Robust hamiltonicity of random directed graphs

Asaf Ferber Rajko Nenadov Andreas Noever
asaf.ferber@inf.ethz.ch rnenadov@inf.ethz.ch anoever@inf.ethz.ch

Ueli Peter Nemanja Škorić
upeter@inf.ethz.ch nskoric@inf.ethz.ch

Institute of Theoretical Computer Science
ETH Zurich, 8092 Zurich, Switzerland

Abstract

In his seminal paper from 1952 Dirac showed that the complete graph on \(n \geq 3 \) vertices remains Hamiltonian even if we allow an adversary to remove \(\lfloor n/2 \rfloor \) edges touching each vertex. In 1960 Ghouila-Houri obtained an analogue statement for digraphs by showing that every directed graph on \(n \geq 3 \) vertices with minimum in- and out-degree at least \(n/2 \) contains a directed Hamilton cycle. Both statements quantify the robustness of complete graphs (digraphs) with respect to the property of containing a Hamilton cycle.

A natural way to generalize such results to arbitrary graphs (digraphs) is using the notion of local resilience. The local resilience of a graph (digraph) \(G \) with respect to a property \(\mathcal{P} \) is the maximum number \(r \) such that \(G \) has the property \(\mathcal{P} \) even if we allow an adversary to remove an \(r \)-fraction of (in- and out-going) edges touching each vertex. The theorems of Dirac and Ghouila-Houri state that the local resilience of the complete graph and digraph with respect to Hamiltonicity is \(1/2 \). Recently, this statements have been generalized to random settings. Lee and Sudakov (2012) proved that the local resilience of a random graph with edge probability \(p = \omega (\log n/n) \) with respect to Hamiltonicity is \(1/2 \pm o(1) \). For random directed graphs, Hefetz, Steger and Sudakov (2014+) proved an analogue statement, but only for edge probability \(p = \omega (\log n/\sqrt{n}) \). In this paper we significantly improve their result to \(p = \omega (\log^8 n/n) \), which is optimal up to the polylogarithmic factor.
1 Introduction

A Hamilton cycle in a graph or a directed graph is a cycle that passes through all the vertices of the graph exactly once, and a graph is Hamiltonian if it contains a Hamilton cycle. Hamiltonicity is one of the central notions in graph theory, and has been intensively studied by numerous researchers. It is well-known that the problem of whether a given graph contains a Hamilton cycle is \mathcal{NP}-complete. In fact, Hamiltonicity was one of Karp’s 21 \mathcal{NP}-complete problems [12].

Since one can not hope for a general classification of Hamiltonian graphs, as a consequence of Karp’s result, there is a large interest in deriving properties that are sufficient for Hamiltonicity. A classic result by Dirac from 1952 [7] states that every graph on $n \geq 3$ vertices with minimum degree at least $n/2$ is Hamiltonian. This result is tight as the complete bipartite graph with parts of sizes that differ by one, $K_{m,m+1}$, is not Hamiltonian. Note that it also answers the following question: Starting with the complete graph on n vertices K_n, what is the maximal integer Δ such that for any subgraph H of K_n with maximum degree Δ, the graph $K_n - H$ obtained by deleting the edges of H from K_n is Hamiltonian? This question not only asks for a sufficient condition for a graph to be Hamiltonian, it also asks for a quantification for the “local robustness” of the complete graph with respect to Hamiltonicity.

A natural generalization of this question is to replace the complete graph with some other base graph. Recently, questions of this type have drawn a lot of attention under the notion of resilience.

Roughly speaking, given a monotone increasing graph property \mathcal{P} and a graph or a digraph G which satisfies \mathcal{P}, the resilience of G with respect to \mathcal{P} measures how much one must change G in order to destroy \mathcal{P}. Since one can destroy many natural properties by small changes (for example, by isolating a vertex), it is natural to limit the number of edges touching any vertex that one is allowed to delete. This leads to the following definition of local resilience.

Definition 1.1 (Local resilience). Let \mathcal{P} be a monotone increasing graph property. For a graph G, the local resilience is

$$r(G, \mathcal{P}) := \min \{ r : \exists H \subseteq G \text{ such that } \forall v \in V(G) \quad d_H(v) \leq r \cdot d_G(v) \text{ and } \quad G - H \text{ does not have } \mathcal{P} \},$$

while for a digraph G the local resilience is

$$r(G, \mathcal{P}) := \min \{ r : \exists H \subseteq G \text{ such that } \forall v \in V(G) \quad d^+_H(v) \leq r \cdot d^+_G(v) \text{ and } d^-_H(v) \leq r \cdot d^-_G(v) \text{ and } G - H \text{ does not have } \mathcal{P} \}.$$

Sudakov and Vu initiated the systematic study of resilience of random and pseudorandom graphs in [18], and since then this field has attracted substantial research interest (see e.g. [2, 3, 4, 6, 8, 13, 14]).

Let us denote with \mathcal{HAM} the graph property of containing a Hamilton cycle and the directed graph property of containing a directed Hamilton cycle. Lee and Sudakov [14] proved that for $p = \omega(\log n/n)$, a typical $G \sim G(n,p)$ satisfies $r(G, \mathcal{HAM}) \in (1/2 \pm o(1))$. Note that this result is asymptotically optimal with respect to the constant $1/2$ as, for any $\varepsilon > 0$, a typical $G \sim G(n, p)$ can be disconnected by the adversary without removing more than a fraction of $(1/2 + \varepsilon)$ of the edges around any vertex. Namely, the adversary can take partition of the vertex set into two equal sets
(up to divisibility conditions) and delete all the edges between the sets. This is possible since w.h.p. a vertex from \(G(n, p) \) has roughly half of its edges in both parts. Furthermore, the aforementioned result is also optimal with respect to the parameter \(p \) as it is well known that a typical graph \(G \sim G(n, p) \) is not Hamiltonian for \(p = o(\log n/n) \) (see [5]).

For a positive integer \(n \) and \(0 \leq p = p(n) \leq 1 \), let \(D(n, p) \) denote the binomial probability space of digraphs on the set of vertices \([n] = \{1, \ldots, n\} \). That is, an element \(D \sim D(n, p) \) is generated by including each of the \(n(n-1) \) possible ordered pairs of \([n] \) with probability \(p \), independently of all other pairs. For this model, Frieze [9] showed that a typical digraph \(D \sim D(n, p) \) is Hamiltonian for \(p \geq (\log n + \omega(1))/n \). As a next step, it is natural to ask for an analogue to the result of Lee and Sudakov [14] for random digraphs.

To this end, Hefetz, Steger and Sudakov [10] proved the following theorem. Note that it is asymptotically optimal with respect to the resilience for the same reasons as in the case of undirected graphs. However, it is far from optimal with respect to the bound on the edge probability \(p \).

Theorem 1.2 ([10]). For any constant \(\beta > 0 \), if \(p = \omega(\log n/\sqrt{n}) \) then w.h.p. a digraph \(G \sim D(n, p) \) satisfies \(r(G, \text{HAM}) \in (1/2 \pm \beta) \).

In the proof of Theorem 1.2, Hefetz, Steger and Sudakov extensively used the Regularity Lemma and the fact that for \(p = \omega(\log n/\sqrt{n}) \) a typical digraph \(G \sim D(n, p) \) contains many “transitive triangles” touching each vertex. Generalizing it to smaller values of \(p \) would at least require to replace triangles with some sparser gadgets. However, any gadget of constant size could in principle only allow \(p \) to be of a form \(p = \omega(n^{-1+\varepsilon}) \), where the constant \(\varepsilon \) depends on the gadget.

In general, problems related to Hamilton cycles in digraphs are known to be much harder than their counterparts in the undirected setting, mainly since the Posá rotation-extension technique (see [16]) is, in its simplest form, not applicable to directed graphs.

In this paper we use the absorbing method, initiated by Rödl, Ruciński and Szemerédi [17], combined with an elegant embedding argument of Montgomery [15] to prove the following theorem. Note that bound on \(p \) is optimal up to a polylogarithmic factor and, as mentioned earlier, the constant 1/2 can not be improved.

Theorem 1.3. For any constant \(\beta > 0 \), if \(p = \omega(\log^8 n/n) \) then w.h.p. a digraph \(G \sim D(n, p) \) satisfies \(r(G, \text{HAM}) \in (1/2 \pm \beta) \).

We want to remark that our proof can easily be turned into a simple and efficient randomized algorithm which finds a Hamilton cycle in a digraph with certain pseudorandom properties.

The paper is organized as follows. In Section 2 we present auxiliary lemmas which are used throughout the paper. In Section 3 we give the definition of \((n, \alpha, p)\)-pseudorandom digraphs and state our main result (Theorem 3.2) concerning the Hamiltonicity of such digraphs. We then show how it implies Theorem 1.3 and furthermore derive the proof of Theorem 3.2 using two key lemmas, which we call the Connecting Lemma and the Absorbing lemma. In Section 4 we then give a proof of the Connecting Lemma, and finally in Section 5 we use it to prove the Absorbing Lemma.

Outline of the proof The proof relies on the application of the absorbing method which heavily uses the above mentioned Connecting Lemma. Given a random subset \(X \) and a list of \(t \) pairs of vertices avoiding \(X \), the Connecting Lemma enables us to connect the pairs by vertex disjoint paths of any prescribed orientation and sufficiently large length, with all internal vertices being in \(X \). With this in mind, the proof proceeds as follows.
First, we take out a random subset of vertices X and in the remaining digraph create an absorbing (directed) path P^*. This path has the property that for any subset of vertices $X' \subseteq X$ there exist a directed path $P_{X'}$ which has the same endpoints as P^* and $V(P_{X'}) = V(P^*) \cup X'$. In other words, the path P^* can “absorb” X'. The existence of such a P^* is proven by first constructing a suitable gadget consisting of many intertwined paths, before such gadgets are found by repeatedly applying the Connecting Lemma.

Next, we cover the set of unused vertices $V(G) \setminus (X \cup V(P^*))$ with roughly $n/\log^5 n$ vertex disjoint directed paths. This is achieved by partitioning the graph into a sequence of sets of size roughly $n/\log^6 n$ and then iteratively finding a perfect matching between any two consecutive parts.

Finally, we join the paths obtained in the previous step together with the absorbing path P^* into one directed cycle by connecting the endpoints of the paths using the vertices from X. This is again done by applying the Connecting Lemma.

1.1 Notation and definitions

For an integer n, let $[n] = \{1, \ldots, n\}$. For $a, b, c \in \mathbb{R}$ let $(a \pm b)c$ denote the interval $((a-b)c, (a+b)c)$.

Our graph theoretic notation is standard and follows that of West [19]. In particular we use the following: Given a digraph D we denote by $V(D)$ and $E(D)$ the sets of vertices and arcs of D, respectively, and let $v(D) = |V(D)|$ and $e(D) = |E(D)|$. For a subset $S \subseteq V(D)$, we denote with $D[S]$ the subgraph of D induced by S. For two (not necessarily disjoint) subsets $X, Y \subseteq V(D)$, set $E_D(X, Y) := \{(x, y) \in E(D) : x \in X \text{ and } y \in Y\}$ and let $e_D(X, Y) = |E_D(X, Y)|$. Furthermore, let $N_D^+(X, Y) = \{y \in Y : x \in X \text{ and } (x, y) \in E(D)\}$ denote the set of all out-neighbors of X in Y and let $N_D^-(X, Y) = \{y \in Y : x \in X \text{ and } (y, x) \in E(D)\}$ denote the set of all in-neighbors of X in Y. Given a vertex $x \in V(D)$ and $\tau \in \{+,-\}$, we abbreviate $N_D^\tau\{x\}, Y)$ to $N_D^\tau(x, Y)$ and define $d_D^\tau(x, Y) = |N_D^\tau(x, Y)|$ and $d_D^\tau(x, Y) = \min\{d_D^\tau(x, Y), d_D^\tau(x, Y)\}$. We omit the subscript D whenever there is no risk of confusion.

For $\tau \in \{+,-\}$ we denote with $\bar{\tau}$ the opposite sign. Furthermore, for $\sigma \in \{+,-\}^\ell$ and $i \in [\ell]$, let $\sigma(i)$ denote i-th member of the ℓ-tuple σ, let $\sigma^i = (\sigma(1), \ldots, \sigma(i))$ and let $\bar{\sigma}$ denote $(\bar{\sigma}(\ell), \ldots, \bar{\sigma}(1))$.

We call a sequence of vertices $P = v_1, \ldots, v_{\ell+1}$ a σ-walk if all the vertices are different, except that v_1 and $v_{\ell+1}$ can be the same vertex, and if $v_i \in N_{\sigma(i)}(v_1)$ for all $1 \leq i \leq \ell$. Moreover, we say that P connects v_1 to $v_{\ell+1}$ and call v_1 and $v_{\ell+1}$ its left and right endpoint, respectively. The σ-walk P is additionally called an v_1v_{i+1}-path if $v_1 \neq v_{i+1}$ and $\sigma(i) = +$, for all $1 \leq i \leq \ell$.

We also use the standard asymptotic notation o, O, ω, Ω following [11]. Furthermore, for two functions a and b we write $a \ll b$ if $a = o(b)$ and $a \gg b$ if $a = \omega(b)$.

2 Tools and preliminaries

We introduce the tools used in the proofs of our results.

2.1 Probabilistic tools

We need to employ standard bounds on large deviations of random variables. We mostly use the following well-known bound on the lower and the upper tails of the Binomial distribution and the hypergeometric distribution due to Chernoff and Hoeffding (see [1, 11]).

Lemma 2.1. Let $X \sim \text{Bin}(n, p)$ and let $\mu = \mathbb{E}(X)$. Then

- $\Pr[X < (1-a)\mu] < e^{-a^2\mu/2}$ for every $a > 0$;
- \(\Pr[X > (1 + a)\mu] < e^{-a^2\mu/3} \) for every \(0 < a < 3/2 \).

Moreover, the inequalities above also hold if \(X \) has the hypergeometric distribution with the same mean.

The following is a trivial yet useful bound.

Lemma 2.2. Let \(X \sim \text{Bin}(n, p) \) and \(k \in \mathbb{N} \). Then the following holds:

\[
\Pr(X \geq k) \leq \left(\frac{enp}{k} \right)^k.
\]

Proof. \(\Pr(X \geq k) \leq \binom{n}{k} p^k \leq \left(\frac{enp}{k} \right)^k \). \(\Box \)

2.2 Graph Partitioning

The next lemma states that one can partition a digraph into subsets which, proportionally, inherit the lower bound on the in- and out-degree.

Lemma 2.3. Let \(c, \varepsilon > 0 \) be constants, \(n \) a sufficiently large integer and \(0 < p := p(n) < 1 \). Suppose that:

(i) \(D \) is a digraph on \(n \) vertices,

(ii) \(U \subseteq V(D) \),

(iii) \(k, s_1, \ldots, s_k \in [n] \) are integers such that

\[
s_i \geq \frac{\log \frac{1}{n} n}{p} \quad \text{and} \quad \sum_i s_i \leq |U|.
\]

Then, there exist disjoint subsets \(S_1, \ldots, S_k \subseteq U \) such that the following holds for every \(1 \leq i \leq k \):

(a) \(|S_i| = s_i \), and

(b) for every \(v \in V(D) \), if \(d_D^+(v, U) \geq cp|U| \) then

\[
d_D^+(v, S_i) \geq (1 - \varepsilon)cps_i. \tag{1}
\]

Proof. We prove the lemma only for \(d^+(v, S_i) \geq (1 - \varepsilon)cps_i \) as the proof for \(d^-(v, S_i) \geq (1 - \varepsilon)cps_i \) follows in a similar fashion. Let \(U = S_1 \cup \ldots \cup S_k \cup Z \) be a partition of \(U \) taken uniformly at random from all partitions for which \(S_i = s_i \) for every \(1 \leq i \leq k \) and the “leftover” set \(Z \) is of size \(|Z| = |U| - \sum_{i=1}^k s_i \). Let \(W := \{ v \in V(D) \mid d_D^+(v, U) \geq cp|U| \} \) and let \(v \in W \) be an arbitrary vertex from \(W \). The number of out-neighbors of \(v \) in \(S_i \) is hypergeometrically distributed, thus we have

\[
\mathbb{E}[d_D^+(v, S_i)] = d_D^+(v, U) \frac{s_i}{|U|} \geq c\log \frac{1}{n} n.
\]

Using this and Lemma 2.1 we obtain the following upper bound

\[
\Pr \left[d_D^+(v, S_i) \leq (1 - \varepsilon)d_D^+(v, U) \frac{s_i}{|U|} \right] \leq e^{-\varepsilon^2 c\log \frac{1}{n} n/2}.
\]
The set W has at most n vertices and the size of each part S_i is a positive integer, thus the number of parts k is at most n. Taking the union bound over all parts $S_1, \ldots S_k$ and all vertices in W we get
\[
\Pr \left[\exists v \in W \exists i \in [k], d^+(v, S_i) \leq (1 - \varepsilon)d^+(v, U) \frac{S_i}{|U|} \leq n^2 \cdot e^{-\varepsilon^2 \log^{11} n/2} = o(1), \right]
\]
which completes the proof.

3 Proof of Theorem 1.3

In this section we introduce the definition of an (n, α, p)-pseudorandom digraph, which will be the main object of study throughout the paper. In fact, we prove that for $p = \omega(\log^8 n)$ and any positive constant α, any sufficiently large (n, α, p)-pseudorandom digraph contains a directed Hamilton cycle. This will imply the main theorem as we show that w.h.p. $D(n, p)$ has the property that after deleting at most a $(1/2 - \beta)$-fraction of the edges from each vertex the resulting digraph is (n, α, p)-pseudorandom, for some positive constant $\alpha < \beta$.

Definition 3.1. A directed graph D on n vertices is called (n, α, p)-pseudorandom if the following holds:

(P1) for every $v \in V(D)$ we have
\[
d^+_D(v, V(D)) \geq (1/2 + 2\alpha)n p,\]

(P2) for every subset $X \subseteq V(D)$ of size $|X| \leq \frac{\log^2 n}{p}$, we have
\[
e_D(X) \leq |X| \log^{2.1} n,\]

(P3) for every two disjoint subsets $X, Y \subseteq V(D)$ of sizes $|X|, |Y| \geq \frac{\log^{1.1} n}{p}$, we have
\[
e_D(X, Y) \leq (1 + \alpha/2)|X||Y|p.\]

Intuitively, we require from an (n, α, p)-pseudorandom digraph a certain lower bound on the minimum degree and that it does not contain a dense subgraph. As it turns out, these properties are sufficient for containing a directed Hamilton cycle.

Theorem 3.2. Let n be an integer and let $p = p(n) \in (0, 1)$ such that $p = \omega(\frac{\log^8 n}{n})$. There exists a constant $\alpha_0 > 0$ such that for any constant $0 < \alpha \leq \alpha_0$ and n sufficiently large, every (n, α, p)-pseudorandom digraph is Hamiltonian.

Before we give the proof of Theorem 3.2, we first show how it implies Theorem 1.3.

Proof of Theorem 1.3. Let β, n and p be as stated in the theorem and let $\alpha = \min\{\alpha_0, \beta/4\}$. By Theorem 3.2, it is sufficient to prove that $G \sim D(n, p)$ w.h.p. satisfies that $D = G - H$ is (n, α, p)-pseudorandom, for every $H \subseteq G$ as given in Definition 1.1. Using the fact that w.h.p. we have $d^+_G(v), d^-_G(v) \in (1 \pm \beta/2)np$ for each $v \in V(G)$, Definition 1.1 implies that we have to show this for all subgraphs $H \subseteq G$ which satisfy $d^+_H(v), d^-_H(v) \leq (1/2 - \beta)np$, for every $v \in V(H)$. Let us consider one such subgraph H.

5

\[
\Pr \left[\exists v \in W \exists i \in [k], d^+(v, S_i) \leq (1 - \varepsilon)d^+(v, U) \frac{S_i}{|U|} \leq n^2 \cdot e^{-\varepsilon^2 \log^{11} n/2} = o(1), \right]
\]
First, observe that that for every vertex \(v \in D \) we have
\[
d_D^+(v) \geq (1 - \beta/2 - 1/2 + \beta)np \geq (1/2 + 2\alpha)np,
\]
thus the property (P1) holds.

For (P2), let \(X \subseteq V(G) \) be an arbitrary subset of size at most \(\log^2 n / p \). Since \(e_G(X) \sim \text{Bin}(2\binom{|X|}{2}, p) \), by Lemma 2.2 we have
\[
\Pr[e_G(X) \geq |X| \log^{2.1} n] \leq \left(\frac{e|X|^2 p}{|X| \log^{2.1} n} \right)^{|X| \log^{2.1} n}.
\]
A union bound over the choices for \(X \) shows that the probability that there exists a subset \(X \subseteq V(G) \) of size \(x \leq \log^2 n / p \) such that \(e_G(X) \geq |X| \log^{2.1} n \) is at most
\[
\sum_{x \leq \log^2 n / p} \binom{n}{x} \left(\frac{e|x|^2 p}{x \log^{2.1} n} \right)^{x \log^{2.1} n} \leq \sum_{x \leq \log^2 n / p} \binom{n}{x} \left(\frac{e \log^{2.1} n}{\log^{2.1} n} \right)^x \leq \sum_{x \leq \log^2 n / p} \binom{n}{x} \left(\frac{e}{\log^{0.1} n} \right)^x = o(1).
\]
Hence, (P2) holds in \(G \) and therefore in \(D \subseteq G \) as well.

The proof of (P3) goes similarly. Consider disjoint subsets \(X, Y \subseteq V(G) \) of size at least \(\log^{1.1} n/p \). Then by Lemma 2.1 we have
\[
\Pr[e_G(X, Y) > (1 + \alpha/2)|X||Y|p] < e^{-\Omega(|X||Y|p)}.
\]
A union bound over the choices for \(X \) and \(Y \) yields that the probability that (P3) fails is bounded above by
\[
\sum_{x,y=\log^{1.1} n/p} \binom{n}{x} \binom{n}{y} e^{-\Omega(xy)p} \leq \sum_{x,y=\log^{1.1} n/p} n^x n^y e^{-\Omega(\max\{x,y\} \log^{1.1} n)} = o(1).
\]
This shows \(G \) is w.h.p such that \(D \) is an \((n, \alpha, p)\)-pseudorandom digraph regardless of the choice of \(H \) and thus completes the proof.

We pick \(\alpha_0 \) sufficiently small such that \((1 + \alpha_0/2)(1/2 + \alpha_0/20) < (1/2 + \alpha_0/3)\). Throughout the paper, unless stated otherwise, we always assume that \(D \) is a \((n, \alpha, p)\)-pseudorandom digraph, where \(\alpha \) is a positive constant such that \(\alpha \leq \alpha_0 \), \(p = \omega(\log^3 n) \) and \(n \) is sufficiently large. Moreover, by \(\{V_1, V_2, V_3, V_4, V_5\} \) we denote the partition of \(V(D) \) given by the following claim.

Claim 3.3. There exists a partition \(V(D) = \bigcup_{i=1}^5 V_i \) of the vertices of \(D \), such that the following holds:

\(\textbf{(Q1)} \) for every \(v \in V(D) \) and every \(i \in \{1, 2, 3, 4, 5\} \), we have \(d_D^+(v, V_i) \geq (1/2 + \alpha)|V_i|p \),

\(\textbf{(Q2)} \) \(|V_1| = (1 + o(1))n/\log^3 n \) and \(|V_2|, |V_3|, |V_4| \in \left(\frac{\alpha}{5(1+2\alpha)} n, \frac{\alpha}{4(1+2\alpha)} n \right) \).
Proof. Let \(s_1 = (1 + o(1))n / \log^3 n \), \(s_2, s_3, s_4 \in (\frac{\alpha}{5(1 + 2\alpha)} n, \frac{\alpha}{4(1 + 2\alpha)} n) \) be arbitrarily chosen integers and \(s_5 = n - \sum_{i=1}^{4} s_i \). As \(s_i \geq \frac{\log^{1.1} n}{p} \) for all \(i \in \{1,2,3,4,5\} \), by applying Lemma 2.3 with \(c = 1/2 + 2\alpha \), \(\varepsilon = \alpha / 3 \), \(V(D) \) (as \(U \)), \(k = 5 \), \(s_1, s_2, s_3, s_4 \) and \(s_5 \) and by using (P1) we obtain sets \(V_1, V_2, V_3, V_4 \) and \(V_5 \) \((S_1, S_2, S_3, S_4 \) and \(S_5 \) in Lemma 2.3\) such that \(V(D) = V_1 \cup V_2 \cup V_3 \cup V_4 \cup V_5 \) and

\[
d^\pm(v, S_i) \geq (1 - \varepsilon)cs_ip = (1 - \varepsilon) \cdot (1/2 + 2\alpha)s_ip \geq (1/2 + \alpha)s_ip,
\]

for every \(v \in V(D) \) and \(i \in \{1,2,3,4,5\} \), as required. \(\square \)

3.1 Proof of Theorem 3.2

The following two lemmas will serve as our main tool for proving the Hamiltonicity of \(D \).

Lemma 3.4 (The Absorbing Lemma). There exists a directed path \(P^* \) in \(D \) with \(V(P^*) \subseteq V_2 \cup V_3 \cup V_4 \) such that for every \(W \subseteq V_1 \) there is a directed path \(P^*_W \) with \(V(P^*_W) = V(P^*) \cup W \) and such that \(P^*_W \) and \(P^* \) have the same endpoints.

The following lemma states that, under certain assumptions, one can find disjoint \(\sigma \)-walks connecting specified pairs of vertices, for arbitrary \(\sigma \) of length \(\Omega(\log n) \) (see Section 1.1 for the definition of a \(\sigma \)-walk). The proof of the Connecting Lemma is a modification of an argument by Montgomery [15].

Lemma 3.5 (The Connecting Lemma). Let \(\ell \) and \(t \) be integers such that \(\ell \geq 10 \log n \) and \(t \geq \frac{4 \log^2 n}{p} \) and let \(\{(a_i, b_i)\}_{i=1}^{t} \) be a family of pairs of vertices from \(V(D) \) with \(a_i \neq a_j \) and \(b_i \neq b_j \) for every distinct \(i, j \in [t] \). Assume that \(K \subseteq V(D) \setminus \bigcup_{i=1}^{t} \{a_i, b_i\} \) is such that

\[
(i) \ |K| = \omega(t\ell),
(ii) \ for \ every \ v \in K \ we \ have \ d^\pm(v, K) \geq (\frac{1}{2} + \alpha)p|K| \ and
(iii) \ for \ every \ i \in [t] \ we \ have
\]

\[
d^\pm(a_i, K), d^\pm(b_i, K) \geq (1/2 + \alpha)p|K|.
\]

Then for every \(\sigma \in \{-, +\}^\ell \) there exist \(t \) internally disjoint \(\sigma \)-walks \(P_1, \ldots, P_t \) such that for each \(i \), \(P_i \) connects \(a_i \) to \(b_i \) and \(V(P_i) \setminus \{a_i, b_i\} \subseteq K \).

With these two lemmas at hand, we are ready to give a proof of Theorem 3.2.

Proof of Theorem 3.2. Let \(P^* \) be a path obtained from Lemma 3.4 and let \(U := (V_2 \cup V_3 \cup V_4 \cup V_5) \setminus V(P^*) \). We first show that there exists a family \(\{Q_1, \ldots, Q_{t'}\} \) of \(t' \in [n/\log^5 n, 2n/\log^5 n] \) vertex-disjoint directed paths such that \(U = \bigcup_{i=1}^{t'} V(Q_i) \).

It follows from property (Q2) that \(|V_5| \geq (1 - \frac{n}{1 + 2\alpha})n \). Furthermore, property (Q1) and the fact that \(V_5 \subseteq U \) imply

\[
d^\pm(v, U) \geq d^\pm(v, V_5) \geq (1/2 + \alpha)p|V_5| \geq (1/2 + \alpha)p \frac{1 + \alpha}{1 + 2\alpha}|U| = (1/2 + \alpha/2)p|U|, \tag{3}
\]
for every $v \in U$. Applying Lemma 2.3 with $c = 1/2 + \alpha/2$, ε such that $(1 - \varepsilon)c > 1/2 + \alpha/4$, U, $s := s_1 = \ldots = s_k = \lceil n/\log^5 n \rceil$ and $k = \lfloor |U|/s \rfloor$, together with (3), we obtain disjoint subsets $S_1, \ldots, S_k \subseteq U$ such that

$$d^A_v(v, S_i) \geq (1 - \varepsilon)cp|S_i| \geq (1/2 + \alpha')p|S_i|,$$

for some constant $\alpha' > \alpha/4$, every $i \in [k]$ and $v \in U$. We now use the following claim, whose proof we defer to the end of the subsection.

Claim 3.6. For every $i \in [k - 1]$, there exists a perfect matching from S_i to S_{i+1}.

Observe that such matchings induce s vertex-disjoint directed paths $\{Q_1, \ldots, Q_s\}$, each of length k, such that $\bigcup_{i=1}^s V(Q_i) = \bigcup_{i=1}^k S_i$. On the other hand, by taking each vertex in $U \setminus \bigcup_{i=1}^k S_i$ to be a 0-length path, we obtain at most s additional paths $\{Q_{s+1}, \ldots, Q_s\}$. Note that the family $\{Q_1, \ldots, Q_s\}$ satisfies the desired properties.

As a final step, we find a cycle C in D which contains paths Q_1, \ldots, Q_s, P^* and maybe some vertices from V_1. Using Lemma 3.4, we can absorb the remaining vertices from V_1 and obtain a Hamilton cycle. We now make this more precise.

For $i \in [t']$, let us denote with a_i and b_i the first and the last vertex on the path Q_i. Furthermore, let $a_{t'+1}$ and $b_{t'+1}$ be the first and the last vertex of the path P^*. Applying the Connecting Lemma (Lemma 3.5) with $t = 10 \log n$, $t = t' + 1$, the family of pairs $\{(b_i, a_{i+1})\}_{i=1}^t \cup \{(b_{t'+1}, a_1)\}$ and V_1 (as K), we obtain vertex disjoint directed paths $P_1, \ldots, P_{t'+1}$. This is indeed possible since the condition (i) of the Connecting Lemma follows from $|V_1| = (1 + o(1))n/\log^3 n$ and $t = O(n/\log^4 n)$, and (ii) and (iii) follow from (Q1). Observe that $Q_1, P_1, Q_2, \ldots, Q_t, P_t, P^*, P_{t'+1}$ forms a directed cycle C with $V_2 \cup V_3 \cup V_4 \cup V_5 \subseteq V(C)$. By Lemma 3.4 there is a path $P_{V_1 \setminus V(C)}$ with the same endpoints as P^* and such that $V(P_{V_1 \setminus V(C)}) = V(P^*) \cup (V_1 \setminus V(C))$. As C contains the path P^*, we can replace P^* with $P_{V_1 \setminus V(C)}$ thus obtaining a Hamilton cycle.

Proof of Claim 3.6. We use the following version of Hall’s condition (see [19]): there exists a perfect matching from S_i to S_{i+1} if and only if for every subset $X \subseteq S_i$ of size $|X| \leq |S_i|/2$ we have $|N^+(X, S_{i+1})| \geq |X|$ and for every subset $Y \subseteq S_{i+1}$ of size $|Y| \leq |S_{i+1}|/2$ we have $|N^-(Y, S_i)| \geq |Y|$.

Let us assume, towards a contradiction, that there exists a subset $X \subseteq S_i$ of size $|X| \leq |S_i|/2$ such that $N^+(X, S_{i+1})$ is contained in a set Y of size exactly $|X| - 1$. We distinguish between two cases:

(a) $|X| \leq \log^2 n/(2p)$. In this case we have that $e_D(X, S_{i+1} \setminus Y) = 0$, and therefore, using (4) we obtain that

$$e_D(X \cup Y) \geq e_D(X, Y) = e_D(X, S_{i+1}) \geq (1/2 + \alpha')|X||S_{i+1}|p = \omega(|X|\log^{2.1} n),$$

which contradicts (P2) (here we use the fact that $|S_{i+1}|p = \omega(\log^{2.1} n)$).

(b) $\log^{1.1} n/p < |X| \leq |S_i|/2$. In this case we have, using (4),

$$e_D(X, Y) \geq (1/2 + \alpha')|X||S_{i+1}|p = \frac{1 + 2\alpha'}{2}|X||S_{i+1}|p > (1 + \alpha/2)|X||Y|p,$$

which contradicts (P3) (here we use the fact that $\alpha' > \alpha/4$).

The same argument is applied to a subset $Y \subseteq S_{i+1}$ of size $|Y| \leq |S_{i+1}|/2$. This completes the proof.\qed
4 Proof of the Connecting Lemma

In this section we prove the Connecting Lemma (Lemma 3.5). The lemma states that if we have a list of t pairs of vertices and a set K of size $\omega(t\ell)$ (where $\ell \geq 10 \log n$) which “behaves” like a random subset of $V(D)$ then for any $\sigma \in \{+,-\}^t$ we can connect each pair of vertices via t disjoint σ-walks of length ℓ by using only vertices from K. The proof is obtained by adopting an elegant argument of Montgomery [15] into the setting of resilience.

4.1 Expansion properties and σ-neighborhoods

We start with a lemma which says that for any two (not too small) sets $X,Y \subseteq V(D)$, such that all vertices $x \in X$ have a large degree in Y, X expands to more than a half of the vertices in Y.

Lemma 4.1. Let $X,Y \subseteq V(D)$ be two (not necessarily disjoint) subsets such that $|X| = \lfloor \frac{\log^2 n}{2p} \rfloor$, $|Y| \geq 6\log^2 n/\alpha p$ and for each $x \in X$

$$d^\pm(x,Y) \geq (1/2 + \alpha/2)p|Y|.$$

Then $|N^+(X,Y)|, |N^-(X,Y)| \geq (1/2 + \alpha/20)|Y|$.

Proof. We only show that $|N^+(X,Y)| \geq (1/2 + \alpha/20)|Y|$ as the bound on $|N^-(X,Y)|$ is proven analogously. We show a slightly stronger statement, namely that

$$S_X := N^+(X,Y) \setminus X$$

is of size at least $(1/2 + \alpha/20)|Y|$.

From the property (P2) we have $e(X) \leq |X|\log^{2.1} n$. Together with $d^\pm(x,Y) \geq (1/2 + \alpha/2)p|Y|$ for every $x \in X$ and $|Y|p \geq 6\log^2 n/\alpha$, this implies the following bound on $e(X,S_X)$,

$$e(X,S_X) \geq e(X,Y) - e(X) \geq (1/2 + \alpha/2)p|X||Y| - |X|\log^{2.1} n \geq (1/2 + \alpha/3)p|X||Y|. \quad (5)$$

Let us assume towards a contradiction that $|S_X| < (1/2 + \alpha/20)|Y|$. We distinguish between two cases:

- $|S_X| < \frac{\log^2 n}{2p}$. In this case we have $|X \cup S_X| < \frac{\log n}{p}$. Therefore applying property (P2) to the set $X \cup S_X$ we conclude $e(X \cup S_X) \leq |X \cup S_X|\log^{2.1} n \leq 2|X|\log^{2.1} n$. On the other hand, from (5) and the bound on the size of Y we have

$$e(X \cup S_X) \geq e(X,S_X) \geq (1/2 + \alpha/3)p|X||Y| \geq (2 + 3/\alpha)|X|\log^{2.1} n,$$

which is a contradiction.

- $\frac{\log^2 n}{2p} \leq |S_X| \leq (1/2 + \alpha/20)|Y|$. Using property (P3) we obtain

$$e(X,S_X) \leq (1 + \alpha/2)p|X||S_X| \leq (1 + \alpha/2)(1/2 + \alpha/20)p|X||Y| < (1/2 + \alpha/3)p|X||Y|,$$

which gives a contradiction with (5).

Therefore we have $|N^+(X,Y)| \geq |S_X| \geq (1/2 + \alpha/20)|Y|$, as required. \hfill \Box
Next, we introduce the notion of a \(\sigma \)-neighborhood. For given sets \(A, B \subseteq V(D) \), integer \(\ell \) and \(\sigma \in \{+, -\}^\ell \), we define \(N^\sigma(A,B) \) as follows,

\[
N^\sigma(A,B) := \{ x \in B \mid \exists a_x \in A \text{ and a } \sigma \text{-walk } P \text{ connecting } a_x \text{ to } x \text{ and } V(P) \setminus \{a_x\} \subseteq B \}.
\]

In the following lemma we show that given any two subsets \(X, Y \subseteq V(D) \) with good expansion properties, we can find a vertex \(x \in X \) which can reach more than a half of the vertices in \(Y \) via \(\sigma \)-walks.

Lemma 4.2. Let \(\gamma \in (0,1) \) be a constant and let \(\ell \) be an integer such that \(\ell \geq 2 \log n \). Suppose that \(X, Y \subseteq V(D) \) are two disjoint subsets of vertices such that the following holds:

(i) \(|Y| \geq \frac{6\ell}{\gamma} \cdot \lceil \frac{\log^2 n}{p} \rceil \),

(ii) \(|N^+(X,Y)|, |N^-(X,Y)| \geq \frac{2\log^2 n}{p} \) and

(iii) for every subset \(S \subseteq Y \) of size \(S \geq \frac{\log^2 n}{p} \) we have

\[
|N^+(S,Y)|, |N^-(S,Y)| \geq (1/2 + \gamma)|Y|.
\]

Then for any \(\sigma \in \{+, -\}^\ell \) there exists a vertex \(x \in X \) such that

\[
|N^\sigma(x,Y)| \geq (1/2 + \gamma/2)|Y|.
\]

Proof. Recall that \(\sigma^i = (\sigma(1), \ldots, \sigma(i)) \). We first show that there exists a vertex \(x \in X \) such that \(|N^{\sigma^i}(x,Y)| \geq \frac{2\log^2 n}{p} \). In order to do so, we make use of the following claim.

Claim 4.3. Let \(i < \ell \) be an integer and \(A \subseteq X \) such that \(|N^{\sigma^i}(A,Y)| \geq \frac{2\log^2 n}{p} \). Then there exists a subset \(A' \subseteq A \) such that \(|A'| \leq \lceil |A|/2 \rceil \) and

\[
|N^{\sigma^{i+1}}(A',Y)| \geq \frac{2\log^2 n}{p}.
\]

Using Claim 4.3 we prove the lemma as follows. By assumption \((ii)\) we have \(|N^{\sigma^1}(X,Y)| \geq 2 \log^2 n/p \). Applying Claim 4.3 \(\ell - 2 \) times, we thus obtain a set \(X' \subseteq X \) such that \(|X'| \leq \lceil |X|/2^{\ell-2} \rceil \) and \(|N^{\sigma^{\ell-1}}(X',Y)| \geq \frac{2\log^2 n}{p} \). Since \(|X| \leq n \) and \(\ell - 2 \leq \log n \), it follows that \(|X'| \leq 1 \) and therefore \(|X'| = 1 \). Hence, there exists \(x \in X \) such that \(|N^{\sigma^{\ell-1}}(x,Y)| \geq \frac{2\log^2 n}{p} \). Note that, by definition, for each \(w \in N^{\sigma^{\ell-1}}(x,Y) \) there exists a \(\sigma^{\ell-1} \)-walk \(P_w \) connecting \(x \) to \(w \) with \(V(P_w) \setminus \{x\} \subseteq Y \).

Let now \(M \subseteq N^{\sigma^{\ell-1}}(x,Y) \) be a subset of size \(|M| = \lceil \frac{\log^2 n}{p} \rceil \) and let \(V^* := (\bigcup_{w \in M} V(P_w)) \setminus \{x\} \). Note that \(|V^*| \leq \ell|M| \). Under assumptions \((i)\) and \((iii)\) we have

\[
|N^{\sigma^\ell}(M,Y \setminus V^*)| \geq |N^{\sigma^\ell}(M,Y)| - |V^*| \geq (1/2 + \gamma)|Y| - \ell|M| \geq (1/2 + \gamma/2)|Y|.
\]

Observe that \(N^{\sigma^\ell}(M,Y \setminus V^*) \subseteq N^\sigma(x,Y) \) and therefore \(|N^\sigma(x,Y)| \geq (1/2 + \gamma/2)|Y| \).

In order to complete the proof it remains to prove Claim 4.3.
Proof of Claim 4.3. First, note that there exists a subset $A' \subseteq A$ such that $|A'| \leq \lceil |A|/2 \rceil$ and $|N^\sigma(A', Y)| \geq \frac{\log^2 n}{p}$. Indeed, this is true as otherwise taking an arbitrary partition of the set $A = S \cup T$, such that $|S|, |T| \leq \lceil |A|/2 \rceil$, yields

$$|N^\sigma(A, Y)| \leq |N^\sigma(S, Y)| + |N^\sigma(T, Y)| < \frac{2\log^2 n}{p},$$

which contradicts the assumption that $|N^\sigma(A, Y)| \geq \frac{2\log^2 n}{p}$.

Let $H \subseteq N^\sigma(A', Y)$ be an arbitrary subset of size $|H| = \lceil \frac{\log^2 n}{p} \rceil$. Using assumption (iii) we have $|N^\sigma(i)(H, Y)| \geq (1/2 + \gamma)|Y|$. We know that for each $v \in H$ there exist a σ^i-walk P_v connecting a vertex from A' to the vertex v. Let us denote $V^* := \cup_{v \in H} V(P_v)$. Using the upper bound on i we have $|V^*| \leq \ell|H|$ and thus

$$|N^\sigma(i+1)(H, Y \setminus V^*)| \geq (1/2 + \gamma)|Y| - \ell|H| \geq \frac{2\log^2 n}{p},$$

where the second inequality follows from assumption (i). Finally, observe that $N^\sigma(i+1)(H, Y \setminus V^*) \subseteq N^\sigma+1(A', Y)$ and hence we have $|N^\sigma+1(A', Y)| \geq \frac{2\log^2 n}{p}$. \qed

This completes the proof of the lemma.

4.2 The proof

The following lemma is an approximate version of the Connecting Lemma and it is used as the main building block in the proof of the Connecting Lemma. Namely, the lemma states that for a given set of pairs $\{(a_i, b_i)\}_{i=1}^t$ and sets R_A, R_B with good expansion properties we can connect half of the pairs via long σ-walks using only vertices from $R_A \cup R_B$.

Lemma 4.4. Let $\gamma \in (0,1)$ be a constant, let ℓ and t be integers such that $\ell \geq 5 \log n$ and $t \geq \frac{4\log^2 n}{p}$ and let $\{(a_i, b_i)\}_{i=1}^t$ be a family of pairs of vertices from $V(D)$ with $a_i \neq a_j$ and $b_i \neq b_j$ for every distinct $i, j \in [t]$. Furthermore, let $R_A, R_B \subseteq V(D) \setminus \bigcup_{i=1}^t \{a_i, b_i\}$ be disjoint subsets such that the following holds:

(i) $|R_A|, |R_B| \geq 12t\ell/\gamma$

(ii) for $X \in \{A, B\}$ and for every set $S \subseteq R_A \cup R_B \cup \bigcup_{i=1}^t \{a_i, b_i\}$ of size at least $\frac{\log^2 n}{p}$ we have

$$|N^+(S, R_X)|, |N^-(S, R_X)| \geq (1/2 + \gamma)|R_X|.$$

Then for any $\sigma \in \{+, -\}^\ell$ there exists a subset of indices $I \subseteq [t]$ of size $s := \lfloor t/2 \rfloor$ and s internally disjoint σ-walks P_i which connect a_i to b_i (where $i \in I$), and are such that $V(P_i) \setminus \{a_i, b_i\} \subseteq R_A \cup R_B$.

Proof. Let $I = \{i_1, \ldots, i_{s'}\} \subseteq [t]$ be a largest subset of indices with the desired property and assume, towards a contradiction, that $|I| = s' < \lfloor t/2 \rfloor$. Let us define

$$R_A' := R_A \setminus \cup_{i \in I} V(P_i), \quad R_B' := R_B \setminus \cup_{i \in I} V(P_i) \quad \text{and} \quad I' := [t] \setminus I.$$

Observe that in order to reach the contradiction it suffices to find a σ-walk P connecting some a_i to b_i, where $i \in I'$, such that $V(P) \setminus \{a_i, b_i\} \subseteq R_A' \cup R_B'$.

To this end, let h_A and h_B be two integers such that $h_A, h_B \geq 2 \log n$ and $h_A + h_B + 1 = \ell$, and consider σ^{h_A} and $\tilde{\sigma}^{h_B}$ (recall that $\sigma^{h_A} = (\sigma(1), \ldots, \sigma(h_A))$ and $\tilde{\sigma}^{h_B} = (\tilde{\sigma}(\ell), \ldots, \tilde{\sigma}(\ell - h_B + 1))$). We make use of the following claim.
Claim 4.5. There exists an index $i \in I'$ for which the following holds:

$$|N^{\sigma_{hA}}(a_i, R'_A)| \geq (1/2 + \gamma/4)|R'_A|$$

and

$$|N^{\sigma_B}(b_i, R'_B)| \geq (1/2 + \gamma/4)|R'_B|.$$

Before we prove this claim we first finish the proof of the lemma. Let (a_i, b_i) be a pair of vertices with the index $i \in I'$ obtained by Claim 4.5. For $S := N^{\sigma_{hA}}(a_i, R'_A)$ we have $|S| \geq (1/2 + \gamma/4)|R'_A|$. As R'_A is obtained by removing the vertices of $|I| \leq \delta/2$ many σ-walks of length ℓ we have $|R'_A| \geq |R_A| - t\ell \geq 11t\ell$, and thus $|S| \geq \log^2 n/p$. Similarly, by assumption (ii) we have that $|N^{\sigma_{hA+1}}(S, R_B)| \geq (1/2 + \gamma)|R_B|$ and consequently $|N^{\sigma_{hA+1}}(S, R'_B)| \geq |N^{\sigma_{hA+1}}(S, R_B)| - |\cup_{i \in I} V(P_i)|$

$$\geq (1/2 + \gamma)|R_B| - t\ell \geq (1/2 + \gamma/2)|R_B| \geq (1/2 + \gamma/2)|R'_B|.$$

On the other hand we know from Claim 4.5 that $|N^{\sigma_B}(b_i, R'_B)| \geq (1/2 + \gamma/4)|R'_B|$. Together with (6), this implies that there exist $v \in N^{\sigma_{hA}}(a_i, R'_A)$ and $w \in N^{\sigma_{hB}}(b_i, R'_B)$ such that

$$w \in N^{\sigma_{hA+1}}(v).$$

Therefore we can construct a σ-walk P connecting a_i to b_i such that P is vertex disjoint from all the previous σ-walks, which contradicts the maximality of I.

It remains to prove Claim 4.5.

Proof of Claim 4.5. The idea of the proof is to repeatedly apply Lemma 4.2. First, we apply Lemma 4.2 to $X := \cup_{i \in I'} \{a_i\}$, $Y := R'_A/2$ (as γ) and obtain a vertex $v_1 \in X$ such that $|N^{\sigma_{hA}}(a_i, R'_A)| \geq (1/2 + \gamma/4)|R'_A|$. Next, we apply the lemma again but now to $X := X \setminus \{v_1\}$ instead (with the other parameters unchanged) and obtain $v_2 \in X \setminus \{v_1\}$. After k steps of this procedure we obtain vertices $\{v_1, \ldots, v_k\}$ with the property $|N^{\sigma_{hA}}(v_i, R'_A)| \geq (1/2 + \gamma/4)|R'_A|$, for all $1 \leq i \leq k$.

Let us now argue that we can indeed apply Lemma 4.2 and estimate the number of steps k. Note that the condition (i) from Lemma 4.2 is satisfied as

$$|R'_A| \geq 12t\ell/\gamma - t\ell \geq 11t\ell/\gamma \geq 6\ell/\gamma \frac{\log^2 n}{p}.$$

On the other hand, using property (ii) of Lemma 4.4 and the fact that $|R_A| - |R'_A| \leq t\ell$ we get

$$|N^{-}(S, R'_A)|, |N^{+}(S, R'_A)| \geq (1/2 + \gamma)|R_A| - t\ell \geq (1/2 + \gamma/2)|R'_A|,$$

for any $S \subseteq R'_A \cup \bigcup_{i \in I'} \{a_i\}$ of size at least $\log^2 n/p$. Therefore, $X = \bigcup_{i \in I'} \{a_i\} \setminus \{v_1, \ldots, v_i\}$ satisfies assumption (ii) of Lemma 4.2 as long as $|I'| - i > \log^2 n/p$. This implies that we can iterate the process for at least $k \geq |I'|/2 + 1$ steps as $|I'| > t/2 \geq 2\log^2 n/p$. Thus, we obtain $V_A := \{v_1, \ldots, v_k\}$ with $v_j \in \{a_i\}_{i \in I'}$ and

$$|N^{\sigma_{hA}}(v_j, R'_A)| \geq (1/2 + \gamma/4)|R'_A|$$

for all $j \in [k]$.

By using the analogous argument with \(\{b_i\}_{i \in I} \) and \(R'_B \) we obtain \(V_B := \{w_1, \ldots, w_k\} \) such that
\[k > |I'|/2 \]
and \(w_j \in \{b_i\}_{i \in I'} \) with the property
\[|\mathcal{N}(w_j, R'_B)| \geq (1/2 + \gamma/4)|R'_B| \]
for all \(j \in [k] \). Therefore, there must exist \(i \in I' \) such that \(a_i \in V_A \) and \(b_i \in V_B \), as required by the claim. \(\Box \)

This finishes the proof of Lemma 4.4. \(\Box \)

Before proving the Connecting Lemma we need to introduce the following definitions.

Definition 4.6. Let \(T \) be a rooted tree with edges oriented arbitrarily. Let \(\mathcal{L}(T) \) denote the set of leaves of \(T \) and let \(\sigma \in \{+,-\}^l \) for some integer \(l \). We say that \(T \) is a \(\sigma \)-tree if for each \(v \in \mathcal{L}(T) \) the unique path from the root of \(T \) to \(v \) is a \(\sigma \)-walk.

Definition 4.7. Let \(\tau \in \{+,-\} \) and let \(X, Y \subseteq V(D) \) be two disjoint sets. We say that there is a \((2, \tau) \)-matching between \(X \) and \(Y \) that saturates \(X \) if for each \(x \in X \) there are two distinct vertices \(y^1_x, y^2_x \in Y \) such that \(\{y^1_x, y^2_x\} \in \mathcal{N}(x) \) and \(\{y^1_x, y^2_x\} \cap \{y^1_x', y^2_x'\} = \emptyset \) for \(x \neq x' \).

We are finally ready to prove the main lemma of this section.

Proof of Lemma 3.5. Given \(\sigma \in \{-,+,\}^l \), a set of pairs \(\{(a_i, b_i)\}_{i \in [l]} \) and a set \(K \) such that certain properties are satisfied, we aim to construct \(t \) internally disjoint \(\sigma \)-walks \(P_1, \ldots, P_t \) such that for each \(i, P_i \) connects \(a_i \) to \(b_i \) and \(V(P_i) \setminus \{a_i, b_i\} \subseteq K \). Let \(\sigma \) be an arbitrary element of \(\{+,-\}^l \) and let \(\varepsilon > 0 \) be a sufficiently small constant, in particular such that \((1 - \varepsilon)/(1/2 + \alpha) \geq (1/2 + \alpha/2)\).

Throughout the proof we make use of the following parameters:

\[
\begin{align*}
 h &= \max \left\{ \frac{6 \log^2 n}{p}, 2t \right\}, \\
 m &= \lceil \log_2 l \rceil + 1, \\
 s_i &= h \quad \text{for} \quad 1 \leq i \leq 2m, \\
 s_{2m+1} &= s_{2m+2} = \frac{|K|}{4}, \\
 k &= 2m + 2.
\end{align*}
\]

Applying Lemma 2.3 to \(s_1, s_2, \ldots, s_k, \varepsilon, 1/2 + \alpha \) (as \(\gamma \)), \(p, K \) (as \(U \)) and \(D \) we obtain disjoint subsets \(S_1, \ldots, S_k \subseteq K \), such that for ever \(1 \leq i \leq k \) the following holds:

(a) \(|S_i| = s_i \), and

(b) for every \(v \in V(D) \), if \(d_D^+(v, K) \geq (1/2 + \alpha)p|K| \), then
\[
d_D^+(v, S_i) \geq (1 - \varepsilon)(1/2 + \alpha)ps_i. \tag{7}
\]

Using (7), properties (ii) and (iii) and the fact that \(\varepsilon \) is sufficiently small, we obtain that for any \(v \in \{a_i \cup b_i\}_{i=1}^t \cup K \) and any set \(S_i \) the following holds:
\[
d_D^+(v, S_i) \geq (1/2 + \alpha/2)ps_i. \tag{8}
\]
For simplicity of presentation, let us denote $A_0 := \bigcup_{i=1}^{t} \{a_i\}$, $B_0 := \bigcup_{i=1}^{t} \{b_i\}$, $A_i := S_i$ for each $1 \leq i \leq m$, $B_i := S_{m+i}$ for each $1 \leq i \leq m$, $R_A := S_{2m+1}$ and $R_B := S_{2m+2}$.

We first describe, informally, the strategy for finding σ-walks. In a first step, we apply Lemma 4.4 to find $t/2$ σ-walks between vertices in A_0 and B_0. Then we find a $(2, (\sigma(1)))$-matching between the leftovers in A_0 and the vertices in A_1 and a $(2, (\sigma(\ell)))$-matching between the leftovers in B_0 and the vertices in B_1. Let A_1' denote the set of vertices that are matched to a leftover of A_0 and analogously define B_1'. Observe that $|A_1'| = |B_1'| \geq t$ and therefore one can apply Lemma 4.4 to find $|A_1'|/2$ vertex disjoint κ-walks between vertices in A_1' and B_1', where $\kappa := (\sigma(2), \ldots, \sigma(\ell-1))$.

Note that extending the walks with the matchings yields σ-walks between at least $t/4$ leftovers of A_0 and the corresponding leftovers of B_0. By iteratively continuing this process for roughly $\log t$ steps, we construct all the desired walks. Note that the internal vertices of the σ-walks constructed in the described way are contained in sets $\bigcup_{i=1}^{m} A_i \cup \bigcup_{i=1}^{m} B_i \cup R_A \cup R_B \subseteq K$.

Before proceeding with the description of the procedure, we describe a structure (I_s, P_s, T_A^s, T_B^s), for $0 \leq s \leq m$, whose existence is later proved by induction on s:

(X1) $I_s \subseteq \{t\}$ for which

(a) if $s < m$ then $|I_s| = t - \lfloor t/2^s \rfloor$

(b) if $s = m$ then $|I_s| = t$

(X2) $P_s = \{P_i\}_{i \in I_s}$ is a collection of vertex-disjoint σ-walks such that P_i connects a_i to b_i and $V(P_i) \setminus \{a_i, b_i\} \subseteq (\bigcup_{k=1}^{t} (A_k \cup B_k)) \cup R_A \cup R_B$, for all $i \in I_s$

(X3) $T_A^s = \{T_A^i\}_{i \in [t] \setminus I_s}$ is a collection of σ^s-trees and $T_B^s = \{T_B^i\}_{i \in [t] \setminus I_s}$ is a collection of $\bar{\sigma}^s$-trees such that for each $i \in [t] \setminus I_s$

(a) T_A^i is rooted at a_i, $L(T_A^i) \subseteq A_s$, $|L(T_A^i)| = 2^s$ and $V(T_A^i) \setminus \{a_i\} \subseteq \bigcup_{j=1}^{s} A_j$

(b) T_B^i is rooted at b_i, $L(T_B^i) \subseteq B_s$, $|L(T_B^i)| = 2^s$ and $V(T_B^i) \setminus \{b_i\} \subseteq \bigcup_{j=1}^{s} B_j$

(X4) for any two $T_1, T_2 \in T_A^s \cup T_B^s$ rooted at v_1 and v_2 we have $(V(T_1) \setminus v_1) \cap (V(T_2) \setminus v_2) = \emptyset$

(X5) for any two $T \in T_A^s \cup T_B^s$ and any $P \in P_s$ we have $V(T) \cap V(P) = \emptyset$.

The set I_s represents a set of indices of pairs which are connected by a σ-walk up to step s. The collection P_s contains σ-walks created up to step s between pairs with indices in I_s and the T_A^s and T_B^s are collections of trees for each element of a pair not connected by a σ-walk up to step s.

First, the properties (X1) – (X5) trivially hold for $s = 0$, $I_0 = \emptyset$, $T_A^0 = A_0$, $T_B^0 = B_0$, and $P_0 = \emptyset$. Suppose that the properties hold for some s such that $s < m$, we will construct $(I_{s+1}, P_{s+1}, T_A^{s+1}, T_B^{s+1})$ such that (X1) – (X5) still apply. Denote $A'_s = \bigcup_{T \in T_A^s} L(T)$ and $B'_s = \bigcup_{T \in T_B^s} L(T)$. Let $\{a'_i, b'_i\}_{i=1}^{t}$ be a perfect matching between vertices of A'_s and B'_s with the following property: for every $1 \leq i \leq r$ there is $j \in [t]$ such that a'_i and b'_j are leaves of trees rooted at a_j and b_j.

Using (X1) and (X3) we obtain that $r = 2^s(t - |I_s|) \geq 2^s \left\lfloor t/2^s \right\rfloor \geq t$. Next, let $R'_s = R_A \setminus \bigcup_{i \in I_s} V(P_i)$ and let $R'_B = R_B \setminus \bigcup_{i \in I_s} V(P_i)$. We use the following claim, whose proof is delayed for later.

Claim 4.8. For every $1 \leq s \leq m - 1$ and every subset $S \subseteq K$ such that $|S| \geq \frac{\log^2 n}{p}$ and $X \in \{A, B\}$ the following holds:

$$|N^+(S, R'_X)|, |N^-(S, R'_X)| \geq (1/2 + \alpha/40)|R'_X|,$$

where $R'_X := R_X \setminus \bigcup_{P \in P_s} V(P)$.
By Claim 4.8 it follows that for every $X \in \{A, B\}$ and every subset $S \subseteq K$ such that $|S| \geq \frac{\log^2 n}{p}$ we have

$$|N^+(S, R_X^*)|, |N^-(S, R_X^*)| \geq (1/2 + \alpha/40)|R_X^*|.$$

Therefore, we can apply Lemma 4.4 to $\alpha/40$ (as γ), the family of pairs $\{(a_i', b_i')\}_{i=1}^r$, R_A^* (as R_A), R_B^* (as R_B) and $\kappa := (\sigma(s+1), \ldots, \sigma(\ell-s))$, and obtain the following: a set of indices $J \subseteq [r]$ of size $|J| = \lfloor r/2 \rfloor = 2^{s-1}(t - |I_s|)$ and a collection of vertex-disjoint κ-walks W_i, such that a path W_i connects a_i' to b_i' and $V(W_i) \subseteq \{a_i', b_i'\} \subseteq R_A^* \cup R_B^*$, for each $i \in J$.

Let us pick a subset $J' \subseteq J$ of size $|J'| = \lfloor (t - |I_s|)/2 \rfloor$ such that each tree from $T_B^* \cup T_A^*$ has at most one leaf indexed with some $T \in \mathcal{L}$ of size $|T|$. We prove the existence of a σ-tree T which connects the root σ_1 to σ_{T} incident to \mathcal{P}_s. Let us define $P_{s+1} = \mathcal{P}_s \cup \{P_{i,j} : i \in I_s \}$ and $I_{s+1} = I_s \cup \{i \mid j \in J'\}$. Using the fact that $|J'| = \lfloor (t - |I_s|)/2 \rfloor$ when $s < m - 1$ we obtain

$$|I_{s+1}| = |I_s| + (t - |I_s|)/2 = t - (t - |I_s| - (t - |I_s|)/2)) = t - \lfloor (t - |I_s|)/2 \rfloor = t - \lfloor t/2^{s+1} \rfloor. \quad (10)$$

If $s = m - 1$ it follows by assumption that $|I_s| = t - 1$ and therefore that $|I_{s+1}| = t$. Note that the properties (X2) holds directly by the construction of the new σ-walk $P_{i,j}$. Thus, we showed that (X1) and (X2) hold for I_{s+1} and I_{s+1}^+.

In order to construct T_A^{s+1} and T_B^{s+1} with the properties from (X3) let $T_A^* \subseteq T_A^*$ and $T_B^* \subseteq T_B^*$ be the subsets which contain all trees that are rooting at vertices from $\cup_{i \in I_{s+1}} \{a_i, b_i\}$. For $L_A = \cup_{T \in T_A^*} L(T)$ and $L_B = \cup_{T \in T_B^*} L(T)$ it follows from (10) that $|L_A| = |L_B| = 2^s \cdot \lfloor t/2^{s+1} \rfloor$. Let us now state the next claim without the proof, which is given at the end of the section.

Claim 4.9. For every $0 \leq i \leq m - 1$, every $\tau \in \{+, -\}$ and $X \in \{A, B\}$ the following holds. For every subset $S \subseteq X_i$ of size $|S| \leq |X_{i+1}|/8$ there is a $(2, \tau)$-matching from S to X_{i+1} that saturates S.

Using Claim 4.9 we conclude that there exist an L_A-saturating (σ, \mathcal{P}_s)-matching M_A from L_A to A_{s+1}, and a L_B-saturating $(2, \sigma(\ell-i))$-matching M_B from L_B to B_{s+1}. For every σ-tree $T \in T_A^*$ we denote by T^+ the σ-tree obtained by extending T with the arcs of the matching M_A incident to $L(T)$. Similarly, for every σ-tree $T \in T_B^*$ we denote by T^+ the σ-tree obtained by extending T with the arcs of the matching M_B incident to $L(T)$. Finally, let $T_A^{s+1} = \cup_{T \in T_A^*} T^+$ and let $T_B^{s+1} = \cup_{T \in T_B^*} T^+$. It follows from our construction that T_A^{s+1} and T_B^{s+1} satisfy (X3) - (X5).

Finally, we are left with proving Claims 4.9 and 4.8 to complete the proof of the lemma.

Proof of Claim 4.9. We prove the existence of a $(2, +)$-matching from S to X_{i+1} that saturates S and the proof for such a $(2, -)$-matching follows similarly. Using Hall’s Theorem (see e.g. [19]), it is sufficient to prove that for every $S' \subseteq S$ we have $|N^+(S', X_{i+1})| \geq 2|S'|$. Assume the existence of a subset $S' \subseteq S$ that violates Hall’s condition, i.e. $|N^+(S', X_{i+1})| < 2|S'|$. If $|S'| \leq \frac{\log^2 n}{3p}$ then, since $|S' \cup N^+(S', X_{i+1})| \leq \frac{\log^2 n}{p}$, by property (P2) we obtain that

$$e_D(S' \cup N^+(S', X_{i+1})) \leq 3|S'| \log^{2.1} n. \quad (11)$$
Moreover, it follows from (8) that $d^\pm(s',X_{i+1}) \geq (1/2 + \alpha/2)p|X_{i+1}|$, for all $s' \in S'$. All in all, we get

$$e_D(S', N^+(S', X_{i+1})) \geq (1/2 + \alpha/2)p|S'||X_{i+1}| > 3|S'| \log^{2.2} n,$$

(12)

where the second inequality follow from $|X_{i+1}| \geq \frac{6\log^{2.2} n}{p}$. The last inequality together with (11) leads to a contradiction.

If on the other hand $|S'| > \frac{\log^2 n}{3p}$ and $|N^+(S',X_{i+1})| < 2|S'|$, it follows from (P3) and the assumption on S' that

$$e_D(S', N^+(S',X_{i+1})) \leq (1 + \alpha/2)2p|S'|^2.$$

However by (12) and the assumption $|X_{i+1}| \geq 4|S|$ we have $e_D(S', N^+(S',X_{i+1})) \geq (2 + 2\alpha)p|S'|^2$.

Therefore, by combining the previous inequalities we obtain

$$(2 + \alpha)p|S'|^2 \geq e_D(S', N^+(S',X_{i+1})) \geq (2 + 2\alpha)p|S'|^2,$$

which is a contradiction. □

Proof of Claim 4.8. We prove the claim for $|N^+(S,R'_X)|$ as the proof for $|N^-(S,R'_X)|$ follows analogously. By (8) we know that for $X \in \{A,B\}$ and every $v \in \{a_i,b_i\}_{i=1}^t \cup K$ the following holds at each step s:

$$d^\pm(v,R_X) \geq (1/2 + \alpha/2)p|R_X|.$$

Applying Lemma 4.1 to S (as X), R_X (as Y) we get $|N^+(S,R_X)| \geq (1/2 + \alpha/20)|R_X|$. Since $|\cup_{P \in \mathcal{P}} V(P)| \leq tl$ and $|R_X| = \omega(tl)$ we conclude that

$$|N^+(S,R'_X)| \geq (1/2 + \alpha/20)|R_X| - tl \geq (1/2 + \alpha/40)|R'_X|.$$

□

5 Proof of the Absorbing Lemma

In this section we prove Lemma 3.4. A main ingredient in our proof is the concept of an absorber. Roughly speaking, in our setting an absorber A_x for a vertex x is a digraph which contains x and two designated vertices x_s and x_t, such that A_x contains two $x_s x_t$-paths: one which consists of all the vertices in $V(A_x)$ and the other which consists of all the vertices in $V(A_x) \setminus \{x\}$.

Definition 5.1. Let ℓ_x be an integer and A_x a digraph of size $\ell_x + 1$. Then for some distinct vertices $x,x_s,x_t \in V(A_x)$, the digraph A_x is called an absorber for a vertex x with starting vertex x_s and terminal vertex x_t if the following holds:

- there exists an $x_s x_t$-path $P_x \subseteq A_x$ of length $\ell_x - 1$ that does not contain x (the non-absorbing path), and

- there exists an $x_s x_t$-path $P'_x \subseteq A_x$ of length ℓ_x (the absorbing path)

In the following lemma we describe the structure of our absorber.

Lemma 5.2. Let k and ℓ be integers and consider a digraph A_x of size $3 + 2k(\ell + 1)$ constructed as follows:
Figure 1: The absorber \(A_x \) for \(k = 3 \). The cycle \(C \) is drawn with solid arrows. The dashed arrows represent directed paths of arbitrary length. The part inside the rectangle can be repeated to obtain absorbers for larger \(k \).

(i) \(A_x \) consists of a cycle \(C \) of length \(4k + 3 \) with an orientation of the edges and labeling of the vertices as shown in Figure 1, and

(ii) \(A_x \) contains \(2k \) pairwise disjoint directed \(s_i^x, t_i^x \)-paths \(P_i \) (for each \(i \in [2k] \)), each of which is of length \(\ell \).

Then \(A_x \) is an absorber for the vertex \(x \).

Proof. It is easy to see that

\[
P'_x := x_s, x, s_1^x, P_1, t_1^x, s_2^x, P_2, t_2^x, \ldots, s_{2k}^x, P_{2k}, t_{2k}^x, x_t
\]

is an absorbing path. On the other hand, the path

\[
P_x := x_s, s_2^x, P_2, t_2^x, s_4^x, P_4, t_4^x, \ldots, s_{2k}^x, P_{2k}, t_{2k}^x, s_1^x, P_1, t_1^x, s_3^x, P_3, t_3^x, \ldots, s_{2k-1}^x, P_{2k-1}, t_{2k-1}^x, x_t
\]

uses all vertices except \(x \), thus it is a non-absorbing path. We refer the reader to Figure 1 for clarification.

The proof of the Absorbing Lemma consists of two main steps. First, we construct an absorber \(A_x \) for each \(x \in V_1 \) such that the non-absorbing path of \(A_x \) is contained in \(V_2 \cup V_3 \) and \(V(A_x) \cap V(A'_{x'}) = \emptyset \) for \(x \neq x' \). Second, using the Connecting Lemma (Lemma 3.5) we connect all the non-absorbing paths of these absorbers into one long path using vertices from \(V_4 \).

We build the absorbers \(A_x \) in \(D \) by first finding the cycle of the absorber and then connecting all the designated pairs of vertices via directed paths. To do so we again use the Connecting Lemma (note that a cycle is a \(\sigma \)-walk, for some \(\sigma \)).

Proof of Lemma 3.4. Let \(A_x \) be an absorber given by Lemma 5.2 for \(k = 3 \lceil \log n \rceil \) and \(\ell = 10 \lceil \log n \rceil \). Recall that \(A_x \) consists of a cycle \(C_x \) of length \(4k + 3 = 12 \lceil \log n \rceil + 3 \) with a prescribed orientation \(\sigma \) and \(2k = 6 \lceil \log n \rceil \) disjoint directed paths \(P_1, \ldots, P_{2k} \), each of length \(\ell \), connecting the pairs of designated vertices \((s_1^x, t_1^x), \ldots, (s_{2k}^x, t_{2k}^x) \) on the cycle.

In order to find such a cycle \(C_x \) for each \(x \in V_1 \), we apply the Connecting Lemma (Lemma 3.5) to the set \(V_2 \) (as \(K \), \(\ell = 12 \lceil \log n \rceil + 3 \), \(t = |V_1| \) and a family of pairs \(\{(x, x)\}_{x \in V_1} \). This gives us a \(\sigma \)-walk of length \(4k + 3 \) from \(x \) to itself, for every \(x \in V_1 \), which corresponds to the cycle \(C_x \) as required for the absorber. Moreover, all obtained cycles \(\{C_x\}_{x \in V_1} \) are disjoint and contain (apart from the vertices to be absorbed) only vertices in \(V_2 \). Note that we can apply the Connecting
Lemma as \(V_2 = \omega(|V_1| \log n), t = |V_1| \geq \frac{4 \log^2 n}{p} \) and by property (Q1) we have that (ii) and (iii) from the Connecting Lemma are satisfied.

Next, using the vertices in \(V_3 \), for each \(x \in V_1 \) we connect the pair of designated vertices \((s_i^x, t_i^x)\) on a cycle \(C_x \) by a directed path. To do this we apply the Connecting Lemma to \(V_3 \) (as \(K \)) with \(\ell := 10|\log n|, t = 2k|V_1|, \) and \(\{(s_i^x, t_i^x) \mid x \in V_1, 1 \leq i \leq 2k\} \) to find all the required paths to complete the absorbers. We can indeed do that as \(|V_3| = \omega(|V_1| \log^2 n), t = 2k|V_1| \geq \frac{4 \log^2 n}{p} \) and by property (Q1) we have that (ii) and (iii) from the Connecting Lemma are satisfied.

Finally, we build a directed path which contains all the non-absorbing paths of \(A_x \)'s. To do so, recall that by Definition 5.1 every absorber \(A_x \) has a start vertex \(s_x \) and a terminal vertex \(t_x \). Let us arbitrarily enumerate vertices from \(V_1 \) as \(V_1 = \{x_1, x_2, \ldots, x_h\} \), where \(h = |V_1| \). Apply the Connecting Lemma to \(V_1 \) (as \(K \)), \(\ell = 10|\log n|, t = |V_1| - 1 \) and a family of pairs \(\{(t_{i-1}, s_{i+1})\}_{i \in [h-1]} \) to find the required paths of length \(\ell \) that connect all non-absorbing paths of the absorbers into one directed path \(P^* \). Again, we are allowed to apply the lemma as \(|V_1| = \omega(|V_1| \log n) \) and by property (Q1) we have that (ii) and (iii) from the Connecting Lemma are satisfied.

It is now easy to see that the path \(P^* \) has the required properties. Let \(W \subseteq V_1 \) be an arbitrary subset of \(V_1 \) and let \(\{A_w \mid w \in W\} \) be the set of absorbers for vertices in \(W \). By the definition of absorber for each \(A_w \) there is an absorbing path starting and ending at the same vertices as the non-absorbing path, but which contains the vertex \(w \) as well. By replacing the non-absorbing paths of \(\{A_w \mid w \in W\} \) in \(P^* \) with the corresponding absorbing paths we obtain a path \(P^*_w \) which has the same endpoints as \(P^* \) and \(V(P^*_w) = V(P^*) \cup W \). \(\square \)

References

