoke any number of services, each of these requests
initiating a root span which can trigger an arbitrary number
of additional nested spans. This leads to a natural hierarchical
choice of log record identifiers which reflect the nesting. Red
dots in the figure indicate log records that mark the start and
end of individual spans, which are usually (but not always)
fully contained within their parent.

Our example datacenter generates considerable logging
traffic of this form – about 5Gb/s of network bandwidth on
average, or about 50TB of log data per day. Log generation
itself is spread over about 1300 distinct log servers.

2.2 Sessionization
The reconstruction process, known as sessionization [20, 25],
transforms a (distributed) stream of these log records into
a sequence of trees reflecting the workflow of each request
and session. Several design choices exist as to how to do
this, based on what assumptions the logging infrastructure
makes [20, 25, 32], but broadly there are two key steps. First,
log records are grouped into sessions using unique IDs, and
sessions are marked as “closed” based, if necessary, on time-
based windows of inactivity; and second, each closed session
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is converted to a trace tree which aggregates individual inter-
application transactions or spans into a complete operation.

An important design choice is when and how to declare a
session “closed” (completed). Time-oriented sessionization
declares the session closed once a given period has elapsed
with no intervening session activity. In contrast, navigation-
oriented sessionization relies on explicit termination records
in the log. In theory, navigation-oriented approaches are
easier to implement. In practice, a combination of both
is used, since unreliable log servers cannot guarantee to
presence of a termination record for every session.

Offline sessionization, using log files on disk, is for the
most part a simple aggregation operation, concisely express-
ible in a MapReduce-like system (e.g. [31]): The map func-
tion hashes records based on session ID, and the reduce does
the work of constructing the tree.

Online sessionization is harder. Data arrives continually,
and the streaming computation must buffer log records,
track inactivity windows for each session, and emit the
reconstructed trace tree once the session is closed. Note that
since an online sessionizer has an inherently limited horizon
to look ahead in the log stream, it will produce different
output to an offline sessionizer.

One example is with sessions that are prematurely termi-
nated and later exhibit a renewal of activity after being idle;
an initial trace tree will be constructed containing all activity
accumulated until the inactivity period expires and a second
session window will be re-opened with the later activity. As
we observe, online sessionization results in fragmentation
of the trace tree into multiple disjoint parts whereas offline
grouping produces a single and complete user session.

2.3 Further challenges
In addition to data volume, online sessionization faces a
number of other technical challenges (some of which are
shared with the easier offline case).

Reordered logs: Logging servers typically buffer records and
flush them in batches. This, and the use of many distributed
log servers, results in log records being reordered in the
stream. Assuming log servers have synchronized clocks (see
below), this reordering can be bounded in time and buffering
is used to restore the chronological record order.

Data burstiness: Batching also causes data to arrive in bursts,
which can leave the processing CPUs idle in some periods
but overloaded in others. This can be mitigated at the expense
of further buffer space, and as we show in Section 5, memory
footprint is a concern when using stream processing engines
to perform sessionization.

Incomplete logs: Log records can go missing for a variety
of reasons: failure of servers, lost packets, transient over-
load, and software bugs. The latter are endemic in a large
enterprise with tens of thousands of software developers,
and a constantly-evolving code base. Incomplete logs do not

block the sessionization computation, but they result in trees
with missing nodes which can introduce errors into down-
stream computations. In some cases, the missing nodes can
be inferred – transaction ID of 2-10 implies there is a root
transaction 2 and nine other siblings. In general, however,
the correct policy for handling missing records (detectable or
not) depends on the application.

In addition to these, there are further challenges that TS
only partially addresses, or does not yet address.

Clock desynchronization: Messages may appear to be re-
ceived before they were originally sent or parent transactions
start after their children due to clock skew between different
machines. In our particular use-case, such cases seem to be
rare, but nevertheless do occur and cause anomalies in the
output. In the current version of TS, we use timestamps taken
using the local system clock on the producer, but we assume
these clocks are synchronized. A natural extension is to incor-
porate a time resynchronization protocol (e.g. [45]) into the
sessionization process to detect and correct for clocks which
are not synchronized.

Very long sessions: A session can be reconstructed and
closed only after all log messages belonging to the session
are collected. It follows naturally that long sessions have
higher memory resource requirements, which the system
must handle without swapping.

An additional challenge is how to set appropriate inactivity
timeouts for deciding when to close sessions. Too short a
timeout splits sessions incorrectly, while too long a timeout
results in increased latency for the session tree. This is a
problem for any logging protocol (due to log record loss), but
is particularly acute for those with no explicit end-of-session
markers. One way to finesse this trade-off is a watermark
scheme and incremental processing model as proposed by the
Dataflow model in [6]. This would eliminate the waiting
period to close a session and allow to inspect partially-
reconstructed trees which, despite being incomplete, provide
faster feedback on the session state.

3. TS Architecture
TS is designed to interface with existing datacenter logging
infrastructure, and ingest logs in real time from a collection
of logging servers which emit hierarchically-labelled log
records along the lines of Dapper [49] and Magpie [10].
The tracing infrastructure and log collection are considered
external to TS, which simply expects parallel streams of logs
as input to the engine.

Each log record contains the local system time where it
was generated, the identity of the machine or process, and an
application-specific payload. As discussed in Section 2, we
currently assume these timestamps are sufficiently synchro-
nized to be taken at face value when reconstructing sessions.

It is common practice to decouple applications from
logging by buffering traces locally on the producer and
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Figure 2: TS architecture

propagating log records to a set of dedicated servers in the
background. Thus, we assume that all log records relevant
to a given session arrive with bounded delay at TS, but can
arrive re-ordered and from different logging servers.

TS is a logically centralized system, but parallelizes across
multiple machines in a cluster. Figure 2 shows the main
components of the architecture, and its context in the rest of
the datacenter. We now discuss each component of Figure 2
in detail.

Re-order buffers: The re-order buffers (one for each TS
“worker”, in Timely Dataflow terminology) are responsible
for buffering and sorting the input logs based on the indicated
event time. Due to the distributed log sources, the arrival
of an event to the system can be delayed, resulting in an
arrival order that is different from the actual order the events
occurred in the production system.

The size of the re-order buffer determines how tolerant
TS is to the late arrival of log records. Anecdotally, our
experience so far has been that when related events in real
logging infrastructures arrive out of order, their arrival times
at TS are actually quite tightly bounded2, and so sessions can
be reconstructed accurately using relatively small re-order
buffers. In general, the larger the re-order buffers, the more
accurate the results of sessionization, and we investigate this
trade-off in Section 5.

Session reconstruction: During sessionization we need
some indication of when an active session is closed so that the
reconstructed trees can be emitted to allow reclamation of the
system state. As we discussed in Section 2, the logs produced
by datacenter applications record all session activities but TS
cannot rely on an marker to denote the end of a session.

2 Note that this is unrelated to skew in source clocks.

TS’s “flush on inactivity” approach closes sessions after
a chosen interval has elapsed during which no messages
have been received. This imposes a fixed latency penalty on
all session reconstructions (i.e. timeout is the norm rather
than the exception). A large timeout will penalize short-lived
sessions because they are only emitted after the full timeout
has elapsed. The choice of the timeout is dictated by the
longest interval between subsequent annotations of a session,
or in other words the maximum inter-arrival time, and this
is a property of the datacenter workload. In Section 5 we
present statistics on session activity observed in a trace from
our particular datacenter example. Whilst this penalty cannot
be eliminated, the delay can be adjusted to be tolerable with
a single runtime parameter.

An alternative approach would be to create multi-versioned
sessions. In this scenario, new messages can arrive for a ses-
sion at any time and changes are propagated downstream to
subsequent calculations immediately. In principle, this may
require recording the entire history of all sessions unless there
is some way to deduce that a session is permanently closed.
Moreover, permitting intermediate results which can be later
retracted requires all downstream operators (subscribers)
to support the same incremental computation model over
changed inputs, for example recalculation using Differential
Dataflow [37].

Session-based statistics: Most of the work of reconstruct-
ing sessions, and indeed the subsequent statistical processing
of such session information which we demonstrate in Sec-
tion 5.2, is built from a basic library of operators that can be
used to reconstruct transaction trees, gather histograms and
percentiles for various session characteristics (e.g., session
timespans, inactivity periods, etc.), perform transaction clus-
tering, and mine communication patterns. All these tasks are
based on the output of sessionization, and they could be easily
composed to form more complex tasks [28, 42, 44, 52].

TS derives much of its flexibility, and performance, from
using a common substrate for sessionization and subsequent
statistical operators, namely Timely Dataflow.

Timely Dataflow [36] is a technique for executing distributed
and data-parallel computations over streaming inputs, first
implemented in the Naiad system [41]. It is based on the
dataflow computational model: a program is represented as a
directed, possibly-cyclic graph which reflects the sequence
of operators forming the program’s workflow. Operators are
the nodes in the graph and consume inputs and produce new
outputs; these are connected by channels (edges) along which
data and control messages are exchanged. Timely Dataflow
is not a contribution of this paper, but we describe it briefly
here for completeness.

In contrast to many comparable systems (e.g. [31, 53]) that
process arrivals in micro-batches, TS is purely event-driven
(similarly to [33, 41, 50]), meaning that data can be ingested
and processed on a record-at-a-time basis.
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The dataflow modelling approach is a natural fit to stream-
ing program design – a programmer chains together operators
to construct the workflow. An illustration of the mapping be-
tween the workflow design and its execution as performed by
Timely Dataflow is shown in Figure 3.

Expressing computations: A program built with Timely
Dataflow is made up of two elements: an ‘input’ function
that drives the input stream (read data, advance time) and
the set of data-parallel operators which achieve the desired
workflow (computation). In our case the workflow is the
sessionization task as well as the computations for the session-
based statistics. These connect to the input function which
in turn interfaces with the log replayer. Let us look at how
timely Dataflow supports the creation of workflows. There
is a minimal set of default operators to filter and transform
data. There is also a generic construct for unary- and binary-
shaped operators and the built-in operators are written as a
library without any special system privileges. For use cases
requiring custom processing logic, as with sessionization, this
can be achieved by supplying a user-defined functional logic,
something we explain in more detail in the following section.

By building on top of a general-purpose dataflow model
and using standardized windowing operators, simple tasks
can be easily composed into more complex ones, resulting
into larger applications. A reusable implementation of basic
operators like sessionization plays an even more important
role since it is a precursor step for most tasks which require
the flow of requests in the datacenter and their context.

Examples of such applications include anomaly detection,
policy checking and identification of RPC deadlocks.

Runtime execution: In the context of multiple workers,
the dataflow graph is replicated at each worker and logical
exchange edges are realised by all-to-all channels between
the workers. Data is moved along those edges encapsulated in
messages tagged with a logical timestamp, usually an integer
value reflecting its actual event time. Within a worker, the
operators run on a single thread and share execution time
with no pre-emption.

To support efficient analytics in real time, the whole data
processing pipeline is push-based. The computation proceeds
in steps and at each step operators are involved in round-
robin fashion; new inputs are pushed all the way down to the
operators, and results are produced as tuples flow in, without
the need to manually issue queries or requests for updates.
As result, the system allows distributed input of millions of
records per second and produces outputs at millisecond-scale
latency.

Progress tracking: A notable and distinguishing feature of
Timely Dataflow is its distributed and asynchronous progress-
tracking protocol [5]. This key component is responsible for
bookkeeping of all outstanding messages and unexercised
capabilities throughout the dataflow graph (i.e. timestamps
which could potentially still emit outputs or pending notifica-
tions). What makes it special is that dataflow operators can
consume and produce records without barriers or global coor-
dination. Workers periodically exchange progress statements
about local work and these are accumulated into a global
view of progress. Once all messages and capabilities for a
given epoch have been depleted, a notification signalling the
completeness of an epoch is generated. Notifications allows
data from different epochs to be in-flight concurrently, while
operators can identify closed epochs.

4. System Implementation
In this section we detail the implementation choices and the
flow of data in our system. At first we elaborate on how input
streams are fed into the system, with a focus on the re-order
buffer used for handling out-of-order events. We then explain
the sessionization task as a data-parallel window operator.
Finally, we describe how individual analytic tasks can be
reused into more complex ones within our general-purpose
dataflow approach.

4.1 Input Ingestion
Here we explain how arriving records are grouped by time
and how completion of arrivals is signalled.

Time granularity. Epochs are logical timestamps used to
track flow of data and communicate progress in the dataflow
graph. An epoch is any partially-ordered coordinate (in our
case, an integer) and is used to divide the input stream into
disjoint time windows. The choice of how this coordinate
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is defined has wide-reaching consequences on window op-
erators, execution efficiency and synchronization between
workers. For example, the amount of progress traffic grows
in proportion to the number of outstanding epochs and, in
addition, overly fine-grained epochs limit batching which can
affect per-record processing costs [16]. For sessionization,
session boundaries are determined by a fixed inactivity delay
after the event and, for this reason, we use the original event
timestamps as the reference base for our epochs. In the real
trace we have, timestamps are captured with nanosecond-
level precision, and this is too fine-grained as there are too
many distinct timestamps which each need to be tracked indi-
vidually. We therefore batch input records in windows of one
second each, which results in around 1.3M records per epoch.
We should note that our choice of epoch granularity primarily
affects how often output tuples are materialized and that the
high-resolution event timestamps are preserved within the
records themselves for use in later analytics.

Streaming arrivals. Timely computations are executed
across a set of workers and there is no designated master
node. All workers participating in a computation can receive
input in parallel. Workers alternate between reading data from
an I/O source (e.g., a file or a network socket) and running
computation steps, and both of these tasks are interleaved on
a single worker thread. Data is ingested into the system using
two functions from the programming interface:

• give which sends a single record into the dataflow at the
current epoch.
• advance_to which signals completion of the current

epoch. This issues a punctuation and allows the system
to issue notifications which are used by the workers to
determine that their input can no longer produce data at
earlier timestamps.

These two functions correspond to the data and control
paths respectively. Records (data) can be delivered to an
operator for the current or any future epoch; notifications
(control) arrive in strictly monotonic order. Input records are
introduced sequentially (epoch-by-epoch) and processing of
the current data must run to completion before proceeding.
This has an impact on late arrivals because all data for an
epoch needs to be buffered until it is complete before the next
processing step can begin; we deal with this using a re-order
buffer, as we will discuss in the following paragraph.

Re-order buffer. Our system has to cope with arrival of
late records and we deal with using buffer-and-reorder, a
standard approach in streaming systems. The idea is to stash
all arriving records, wait a fixed interval (slack) and re-order
any out-of-order records within this interval. The parameter
slack refers to the upper bound on late arrivals and must
not be confused with other definitions of slack, e.g., in the
context of the critical path [29]. Records which arrive within
this interval are ordered appropriately and excessively late
records are simply discarded. The trade-off when choosing a

value for slack is similar to the inactivity delay for sessions.
Larger values add a fixed latency penalty because each record
is delayed and there is a bigger memory footprint for buffering
the input. We explore this trade-off in Section 5.

Online re-ordering of the input has non-negligible cost
but there are sorting algorithms, such as insertion sort and
Timsort, which perform well and have linear complexity in
this setting. In our implementation the re-order buffer adopts
a similar approach to Pigeonhole sort and makes a single pass
over the input while moving the records into a fixed number
of buffers. The total number of buffers is equivalent to the
slack interval and they are filled in circular discipline and re-
used as timestamps advance. A record at time t is kept in the
buffer slot at t % slack. The re-order buffer keeps track of the
smallest timestamp (least) seen so far and repeatedly reads
from the input stream. Records with timestamp less than least
are discarded, records in the interval [least, least + slack] are
appropriately slotted and once a record has been observed
with timestamp greater than least + slack all intervening
buffers are flushed and emitted into the dataflow graph.

4.2 Sessionization as a Dataflow Operator
Sessionization can be expressed as a windowed group-by
operator, which essentially groups records into buckets based
on their session, and emits the entire bucket once a given
inactivity period has elapsed. In the following we explain the
use of dataflow primitives to efficiently implement this logic.

Data exchange. Our base framework, Timely Dataflow, has
no built-in windowing mechanism, hence, we implemented
sessionization as a unary data-parallel operator with a single
input and a single output stream. The log dataset arrives from
multiple sources and has sub-streams – one per log server in
the real deployment – which are ingested by all workers of our
system in parallel. Records are not partitioned by a specific
attribute and an all-to-all shuffle is required before the custom
operator logic such that the data is partitioned appropriately
based on their session IDs. Timely Dataflow offers a facility
to exchange data among workers based on Parallelization
Contracts (PACTs) [7], a generalization of MapReduce. In
our implementation we used the Exchange PACT, which is
parameterized by a hash function that takes an element of the
stream and returns a 64-bit integer indicating where to route
the data modulo the number of available workers. Concretely,
we have a fixed partitioning strategy and apply SipHash 2-4 to
the session ID. An important distinction between our system
and other approaches is the avoidance of synchronization;
data exchange does not imply any logical barrier between the
shuffle and computation phases, and workers do not need to
coordinate with one another for these two operations.

Data processing. Sessionization is a stateful operator, mean-
ing that arrival of new log records extends the corresponding
session window by prolonging the inactivity delay. As records
arrive, they are buffered and maintained in a series of indexed
collections (essentially hash maps). Operator state is purely
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worker-local and the backing collections are manually defined
by the developer. Session state is stored in three collections:
(i) one that stores messages organized by time, (ii) one that
groups together all messages belonging to each session cur-
rently in-flight (i.e., for which the inactivity delay has not
yet elapsed), and (iii) one containing all session IDs that may
have expired by a given timestamp.

An operator is periodically scheduled to run, and the
framework invokes the operator logic as shown in the pseudo-
code below. From a programmer’s perspective, records are
delivered one-by-one and the flow of data is pull-based by
means of an iterator (line 1). However, our system internally
adopts a push-based architecture where records are pushed to
workers in small batches of 1024 records each, and are handed
over to the operator in the form of flat vectors grouped by time.
Each record is tagged with an epoch number and organized
in separate buffers according to its (event) timestamp. The
operator logic is responsible for maintaining any needed state
and for segregating state from different epochs, but this is
excluded from the pseudo-code for the ease of presentation.

Control plane. A session is marked as complete and all state
is flushed once a fixed number of epochs have elapsed with
no intervening activity for the session. Each worker receives
exactly one notification for each in-flight epoch, and this is
handled transparently by the Timely Dataflow framework.
Notifications are delivered independently from data but in the
same manner (line 6). Note that pushing data to the output
stream is triggered only in response to a notification (line 8).

// State initialization (done only once)
0. state.initialize();

// Consume input stream of batches
1. for (epoch, data) in input.consume() {
2. state.add(epoch,data);
3. notificator.notify_at(epoch);
4. }

// Data processing -- Update worker state
5. let sessions = state.update_active_sessions();

// Control plane
6. for epoch in notificator.consume() {
7. for session in sessions.to_flush_at(epoch) {

// Push sessions to the output stream
8. ouput.give(session);
9. }
10. }

Fault tolerance. A practical deployment must be resilient to
failures and support automatic scaling in response to chang-
ing demand, as these are essential needs for online and long-
running analytics. Although these features are currently lack-
ing from our system, it is entirely viable to extend the underly-
ing runtime as both features reduce to a common requirement
of being able to migrate and take a consistent snapshot of the
data streams and operator state. Timely Dataflow’s predeces-
sor system – Naiad [41] – features largely the same computa-
tional model, provides exactly-once guarantees on message

delivery by taking periodic checkpoints and, as experiments
with a comparable streaming acyclic graph application show,
imposes low overhead with no discernible impact on me-
dian end-to-end latency and a tolerable degradation of 33%
in throughput. The simple mechanism employed by Naiad
pauses the dataflow computation and relies on upstream pro-
ducers to backup emitted records until acknowledged (which
imposes larger space requirements) and more recent work
has reduced the cost of fault tolerance even further by taking
snapshots asynchronously [14, 17, 26] and employing roll-
backs [4] to selectively undo work. As fault tolerance is an
orthogonal concern and can be transparently implemented
within the streaming runtime, we defer this to future work.

4.3 Composition of Analytic Tasks
Our system can easily accommodate new ad hoc analytic
tasks, and inherits a modular structure largely due to the com-
putational model it builds upon. As the pseudo-code below
shows, new operators are introduced by defining an extension
method of the Stream type (lines 1-3). Borrowing from ideas
in functional programming, operators are generic with re-
spect to the data types of their inputs and outputs, and can be
parameterized by user logic. This is a notable departure from
current practices for datacenter monitoring and analytics that
use custom and tailor-made platforms specialized towards
predefined tasks (cf. Section 6). A particular benefit of this
approach is an open structure which permits code sharing and
only specifies expected traits (functionality) without naming
concrete data types.

1. trait Sessionize<S: Scope, R: Data> {
2. fn sessionize(inactivity_delay: Duration)

-> Stream<S, Session<R>>;
3. }
// Re-use of results in several applications

4. computation.scoped::(|scope| {
5. let (input, stream) = scope.new_input();
6. let trees = stream.sessionize(INACTIVITY_LIMIT)

.construct_trace_trees();
// Trace tree durations

7. trees.filter(|t| t.messages.len() >= 2)
.map(|t| min_max_time(t.messages))
.histogram(|x| log_discretize(x));

// Classify trace trees by structure
8. trees.map(|t| t.signature())

.topk(|x| x.clone(), 10);
// Identify pairs of communicating services

9. trees.flat_map(|t| service_call_patterns(t))
.topk(|pairs| pairs.clone(), 10)
.show_each_epoch();

10. });

In addition, the dataflow-based model allows for reusing
simpler tasks like sessionization to concisely compose more
complex tasks and, hence, to better utilize the available
resources. Examples shown in the pseudo-code above include
computing trace tree durations (line 7), classifying trace
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Trace duration 09:00:03 – 10:00:04 UTC

Trace size 223.3 GB (text, gzip-compressed)
305 bytes per record (mean)

Mean input rate 1.3 million events/sec
424.3 MB/sec spread across 1263
streams (replayed from 42 log
servers)

Workload statistics 4′876′273′293 annotations
747′242′389 spans
103′382′086 root spans
99′508′175 trace trees

Table 1: Characteristics of the real-world event trace we use

trees based on their structure (line 8), and identifying service
communication patterns (line 9). The implementation of these
is concise and easily expressed in terms of data-parallel
operations and we have built a re-usable library as part
of TS which extends the Timely framework with Top-K
ranking, histograms and CDFs. Whilst the code for these
analyses are not included, we provide more details on the last
two applications, along with an experimental evaluation in
Section 5.2.

5. Experimental Evaluation
In this section we discuss the performance benefits of execut-
ing sessionization and various analytical tasks which depend
on it within our system. The experimental evaluation relies for
realism on an actual workload trace from one of the largest
operational datacenters for the travel industry. We demon-
strate that, where other general stream processing platforms
lag behind, TS can comfortably keep up with high-volume
distributed streams of events in real time. By real time we
mean that, for each second of input data in event time (epoch),
TS can perform the respective analytics in less than a second
so that all processing tasks are completed before the next
batch of input arrives.

Workload characteristics. The trace we use is taken over
the span of an hour on a work day. The characteristics of the
trace are shown in Table 1. We briefly discuss aspects relevant
to the computation requirements for TS. We start with a few
generic observations – the mean input rate of the trace is 1.3
million records/sec and it remains relatively constant. This
would be also the rate at which TS will have to operate in
order to precess events in real time. The 1263 streams we
refer to are logging processes and we talk about them in detail
when we discuss the logging pipeline in a follow-up section.
What is perhaps interesting to observe is that there are about
99.5 million trace trees in the trace but 103 million root spans,
meaning that multiple user requests can be grouped into the

same session. Note that a root span is initiated by an end-user
connecting to the datacenter. Also from the table we could
deduce that there are 7.5 spans per tree on average and that
each tree will see 49 message exchanges on average. Theses
figures should be read cautiously since we observed strong
variation in the number of transactions per tree. We do not go
into details of the statistical characterisation of the trace in
this paper because we focus on TS being able to cope with
the real-time use of the trace for sessionization and related
tasks.

Two important properties of the dataset are (i) the total
duration of user sessions, and (ii) the time between successive
messages. These properties dictate the amount of state that
needs to be tracked while correlating messages during ses-
sionization and thus guide memory requirements and buffer
management. Moreover, the first property also guides the
choice of the inactivity timer when deciding to close a ses-
sion. The vast majority (roughly 95%) of all root spans are
short-lived and have a total lifetime of less than 2 seconds.
Only in 0.24% of cases root spans remain dormant for more
than a minute, although sessions can last up to a full hour
and extend beyond the trace boundary. Similarly, in 99.5%
of cases, the longest interval between subsequent messages
belonging to a single root span does not exceed 12.3 mil-
liseconds. Unlike the total duration of sessions, inter-arrival
time does not have a long tail, and we observe that root spans
receive activity at least once per second.

As a final comment, the short duration of user sessions is
also reflected in their size with respect to the number of ser-
vice invocations they involve: most trace trees include only a
single or a few services (Figure 4). Service invocations can be
either local to a server process or result in execution of a trans-
action on a remote machine; this distinction does not play a
role for session reconstruction because our solution works
independent of component boundaries, provided transaction
identifiers are labelled according to their hierarchy within the
trace. The figure showing small number of service invoca-
tions is typical of enterprise workloads in a service-oriented
architecture where the decomposition of an application is
broad when compared against a micro-services approach.
Notwithstanding, cloud workloads are also a valid use case
for structural reconstruction because the finer breakdown of
services only exacerbates the log reconstruction problem and
raises the need for better resource accounting.

Logging pipeline and its simulation. Whilst our prototype
is intended for deployment in the datacenter, we do not have
access to a live stream of log events. Instead, we have access
to a log trace generated by the logging infrastructure at the
datacenter we look at. In the trace, events are recorded by
a distributed middleware which serves as the message bro-
ker between application instances. Each middleware replica
generates log events each time a message is received, sent or
being processed and contains a common header (timestamp,
remote endpoint, tracing IDs) and several application-specific
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Figure 4: Histogram reflecting the number of service invoca-
tions in trace trees

fields. Log events are being immediately propagated to a set
of 42 log servers, each of which may be running multiple
logging processes accumulating to a total of 1263 processes.
Upon arrival at the log server the log messages are written
to disc and each server will periodically compress outdate
messages into log files. These files are what comprise the log
trace we use as input.

To realistically represent the behaviour of the actual
logging pipepline, we preserve the full fidelity of the trace
and reproduce both the timings of each log event and simulate
the same number of log processes as in the real deployment
(cf. Table 1). We replay the entire trace from the log files
which are stored on disc and due to the limited size of our
evaluation cluster we re-map the log streams across a smaller
four-node cluster. This effectively increases the log output at
each replayer instance but without altering the total rate of
log emission compared against the original logging pipeline.
The functionality that does that is the replayer module, which
runs as an external data source. Based on the original event
time, the replayer groups log events into epochs and at the
begin of a new epoch the corresponding events are emitted in
their original text format over a TCP socket.

The replayer uses the same number of workers as the main
computation. The simulated log servers are assigned to the
available workers of our system in a round robin fashion.
Since the number of workers is a varying parameter in our
experiments, different number of log servers are mapped to
a worker depending on the setup. In the experiments, we
do not account the cost of replay (since this is external to
our system), however, all latencies we report include the time
each processing task needs to read data from the input buffers.

Experimental setup. Our system is built upon the open-
source release of Timely Dataflow [36] (v. 0.1.15) compiled
with Rust 1.14. All experiments are conducted on a small
cluster with four identical machines, each one having two
sockets with Intel Xeon E5-2650 (16 physical cores, 32 with
Hyper-threading), 64 GB RAM, running Linux (Debian 7.8
“wheezy”). The cluster has a private 10 Gb Ethernet network.
The workload trace is stored in gzip-compressed archives on
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Figure 5: Box-and-whisker plot showing the latency per
epoch (1 sec) of log data for sessionization on our system
(timely-x) using x number of workers. In this experiment we
process the whole trace with 1263 input streams (replayed
from 42 simulated log servers mapped over 4 replayer nodes).

a local SAN attached via iSCSI which has 60 x 3 TB disks in
a RAID 6 configuration.

Prior to each experiment we present in the following, we
performed a warm-up run to make sure the page cache is
primed. This is to ensure that timings for repeated executions
are consistent, and to simulate a real logging pipeline where
disks are used for persistent storage of archives but recent
log records are likely to remain in memory for a short time
frame.

5.1 Online Sessionization
In this section we evaluate the performance of our system
in terms of latency and memory consumption for the basic
sessionization task described in Section 4.2. We also compare
our system with a state-of-the-art streaming engine.

Latency (full log rate). We start with evaluating the cost
of sessionization, being the cornerstone for higher-order
analytical tasks. The experiments logic is as follows: mea-
sure the time required to reconstruct user sessions for
each epoch (1 sec) of incoming log data; do that for the
whole trace of Table 1. To provide accurate measurements,
we instrumented our system with high resolution timers
(time::precise_time_ns() in Rust), and we measured
the sessionization time as the interval between (i) the first
time an epoch is observed, and (ii) the time a punctuation is
delivered by the system, confirming that the epoch is over (cf.
Section 3). We vary the number of worker threads and report
the results in Figure 5. Each box in Figure 5 contains the first
quartile (bottom line), median (red line) and third-quartile
(top line), whiskers extend until 1.5 times the interquartile
range and outliers are plotted as individual points. As a gen-
eral comment, our system is able to perform sessionization
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in real time (i.e., in less than a second) when using 8 or more
workers.

Comparison with other systems (reduced log rate). Pre-
viously, we made the argument the TS can deliver better
performance than a general-purpose streaming engine. In this
evaluation scenario we conduct the experiments to back our
claims. For comparison we selected Apache Flink [33] – a
state-of-the-art steaming engine – which has a flexible design
for windowing over data streams and which already accom-
modates the inactivity windows needed for sessionization
as a built-in primitive. In order to make a fair comparison,
we disabled checkpointing and instrumented Flink similarly
to our system taking advantage of the fact that it already
tags tuples with their event time (‘epoch’) and tracks their
progress. Our latency measurements rely on the delivery of
watermarks and records the time interval between when the
first tuple for a given epoch is observed and later once a punc-
tuation is delivered, confirming that no elements with that
epoch will arrive in the future. In this way, the processing
time is derived by sampling two timestamps from the high-
resolution, monotonic clock source provided by the runtime
environment, namely System.nanoTime() in Java. In addi-
tion, we provided a custom data source that ingests data from
a TCP socket in parallel across all streaming tasks, disabled
checkpointing and also configured Flink with event time char-
acteristics so that its notion of time matches exactly the one
used in our system.

A key finding of the experiment is that Flink failed when
processing the complete input stream (prior experiment)
due to an excessive accumulation of log records in operator
queues. Specifically, its processing rate fell behind the input
rate and finally went out of memory. Monitoring revealed a
high level of backpressure at the data source, i.e., more than
half of the stack traces samples were blocked on internal
method calls. To still report a comparison, we evaluated
both systems against a reduced input dataset by replaying
only one of the 42 log servers (with 37 log streams and a
mean input rate of 6.9 MB/s). Figure 6 depicts the results of
this experiment for each epoch (1 sec) of the reduced trace.
Boxes in Figure 6 have the same meaning as in Figure 5.
We observe a significant difference in the processing delay
when comparing both systems on an identical workload. In
its best configuration (single host, four workers), Flink spent
on average 2.1 seconds (±1.1 s) for processing a single epoch
of streaming logs whereas our system (with 16 workers)
took only 26 milliseconds (±53 ms). Moreover, our system
can make better use of parallelism and both the median
and 90-percentile latency scale linearly until 8 cores. After
8 workers (there is one worker per core), load imbalance
stalls progress due to the cluster-wide synchronization once
per epoch and the costs for progress tracking in Timely
Dataflow increasingly dominate the computation. We plan
to investigate these issues more fully as part of future work.
It is also worth mentioning that the choice of Rust as an

implementation language has a considerable impact on the
memory footprint of sessionization; in our system, the peak
resident set size remained stable and reached a peak of
203 MB while Flink’s heap rose above 7.5 GB and required
considerable tuning.

Varying the number of workers. In these experiments we
evaluate the performance of our system when executing the
sessionization task on a single multi-core machine of our
cluster. The objectives here are (i) to provide detailed latency
measurements when varying the number of worker threads,
and (ii) to show the fraction of time spent in reading data
from the input buffers. While in the previous experiment we
handled the full log, here, to improve readability results are
shown only for the first 5 minutes of the trace in Figure 7.
Initially, the epoch processing latency gradually rises and
stabilizes after roughly a minute (Figure 7a); this is explained
by a corresponding increase in the log arrival rate caused by
the trace collection process. The horizontal dotted lines in
both plots of Figure 7 show the upper bound to meet real time
processing for one epoch of log data. Note that configurations
with fewer than 16 worker threads cannot process the trace
within one second (Figure 7a). Moreover, the breakdown in
Figure 7b shows that a sizeable fraction of execution time
is spent reading input (on average 41.1%). Overall, these
experiments demonstrate that our system can process logs in
real-time with only the modest resources of a single modern
multi-core machine.

Memory footprint. As discussed in Section 2.3, one of the
challenges in a real tracing infrastructure is that log records
arrive in a non-deterministic order. In the common case, logs
are not delayed arbitrarily and arrive within a limited time
frame; taking the difference between the timestamps of con-
secutive log records that are out-of-order, we observed a
median difference of 0.69 ms with the 90-th, 99-th, 99.9-th
and 99.99-th percentile values being 4.5 ms, 17 ms, 32.5 ms,
1.2 sec respectively. The most delayed log record we observed
arrived many minutes (485 sec) late. In Section 4.1 we de-
scribed how we deal with late inputs, i.e., by buffering and
re-ordering records at the input source, an approach that in-
troduces a fixed latency penalty. However, the characteristics
of the real trace indicate that, whilst out-of-order records are
a problem to contend with, they can be handled by simply set-
ting an upper bound of several seconds. Here we investigate
the impact of this choice on our system’s memory footprint.
Figure 8 shows the total resident set size of the sessionization
process on a single machine of our cluster as we vary the
re-order window size in number of epochs. As expected, this
grows linearly because a larger window buffers proportion-
ally more input data. Each second of input data from our
trace adds 571 MB on average. All data resides in main mem-
ory, and the total physical RAM becomes the limiting factor
(when the window size is set to 110 epochs).
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(b) TS

Figure 6: Comparison of TS against state-of-the-art. Box-and-whisker plot showing the latency per epoch (1 sec) of log data for
sessionization with varying number of workers. The input streams in this experiment were reduced to 37 out of 1263 in total, so
that Flink could keep up with the processing.
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Figure 7: Latency of sessionization with breakdown of processing costs for each epoch of log data (1 sec) during the first 5
minutes of the trace. These experiments are run on a single host with both the replayer and TS sharing the resources. The
simulated inputs correspond to the entire datacenter trace with its 1263 parallel log streams and 42 log servers.

5.2 Online Data Summaries
To demonstrate the merits of our approach, this section dis-
cusses analytic tasks we conducted on top of the sessioniza-
tion output. As mentioned in Section 4.3, the composition of
analytic tasks allow us to reuse the output of simpler tasks
into more complex ones and to easily extend the system with
new modules. Examples of first-level statistics are the dura-
tion of sessions, bandwidth incurred, and number of services
invoked per trace tree. Their composition enables deeper
analytics, including latency inference [35], communication
pattern mining, service dependency extraction, and critical
path analysis [19], among others. First, a cautionary note -
the applications just mentioned are more sensitive to poor
data quality and incomplete traces (Section 2.3). For exam-
ple, skewed timestamps break causality and result in false

dependencies whereas missing logs fragment the trace trees
and cause short dependency chains.

Online trace tree clustering. The classification of trace
trees based on their structure provides valuable high-level
feedback on the performance of the application layer in the
data center. To support such a classification in real time,
we have implemented a dataflow whose task is to first
create light-weight signatures of trace trees, as produced
by sessionization, then count the number of occurrences of
each such signature, and finally output the k most frequent
signatures per epoch. A tree signature amounts to a vector
whose elements correspond to the number of outgoing edges
of the nodes in the trace tree. We focus on the outgoing node
degree since real traces typically have a single incoming edge,
the one that triggered the current span, and multiple outgoing
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Figure 9: Measured latency per epoch (1 sec) of log data
to conduct two different analytic tasks on the output of
sessionization, including the latency of sessionization. The
top-10 trace tree signatures and pairs of communicating
services are updated in real time (<1 sec).

edges, leading to subsequent spans. Performance results for
online structure classification of trace trees are shown on the
left of Figure 9.

Inferring communication patterns. Here we showcase how
we can efficiently extract the top-k most frequent pairs of
communicating services per epoch of log data. Such sum-
maries are useful as they may suggest the need to optimise
the placement of replicas for specific pairs of services that
communicate heavily. The task is performed by traversing the
trace trees (as produced by sessionization) in a breadth-first
fashion, track the pairs of communicating services, and out-
put the k most frequent ones per epoch. Performance results

for this task on the whole trace are shown on the right of
Figure 9.

6. Related Work
The work we present in this paper spans multiple boundaries
across the datacenter analytics stack, and this section provides
an overview of the related works divided into three main cat-
egories: (i) systems for datacenter analytics, (ii) frameworks
for tracing distributed systems, and (iii) modern engines for
data-parallel computation. In each class of works, we de-
scribe the core features of the existing approaches, and we
also highlight how our system advances or complements the
current practices.

Datacenter Analytics. Datacenter log analysis has received
considerable attention in both academia and industry over
the last years [43, 51]. One of the most prominent systems
in the area is Splunk [2], a full-fledged platform that goes
beyond traditional monitoring tools, like Ganglia [47] and
Nagios [1], by collecting and processing logs from multiple
levels of the software and hardware stack of the datacenter.
Splunk supports batch processing of archived data as well
as real-time processing of streaming data with the use of
Forwarders (reminiscent of the Replayer module we used
in Section 5). In contrast to our system, Splunk does not
adopt a push-based evaluation strategy along the whole data
processing pipeline. Changes in the logs are pushed down to
the Indexers but the actual data analytics are pull-based; to
update a data summary, an incremental query must be issued,
making online processing quite cumbersome. In addition,
although Splunk’s Search Processing Language (SPL) [13]
offers a wide range of built-in functions (including SQL-like
operators, clustering, and rule mining algorithms, among
others), it is unclear how it can be used to express more
complex tasks like those we describe in Section 5.2. To the
best of our knowledge, such graph-based analytics have been
addressed so far either in an offline setting [8, 9, 11, 18, 19,
23, 24, 27, 35, 48, 54] or in the context of online special-
purpose systems [30, 38–40, 46, 55].

Distributed System Tracing. End-to-end tracing frame-
works are vital components for the comprehensive perfor-
mance analysis of complex datacenters. DTrace [12] was
the first to introduce the idea of dynamic instrumentation,
which was later adopted in systems like Fay [22]. Other pop-
ular tracing frameworks are Google’s Dapper [49], and its
open-source version Zipkin [3]. PinPoint [18], and X-Trace
[23] provide mechanisms for offline log processing whereas
Magpie [10], MTracer [55] and PivotTracing [34] are tar-
geted to real-time analytics. Our work does not make any
assumptions on the instrumentation of the individual systems
in the datacenter, hence, it can be easily combined with any
of the existing tracing frameworks. In fact, the logs we used
in Section 5 were generated with custom tracing techniques
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implemented by our industry partners, and whose details
were only partially disclosed to us.

Streaming Engines. The powerful computational model of
Timely Dataflow serves as a good basis for various data pro-
cessing tasks, including complex graph-based analytics like
those in section 5.2, and ML-based diagnostics like those
in [28, 42, 44, 52]. Three popular data-parallel systems that
also meet the requirements we listed in Section 3 are Spark
Streaming [53], Flink [15], and Storm [50]. These systems
have rather general computation models, they support stream-
ing inputs from multiple sources, and they can also operate
according to the event timestamps (event vs system time).
Technically, the tasks we perform in Section 5 can be imple-
mented on top of these systems, however, we are not aware
of any public results regarding their integration into a real
logging pipeline, other than those we presented for Flink in
Section 5.

7. Conclusions
TS maintains and updates user sessions in real-time for an
entire data center with modest resource requirements and
processing latency in the range of tens of milliseconds. We
exploit the comprehensive instrumentation already present in
data center applications to reconstruct user sessions, commu-
nication dependencies and trace tree clusters online.

Whilst these computations involve window operations
and graph traversals and go beyond the typical relational
operators used in log processing, we demonstrate how such
computations can be expressed in data-parallel fashion using
a dataflow model, executed efficiently using Timely Dataflow,
and can significantly outperform a state-of-the-art general
stream processor in both memory usage and result latency.
We demonstrate the use of TS using traces from from a large,
operational production datacenter.

Timely Dataflow currently lacks two features desirable in
a system for online processing of real-time logs: dynamic
scaling and fault tolerance. These both reduce to a common re-
quirement to migrate or take a consistent distributed snapshot
of the dataflow state and streaming inputs. Existing work on
recovery which could adopted, for instance the asynchronous
snapshot mechanism in Flink [14], or (closer to Timely’s core
model) rollbacks [4] to selectively undo work.

While we expect this additional functionality to impact
the performance of TS somewhat, we argue that TS still
represents a far more efficient point in the design space
for datacenter diagnostic foundations than existing general-
purpose stream-processing systems.
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