
Separating Translation from Protection
in Address Spaces with Dynamic Remapping

Reto Achermann2, Chris Dalton1, Paolo Faraboschi1, Moritz Hoffmann2, Dejan Milojicic1,
Geoffrey Ndu1, Alexander Richardson3, Timothy Roscoe2, Adrian L. Shaw1, Robert N. M. Watson3

1Hewlett Packard Labs, 2ETH Zurich, 3University of Cambridge

Abstract
It is time to reconsider memory protection. The emer-
gence of large non-volatile main memories, scalable
interconnects, and rack-scale computers running large
numbers of small “micro services” creates significant
challenges for memory protection based solely on MMU
mechanisms. Central to this is a tension between pro-
tection and translation: optimizing for translation perfor-
mance often comes with a cost in protection flexibility.

We argue that a key-based memory protection scheme,
complementary to but separate from regular page-level
translation, is a better match for this new world. We
present MaKC, a new architecture which combines two
levels of capability-based protection to scale fine-grained
memory protection at both user and kernel level to large
numbers of protection domains without compromising
efficiency at scale or ease of revocation.

1 Introduction

For the last few decades, memory protection in com-
puter systems has been performed by the MMU along-
side page-based translation. This has worked well in sys-
tems with 10s of cores and memory sizes of up to a few
tens of gigabytes of – volatile – DRAM.

A new class of computer is emerging, however, which
is very different. “Rack-scale” or “memory-centric”
computer systems [3, 11, 21] have high core counts,
extremely fast low-latency interconnects, and a large
(petabytes) distributed “pool” of byte-addressable mem-
ory, most of which is persistent [11] (Fig. 1). Page-based
MMUs are likely a poor match to these machines for
translation or protection.

The problems with relying solely on the MMU for
memory protection include:

1. The very large physical address space (typically
larger than the available virtual address space) may
require changing translations without any change in
the rights to access physical frames [10].

CPU
virtual adr.
space, 52b

phys. adr.
space, 44b

backing space
e.g. GenZ, 72b

……

MMU

Fabric attached or
Remote node memory

MMU

A device
memory

CPUCPU

MMU MMU

MMU

MMU

C
A

P
 IS

A

C
A

P
 IS

A

C
A

P
 IS

A

Figure 1: An of example of complex dynamically chang-
ing memory hierarchies

2. Machines that soley rely on the MMU for protac-
tion typically incorporate multiple levels of physical
address translation between the MMU and mem-
ory [13, 18, 20] (see Figure 1) and/or remote mem-
ory copies such as RDMA. The MMU therefore
lacks information about the eventual physical ad-
dress itself, causing a disconnect between CPU and
memory-side protection (and translation).

3. Since memory, and the data therein, persists across
process lifetimes and even reboots, so must the pro-
tection metadata for pages.

4. Removing access rights to a page of data may be-
come a challenge in a large machine with MMUs,
since it requires identifying all page tables mapping
the page and performing a distributed TLB shoot-
down.

5. Since protection on each frame is applied in the
MMU rather than close to memory, any code able
to program the MMU is included in a single trusted
computing base for the entire machine. For small
machines this is not a problem, for very large ones
running multiple OSes and subject to transient par-

tial hardware faults, it is a major concern.
This creates a dilemma. A single protection model

covering the complete (executing and persisted) state of
the machine is essential for correct programming and op-
eration. Protection mechanisms close to cores, ideally
“in front” of the MMU (as with CHERI [37]) are de-
sirable for ensuring individual threads are protected and
that runtime bugs are isolated. At the same time, protec-
tion mechanisms near memory itself are required for the
scalability and assurance reasons described above.

Matching Key Capabilities or MaKC is a novel ca-
pability security model which resolves this dilemma.
User processes hold keys authorizing access to blocks of
memory (independent of page translation), while mem-
ory blocks themselves have an associated key. When a
memory access occurs, the keys must “match” (for some
suitable matching predicate) for the access to succeed.
Since loading both kinds of keys is performed by dif-
ferent parts of the system, a variety of distributed trust
models can be implemented both on the CPU side or on
the memory side (see Figure 2).

MaKC is amendable to a number of different imple-
mentations (offering different levels of assurance), rang-
ing from a software-only approach using existing MMUs
to a (more practically useful) implementation with hard-
ware support in processors and memory controllers.

Memory block

Thread 1 Thread 2

EPK1

BPK

EPK2

Thread 3

EPK3

√Key matching

1

√

Memory block
Memory block

2

3

CPU side

FAM side

Figure 2: Each thread and each memory block have as-
sociated keys. EPK and BPK respectively. If there is
a match, memory block is returned, otherwise a failure.
Different thread keys can match the same block key.

2 Use Cases

MaKC has far-reaching potential to address many secu-
rity concerns that arise from the complex memory archi-
tectures that are emerging in next-generation systems. In
this section we highlight a few individual use cases to
show the most promising directions where we envision
MaKC could appear in the near future.

Fabric attached memory (FAM) is a recently pro-
posed memory architecture that advocates sharing mem-
ory, not necessarily through a coherent protocol, across
a rack-scale fabric [4, 17, 28]. Each node on the fabric
can map part of the FAM on-demand into its physical ad-
dress space, and then use it as regular memory. Physical-
to-fabric memory mappings can change at any time, for
example when permissions are revocated or memory re-
assigned. However, because end-user applications only
understand virtual addresses, they may have kept point-
ers to FAM locations that have become stale, and can
cause memory corruption, errors, or security compro-
mises. MaKC solves these issues, by comparing the keys
before de-referencing the pointer and hence detecting
pointer validity in time to prevent dangerous accesses.

RDMA is a standard networking technique that pro-
vides direct access to the memory of a remote node, me-
diated by the network interface at the memory’s home
node. Memory regions need to be registered before they
can be used to obtain a handle (rkey) that can be ex-
changed with the RDMA clients and used to prevent data
corruption and accesses beyond the registered address
range. Memory regions also need to be pinned (i.e., their
virtual-to-physical mapping fixed and locked) so that an
RDMA access cannot unintentionally (after a page swap)
access another application data segment. Using MaKC
extends the rkey mechanism by matching the keys and
raising an exception if they do not match.

Distributed data access to services usually requires
an agent that mediates access to the data, through a strict
API and secure handles. While this approach works
today (for example, it’s commonly used for distributed
storage services, like AWS’s S3), it comes with the over-
head of a software layer that may not be compatible with
the tightly coupled high-performance hardware mecha-
nisms that are appearing in rack-scale systems. Mech-
anisms such as fabric-attached memory or RDMA do
not require a mediator agent, or the associated software
overheads, because they directly expose memory. How-
ever, objects still need to be protected at fine granular-
ity, and that cannot be achieved efficiently using MMU
and page-level granularity. Like CHERI, using MaKC to
protect distributed object handles allows fine-grain pro-
tection without compromising performance.

Micro-services are foundational building blocks that
can be used to compose complex distributed applications
and are only responsible for a small, well-defined, func-
tion of the overall system. To reduce the overhead of
a full virtual machines, micro-services are typically de-
ployed in containers, which requires making some secu-
rity tradeoffs. For example, a malicious container that
manages to compromise the underlying kernel would
compromise the security of all the other containers run-
ning under the same kernel. Using MaKC, memory ac-

2

cesses can still be authenticated by hardware using the
matching key, thus preventing access from unwanted
threads, regardless of the state of the kernel.

Persistent active objects. Objects residing in
non-volatile (or fabric-attached) memory require meth-
ods for accessing the data. Transferring execution and
controlling access to those active objects requires flex-
ible and efficient fine grained protection mechanisms.
Page-based protection only works at large granularity,
while accessing objects through supervisor calls or RPCs
adds unnecessary performance overhead. Like CHERI,
MaKC provides fine grained memory protection and de-
fined entry points (call gates) to access the objects, and
can also support remapping, if an additional level of
translation is needed, as it is the case for fabric-attached
memory.

General intra kernel protection. Running device
drivers in the kernel is a practice that has been known
to be vulnerable to many security threats [12, 14]. Split
kernels [27] try to protect memory of one kernel subsys-
tem from another by running security critical functions
in an inner kernel. Outer kernels then request services
through a well defined call interface. This setup usually
involves hypervisor calls and nested paging introducing
runtime overheads. Split kernels can rely on MaKC for
protection, eliminating the need of hypervisor calls and
nested pages.

3 Background

Many memory protections have been proposed over the
years as alternatives to page-based translation: segments,
bounds registers, hardware capabilities, memory keys
MaKC borrows ideas from some of these, such as key-
based access and capabilities.

3.1 MMU-based

MMU-based page protection coupled access rights of
a physical frame to the structure of the virtual address
space. The access principal is therefore the process, and
any rights held by the process are deleted when the pro-
cess exits. Protection is set up by the kernel, which must
therefore be trusted.

Above this mechanism, a variety of high-level protec-
tion measures can be implemented in addition to the ba-
sic Unix model. Mechanism can be separated from pol-
icy [29]. Microkernels, for example, isolate some access
authority in server processes. Systems like seL4 [23] and
Barrelfish [5] implement partitioned capability-based
protection in which the kernel limits which frames can be
mapped into an address space. Whereas Chorus [32] and
Amoeba [30] rely on sparsity and cryptography to make
capabilities unforgeable. Even within kernel mode, soft-
ware components can be isolated by giving them an ad-

dress space overlay and controlling all privileged MMU
update operations as done in ConspicuOS [9].

It is not even necessary to tightly couple translation
to protection when virtualization hardware is present:
nested paging can be used to modify translations with-
out altering the protection rights on frames [6].

Protection lookaside buffers (PLB) [25] separate
translation from protection information in TLBs. The
PLB caches the protection information a domain has for
a specific virtual memory page [24]. Many of the de-
sired aspects of PLB’s were already implemented in PA-
RISC [36]. For a successful address translation the pro-
cess ID bits in the PLB must match.

However, all MMU-based protection models suffer the
problems identified in Section 1: enforcement for a given
page occurs close to each core, is distributed through-
out the machine, relies on trusted software on every core
in the system, and requires an additional (unspecified)
mechanism for persisting metadata.

3.2 Hardware Capabilities
Systems like CAP [31], and StarOS [22] provide instruc-
tion set extensions and special registers for object level
protection. Recently, new systems were developed to
revisit hardware capabilities. Systems without compat-
ibility requirements (e.g. M-Machine [7]) and with the
ability to run normal programs (e.g. CHERI [37]) pro-
vide architecture-supported capabilities. They are inter-
preted by hardware as bounded virtual address pointers
into tagged memory which determines whether the value
stored is a capability or regular data. CHERI capabil-
ities can therefore provide efficient fine-grained protec-
tion within an address space. Revocation is not a problem
when using the MMU, process exit removes all rights and
in a single address space model, garbage collection can
be used to invalidate tag bits. Since CHERI capabilities
apply to a virtual address space they cannot be shared
between different address spaces or persisted across pro-
cess invocations in their current form. Moreover, they
sit between software and the MMU and have the same
issues as MMU-based protection.

However, CHERI does associate protection rights
with individual threads (via capability registers) indepen-
dent of page tables, and so demonstrates how conven-
tional user-space code can carry authorization informa-
tion while executing and pass it through to the system
hardware. MaKC adapts this scheme to implement the
user-facing aspect of its capability system.

CODOMs [34] is similar to our work in that it inte-
grates keys with pages and combines keys with capabil-
ities. Target architectures and goals are different. Our
work is primarily focused on rack scale systems and per-
sistent memory with capability enforcement close to the
memory. CODOMs is focused on code-centric memory

3

domains. They both enable simple and efficient capabil-
ity revocation.

3.3 Memory keys

S/360 [2] is arguably the first system to introduce the
concept of memory keys. It divided the physical address
space into equal sized blocks each with a memory key.
There is also another key that is part of the program sta-
tus register. Access is granted to a block if the two keys
match. This is similar to MaKC. Processors such as PA-
RISC [16] and Itanium [19] employ keys to protect mem-
ory though they tend to apply keys to virtual memory and
at the granularity of pages. Memory keys are becoming
mainstream again, Intel is proposing adding them to fu-
ture processors [8]

KeyKOS [15] and later EROS [33] use keys to refer
to a fixed number of persistent pages and nodes which
make up the entire state of the system. Pages of 4kB in
size create segments which form the address space of do-
mains holding data and code. Nodes cannot be directly
accessed but provide an interface through key invocation.
Similar to MaKC, the keys of KeyKOS consists of multi-
ple fields that indicate the object type and value (address
of the object). However, fine grained access to pages is
not supported by KeyKOS.

4 Matching Key Capabilities (MaKC)

MaKC divides the last level of a complex memory hierar-
chy, such as the one shown in Figure 1, into equal sized
blocks. Each block has an associated key (or capabil-
ity) called the Block Protection Key (BPK). In addition,
each execution hardware thread has at least one asso-
ciated key termed the Execution Protection Key (EPK).
EPKs are part of the processor’s status registers, equiva-
lent to capability registers in CHERI [37]. On each mem-
ory access, hardware automatically compares the BPK
against the EPKs. Access is allowed on a match. Access
is blocked and exception thrown on a mismatch. The
software exception handler may check the missing key
against a larger list of keys maintained by software. Note
that our model is equally suited for variable sized blocks,
however fixed sized blocks simplify management.

MaKC like CHERI is a hybrid capability model that
blends conventional MMU-based virtual memory with a
capability-system model. Keys can be modified from su-
pervisor state but entering that state is not much more
costly than entering a user state or crossing between user
states as supervisor state are accessed via call gates just
like in CHERI [35]. Keys enable both data access and ex-
ecution control through a call gate model. Because there
are both data and execution keys, it enables flexible pro-
tection models for both user and supervisor state as well
as across different users.

Memory blockblock block
Memory blockblock block

Memory blockblock block

Similar to CHERI capabilities

key
object type /
permissions

length offset base

(a) MaKC in memory format.

Authentication code generator e.g. HMAC

fingerprint

Memory blockblock block
Memory blockblock block

Memory blockblock block

key
object type /
permissions

length offset base

(b) MaKC in-transit format.

Figure 3: The MaKC formats

4.1 Formats

MaKC has in-memory and in-transit formats. MaKC
uses the in-memory format (Figure 3a) when the local
node guarantees the integrity of capabilities. This is sim-
ilar to how CHERI protects capabilities from manipula-
tion by non-privileged entities. A key uniquely identi-
fies a block or set of blocks. For a system with com-
plex memory hierarchies as shown in Figure 1, a global
memory manager/allocator is responsible for generating
keys. The exact mechanism employed is implementa-
tion dependent, but may involve using a 64-bit counter,
for example, which is incremented whenever a new key
is needed. Note that the address of each block may be
implicit especially if keys are closely integrated with a
CPUs paging mechanism.

Since MaKC is primarily designed for rack-scale sys-
tems, which are essentially distributed systems, it needs
a format that prevents the manipulation of capabilities
as they travel from one node to another over the inter-
connect. Figure 3b shows the in-transit format for keys.
The main difference between the in-transit and the in-
memory formats is the fingerprint field, which contains
a cryptographically secure keyed-hash message authen-
tication code (HMAC [26]). The authenticated hash can
only be generated by authorized entities and protects the
capability values when being transferred over untrusted
channels. Such keys can be established (pre-shared) in
a number of ways between components, for exampleas
part of a trust establishment protocol when the system
initializes. The HMAC ensures that a capability cannot
be forged nor manipulated in transit. Once a key arrives
at its destination, the in-transit format can be easily con-
verted into in-memory format by stripping off the extra
fields. Keys in MaKC are globally unique making them
well suited for distributed systems with pooled memory.

4

0xdeadbeef

0xdeadbeef

0xbio5food

0xbios5food

0xdeadbeef

0xdeadbeef

0xbio5food

0xdeadbeef

0xdeadbeef

0xbio5food

0xbadcaffe

0xfeeldead

0xdeadbeef

0xdeadbeef

0xdeadbeef

0xbaaaaaad

0xbios5food

0xdeadbeef

0xdeadbeef

0xbaaaaaad

0xdeadbeef

0xdeadbeef

0xbaaaaaad

0xbadcaffe

0xfeeldead

0xdeadbeef

EPK

translation

translation

vi
rt
u
al

p
h
ys
ic
al

re
al

pageblock

BPK

























address

translation

translation

❷❶

Figure 4: Managing memory hierarchies with MaKC.

4.2 Complex memory hierarchies

Figure 4 demonstrates with the aid of a simple example
how MaKC can be used to manage and secure address
spaces in a rack-scale system. The figure shows a node
in rack-scale system with multiple address spaces. Like
in Figure 1, the first (virtual address space) and the sec-
ond (physical address space) levels of address space are
local to the node. The third level of address space (real
in Figure 4) is memory mapped from a global memory
pool, hence it is globally unique i.e. has a unique tag.
Note that the figure only shows one node.

The real address space is divided into blocks with a
BPK associated with each block and the node has a pro-
cessor that supports matching key as described above.
The blocks are mapped into node and then used for
backing the physical address space. The virtual ad-
dress space is then layered on top of the physical address
space. A page frame in the physical address space fram-
ing a virtual page can be built from any combination of
blocks. Notice that BPKs are propagated across the ad-
dress spaces allowing any memory management system
(e.g. MMU) to identify a block irrespective of the address
space. For example, the local node can detect when the
0xbio5food block is replaced by the 0xbaaaad block as
shown in Figure 4 even though the virtual and physical
addresses are unchanged.

4.3 Supervisor state compartmentalization

Orthogonal to the call gate model described above, a lo-
cal node (i.e. a processor) can designate a particular key
as the master key. Keys can only be manipulated us-
ing special instructions which must be executed from a
master key block. Code in blocks not marked as mas-
ter key blocks can access master key blocks by jump-
ing/branching using special instructions to entry points
on designated gateway blocks. The destination of a

jump/branch must be marked by a gateway instruction.
A gateway block can only be setup from a master key
block. There are also special branch instruction(s) that
allow jump/branching (and linking) from a master to a
non-master block.

Essentially, our capability security model provides a
low-cost means of de-privileging supervisor threads, so
that they no longer have access to the entire memory. In
addition to supervisor state, a hardware thread needs ac-
cess to the master key for complete access to all memory
blocks in a node. MaKC can be used to implement a split
kernel [27] without relying on expensive hypercalls. The
inner kernel mapped to key zero blocks and the guard
blocks serves as controlled entry points (APIs) for outer
kernels to request services from the inner kernel. Inter-
rupts are initially received by the inner kernel and then
dispatched to outer kernels.

4.4 Implementation feasibility
It is a challenge to evaluate the feasibility of a system that
employs the MaKC without a concrete implementation.
However, the key concepts in MaKC have been shown to
have reasonable performance overhead in real systems.

Key matching could be implemented with protection
tables that contain BPKs which the hardware can read
and cache. This is similar to TLBs and hardware page
walking. EPKs and BPKs can be dynamically checked
in hardware after physical address computation, simi-
larly to what happens in today’s systems when they ac-
cess memory region descriptors. This could be inte-
grated with TLBs. For example, when the last-level TLB
misses, hardware also walks the protection tables and re-
trieves the keys. If the check passes, the entry will be
cached in the TLB and any subsequent access will just
go through without additional overhead. Otherwise all
TLBs would have to be invalidated.

CHERI showed that the cost and resources required
for implementing a hybrid capability system is reason-
able. It also showed that maintaining the integrity of ca-
pabilities in the processor is feasible.

Most rack-scale systems have some sort of global
memory manager so it is straight forward to generate ca-
pabilities with unique keys. Propagating MaKC over the
interconnect would increase network traffic but we be-
lieve that the overhead is reasonable. 2 KiB fixed blocks
and a 256-bit MakC protected by 64-bit time-stamp and
256-bit HMAC will introduce only 32 KiB of additional
traffic per MiB of memory used. Note that it may be ac-
ceptable to use truncated hash to reduce overhead. We
also performed experiments which showed that gener-
ating fingerprints for in-transit MaKC only adds 1776
cycles per operation on a Xeon E5v2 processor using
OpenSSL 1.0.2g.

We believe future processors would provide hardware

5

……

MMU

device memory

MMU

MMU

CPU

C
A

P
 IS

A

CHERI covers from CPU to virtual memory
Each MMU covers from one layer to another
MaKC covers from CPU down to any layer deep,
wherever memory happens to be

Figure 5: Comparison of approaches to protection

acceleration for HMAC (just as they now provide in-
structions for hashing) drastically reducing this overhead
further. Alternatively, FPGA’s coupled (via PCIe) to the
main processor could be used to accelerate the generation
of HMACs. Processors vendors may soon start multi-
socket processors with an FPGA. Furthermore, some in-
terconnects such as Gen-Z [1] can guarantee the integrity
of packets eliminating the need for the in-transit format.

5 Summary

MaKC is a capability based system to handle autho-
rization and protection in complex memory hierarchies.
Memory authentication using protection keys and pre-
defined entry points using call gates allows efficient im-
plementation of enclaves, kernel protection and virtual
machines without the overhead of hypervisor or system
calls. We show an early feasibility study of MaKC using
memory and computation overhead analysis. We believe
that MaKC provides the strong protection and isolation
necessary to future rack-scalable systems, see Tables 1
and 1.

The benefits of MaKC include:
• enabling remapping of memory at lower levels of

hierarchy (see Figure 5)

characteristics
approach to capability enforcement

memory-side CPU-side
scaling for larger mem for smaller mem.
caching complex straightforward
mem. topol. rack scale/hierar. traditional arch.
mem-centric better agnostic
trust data-centric (TOR) node-, OS-centric
perform. better for CC FAM better for CC DRAM
reliability easier containment easier recovery
revocation easier distr. protocols

Table 1: Comparison of CPU-side vs memory-side

characteristics
approach to protection

MMUs CHERI MaKC
granularity page 1B-AS size 1/N-N pages
hierarchy cover 2 layers virtual AS across layers
scale node single VAS global
meta-data size PTE 128b 256b
revocation N/A no support supported
remapping in 2 layers no yes

Table 2: Comparison of approaches to protection

• Empowering memory-side capability enforcement
• Trivializing revocation, a complex operation in ca-

pability systems
• Enabling huge pages without compromising secu-

rity of small page sizes
Some of remaining challenges include
• Space overhead (store keys), a fraction of the data

space, it can be optimized by reusing key over many
blocks

• Performance overhead, it can be mitigated by
pipelining operations

• Complexity added to software, CHERI proved that
most of it could be hidden inside of libraries

• Complexity added to security management no free
lunch but it can be optional enhancement

We plan to make MaKC real. First, we are exploring
how MaKC matches the memory protection architecture
of future processors. Once we understand the ISA im-
plications, we will design the micro-architecture of the
MaKC block itself. This includes enhancing simulators
and exploring prototype FPGA implementations. In par-
allel, we are also exploring the needed modifications to
OS and toolchains.

Some of the open questions we have include
• CPU-side vs. memory-side design choice
• Tagging bits vs keys for capabilities
• Choice of block size and whether it is fixed

(cacheline<page; or page<book and possibly ag-
gregated) or variable (minimum and maximum size)

• Integration with encryption (use keys for encryption
or drive encryption keys from them)

• Abstractions for passing EPKs around (rack scale
CHERI capability/pointer)

References
[1] Gen-z draft core specification 2016, December 2016.

Available online http://genzconsortium.org/

draft-core-specification-december-2016/.

[2] AMDAHL, G. M., BLAAUW, G. A., AND BROOKS, F. P. Ar-
chitecture of the IBM System/360. IBM J. Res. Dev. 8, 2 (Apr.
1964), 87–101.

[3] ASANOVIC, K. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers. In Proceedings of the 12th USENIX

6

http://genzconsortium.org/draft-core-specification-december-2016/
http://genzconsortium.org/draft-core-specification-december-2016/

Conference on File and Storage Technologies (FAST14) (Santa
Clara, CA, USA, feb 2014), USENIX Association.

[4] ASANOVIĆ, K. A hardware building block for 2020 warehouse-
scale computers. In FAST 14 keynote (2014), USENIX.

[5] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles (Big
Sky, Montana, USA, 2009), SOSP ’09, ACM, pp. 29–44.

[6] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D.,
MAZIÈRES, D., AND KOZYRAKIS, C. Dune: Safe User-level
Access to Privileged CPU Features. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Imple-
mentation (Hollywood, CA, USA, 2012), OSDI’12, USENIX As-
sociation, pp. 335–348.

[7] CARTER, N. P., KECKLER, S. W., AND DALLY, W. J. Hardware
Support for Fast Capability-based Addressing. In Proceedings
of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (San Jose,
California, USA, 1994), ASPLOS VI, ACM, pp. 319–327.

[8] CORBET, J. Memory protection keys. LWN.net Online https:

// lwn. net/ Articles/ 643797 May 13, 2015.

[9] DAUTENHAHN, N., KASAMPALIS, T., DIETZ, W., CRISWELL,
J., AND ADVE, V. Nested Kernel: An Operating System Archi-
tecture for Intra-Kernel Privilege Separation. SIGARCH Comput.
Archit. News 43, 1 (Mar. 2015), 191–206.

[10] EL HAJJ, I., MERRITT, A., ZELLWEGER, G., MILOJICIC, D.,
ACHERMANN, R., FARABOSCHI, P., HWU, W.-M., ROSCOE,
T., AND SCHWAN, K. SpaceJMP: Programming with Multi-
ple Virtual Address Spaces. In Proceedings of the Twenty-First
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Atlanta, Georgia, USA,
2016), ASPLOS ’16, ACM, pp. 353–368.

[11] FARABOSCHI, P., KEETON, K., MARSLAND, T., AND MILO-
JICIC, D. Beyond Processor-centric Operating Systems. In Pro-
ceedings of the 15th USENIX Conference on Hot Topics in Oper-
ating Systems (Switzerland, 2015), HOTOS’15, USENIX Asso-
ciation, pp. 17–17.

[12] GANAPATHI, A., GANAPATHI, V., AND PATTERSON, D. Win-
dows XP Kernel Crash Analysis. In Proceedings of the 20th Con-
ference on Large Installation System Administration (Washing-
ton, DC, 2006), LISA ’06, USENIX Association, pp. 12–12.

[13] GERBER, S., ZELLWEGER, G., ACHERMANN, R., KOURTIS,
K., ROSCOE, T., AND MILOJICIC, D. Not Your Parents’ Phys-
ical Address Space. In Proceedings of the 15th USENIX Con-
ference on Hot Topics in Operating Systems (Switzerland, 2015),
HOTOS’15, USENIX Association, pp. 16–16.

[14] GLERUM, K., KINSHUMANN, K., GREENBERG, S., AUL, G.,
ORGOVAN, V., NICHOLS, G., GRANT, D., LOIHLE, G., AND
HUNT, G. Debugging in the (Very) Large: Ten Years of Imple-
mentation and Experience. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (Big Sky,
Montana, USA, 2009), SOSP ’09, ACM, pp. 103–116.

[15] HARDY, N. Keykos architecture. SIGOPS Oper. Syst. Rev. 19, 4
(Oct. 1985), 8–25.

[16] HEWLETT-PACKARD COMPANY. PA-RISC 1.1 Archi-
tecture and Instruction Set Reference Manual HP Part Number:
09740-90039 Third Edition, February 1994. https://parisc.
wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf.

[17] HP LABS. The Machine.
http://www.hpl.hp.com/research/systems-research/themachine/,
January 2015.

[18] INTEL CORPORATION. Single-chip Cloud Com-
puter. Online, 2009. Accessed 2017-01-09.
http://www.intel.com/content/dam/www/

public/us/en/documents/technology-briefs/

intel-labs-single-chip-cloud-overview-paper.pdf.

[19] INTEL CORPORATION. Intel Itanium Architecture Software De-
velopers Manual Volume 2: System Architecture Revision 2.3,
May 2010.

[20] INTEL CORPORATION. Intel Xeon Phi Coprocessor System Soft-
ware Developers Guide, March 2014. SKU 328207-003EN.

[21] INTEL CORPORATION. Intel Rack Scale Design. Online, 2016.
http://www.intel.com/content/www/us/en/architecture-and-
technology/ rack-scale-architecture/intel-rack-scale-architecture-
resources.html.

[22] JONES, A. K., CHANSLER, JR., R. J., DURHAM, I., SCHWANS,
K., AND VEGDAHL, S. R. StarOS, a Multiprocessor Operating
System for the Support of Task Forces. In Proceedings of the Sev-
enth ACM Symposium on Operating Systems Principles (Pacific
Grove, California, USA, 1979), SOSP ’79, ACM, pp. 117–127.

[23] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (Big Sky, Montana, USA, 2009), SOSP ’09,
ACM, pp. 207–220.

[24] KOLDINGER, E. J., CHASE, J. S., AND EGGERS, S. J. Archi-
tecture support for single address space operating systems. In
Proceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (Boston, Massachusetts, USA, 1992), ASPLOS V, ACM,
pp. 175–186.

[25] KOLDINGER, E. J., LEVY, H. M., CHASE, J. S., AND EGGERS,
S. J. The Protection Lookaside Buffer: Efficient Protection for
Single-Address Space Computers. Tech. Rep. 91-11-05, Depart-
ment of Computer Science and Engineering, University of Wash-
ington, Seattle, Washington, Nov. 1991.

[26] KRAWCZYK, H., BELLARE, M., AND CANETTI, R. HMAC:
Keyed-Hashing for Message Authentication. Network Working
Group, February 1997. RFC 2104.

[27] KURMUS, A., AND ZIPPEL, R. A Tale of Two Kernels: Towards
Ending Kernel Hardening Wars with Split Kernel. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (Scottsdale, Arizona, USA, 2014), CCS ’14,
ACM, pp. 1366–1377.

[28] KYATHSANDRA, J., AND ZHOU, X. Rack Scale Architecture:
Designing the Data Center of the Future. http://bit.ly/idf14-rsa,
Intel IDF14 Shenzen, 2014.

[29] LEVIN, R., COHEN, E., CORWIN, W., POLLACK, F., AND
WULF, W. Policy/Mechanism Separation in Hydra. In Proceed-
ings of the Fifth ACM Symposium on Operating Systems Princi-
ples (Austin, Texas, USA, 1975), SOSP ’75, ACM, pp. 132–140.

[30] MULLENDER, S., VAN ROSSUM, G., TANENBAUM, A., VAN
RENESSE, R., AND VAN STAVEREN, H. Amoeba, A distributed
operating system for the 1990s. Computer 33, 5 (May 1990),
44–53.

[31] NEEDHAM, R. M., AND WALKER, R. D. The Cambridge
CAP Computer and Its Protection System. In Proceedings of the
Sixth ACM Symposium on Operating Systems Principles (West
Lafayette, Indiana, USA, 1977), SOSP ’77, ACM, pp. 1–10.

[32] ROZIER, M., ABROSSIMOV, V., ARMAND, F., BOULE, I.,
GIEN, M., GUILLEMONT, M., HERRMANN, F., KAISER, C.,

7

https://lwn.net/Articles/643797
https://lwn.net/Articles/643797
https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-overview-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-overview-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-overview-paper.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/ rack-scale-architecture/intel-rack-scale-architecture-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/ rack-scale-architecture/intel-rack-scale-architecture-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/ rack-scale-architecture/intel-rack-scale-architecture-resources.html

LANGLOIS, S., LÉONARD, P., ET AL. Overview of the cho-
rus distributed operating systems. In Computing Systems (1991),
Citeseer.

[33] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS: A
Fast Capability System. In Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles (Charleston, South
Carolina, USA, 1999), SOSP ’99, ACM, pp. 170–185.

[34] VILANOVA, L., BEN-YEHUDA, M., NAVARRO, N., ETSION,
Y., AND VALERO, M. Codoms: Protecting software with code-
centric memory domains. In 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA) (June 2014),
pp. 469–480.

[35] WATSON, R. N. M., WOODRUFF, J., NEUMANN, P. G.,
MOORE, S. W., ANDERSON, J., CHISNALL, D., DAVE, N.,
DAVIS, B., GUDKA, K., LAURIE, B., MURDOCH, S. J., NOR-
TON, R., ROE, M., SON, S., AND VADERA, M. CHERI: A Hy-
brid Capability-System Architecture for Scalable Software Com-
partmentalization. In 2015 IEEE Symposium on Security and Pri-
vacy (May 2015), pp. 20–37.

[36] WILKES, J., AND SEARS, B. A comparison of Protection Looka-
side Buffers and the PA-RISC Protection Architecture. Techni-
cal Report HPL-92-55, Computer Systems Laboratory, Hewlett-
Packard Laboratories, Palo Alto, CA, USA, March 1992.

[37] WOODRUFF, J., WATSON, R. N., CHISNALL, D., MOORE,
S. W., ANDERSON, J., DAVIS, B., LAURIE, B., NEUMANN,
P. G., NORTON, R., AND ROE, M. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceeding of
the 41st Annual International Symposium on Computer Archite-
cuture (Minneapolis, Minnesota, USA, 2014), ISCA ’14, IEEE
Press, pp. 457–468.

8

	Introduction
	Use Cases
	Background
	MMU-based
	Hardware Capabilities
	Memory keys

	Matching Key Capabilities (MaKC)
	Formats
	Complex memory hierarchies
	Supervisor state compartmentalization
	Implementation feasibility

	Summary

