How to Write Fast Numerical Code
Spring 2011
Lecture 21

Instructor: Markus Püschel
TA: Georg Ofenbeck
Final project paper and code due:

Friday, June 10th
FFT References

- **History:** Heideman, Johnson, Burrus: *Gauss and the History of the Fast Fourier Transform*, Arch. Hist. Sc. 34(3) 1985

- **FFTs:**
 - van Loan, *Computational Frameworks for the Fast Fourier Transform*, SIAM, 1992

- **FFTW:** www.fftw.org
Discrete Fourier Transform

- Defined for all sizes n:

$$y = \text{DFT}_n x$$

$$\text{DFT}_n = [\omega_n^{k\ell}]_{0 \leq k, \ell < n}, \quad \omega_n = e^{-2\pi i/n}$$
Complexity of the DFT

- Measure: L_c, $2 \leq c$
 - Complex adds count 1
 - Complex mult by a constant a with $|a| < c$ counts 1
 - L_2 is strictest, L_∞ the loosest (and most natural)

- Upper bounds:
 - $n = 2^k$: $L_2(DFT_n) \leq 3/2 \ n \log_2(n)$ (*using Cooley-Tukey FFT*)
 - General n: $L_2(DFT_n) \leq 8 \ n \log_2(n)$ (*needs Bluestein FFT*)

- Lower bound:
 - Theorem by Morgenstern: If $c < \infty$, then $L_c(DFT_n) \geq \frac{1}{2} \ n \log_c(n)$
 - Implies: in the measure L_c, the DFT is $\Theta(n \log(n))$
History of FFTs

- The advent of digital signal processing is often attributed to the FFT (Cooley-Tukey 1965)

- History:
 - Around 1805: FFT discovered by Gauss [1]
 (Fourier publishes the concept of Fourier analysis in 1807!)
 - 1965: Rediscovered by Cooley-Tukey

Carl-Friedrich Gauss

Contender for the greatest mathematician of all times

Some contributions: Modular arithmetic, least square analysis, normal distribution, fundamental theorem of algebra, Gauss elimination, Gauss quadrature, Gauss-Seidel, non-euclidean geometry, ...
Example FFT, \(n = 4 \)

Fast Fourier transform (FFT)

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i \\
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & 1 \\
. & 1 & . & 1 \\
. & 1 & -1 & . \\
. & 1 & . & -1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 1 \\
. & 1 & . & 1 \\
. & 1 & 1 & . \\
. & 1 & . & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
\]

Representation using matrix algebra

\[
\text{DFT}_4 = (\text{DFT}_2 \otimes I_2) \, \text{diag}(1, 1, 1, i) \, (I_2 \otimes \text{DFT}_2) \, L_2^4
\]

Data flow graph
Example FFT, $n = 16$ (Recursive, Radix 4)

\[
\text{DFT}_{16} = \text{DFT}_4 \otimes I_4 \quad T_4^{16} \quad I_4 \otimes \text{DFT}_4 \quad L_4^{16}
\]
FFTs

- **Recursive, general radix, decimation-in-time/decimation-in-frequency**

 \[
 DFT_{km} = (DFT_k \cdot I_m)T_m^{km}(I_k \cdot DFT_m)L_m^{km}
 \]

- **Iterative, radix 2, decimation-in-time/decimation-in-frequency**

 \[
 DFT_{2^{t}} = \left(\prod_{j=1}^{t} (I_{2^{t-j}} - DFT_2 \cdot I_{2^{t-j}}) \cdot (I_{2^{t-j}} - T_{2^{t-j}}^{2^{t-j}+1})\right) \cdot R_{2^{t}}
 \]

 \[
 DFT_{2^{t}} = R_{2^{t}} \cdot \left(\prod_{j=1}^{t} (I_{2^{t-j}} - T_{2^{j-1}}^{2^{2j}}) \cdot (I_{2^{t-j}} - DFT_2 \cdot I_{2^{t-j}})\right)
 \]
Radix 2, recursive

Radix 2, iterative
Recursive vs. Iterative

- Iterative FFT computes in stages of butterflies = $\log_2(n)$ passes through the data
- Recursive FFT reduces passes through data = better locality
- Same computation graph but different topological sorting

Rough analogy:

<table>
<thead>
<tr>
<th>MMM</th>
<th>DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple loop</td>
<td>Iterative FFT</td>
</tr>
<tr>
<td>Blocked</td>
<td>Recursive FFT</td>
</tr>
</tbody>
</table>
Fast Implementation (≈ FFTW 2.x)

- Choice of algorithm
- Locality optimization
- Constants
- Fast basic blocks
- Adaptivity
- Blackboard