
1/42

Computational Thinking:

A Necessary Subject in Education

Walter Gander
ETH Zurich and HKBU

May 12, 2011

2/42

Computer Development by Decades

• 1950–1960: Hardware Development

• 1960–1970: First Higher Programming Languages, Numerical

Computing

• 1970–1980: Mainframes, Data Processing

• 1980–1990: Microprocessors, Personal Computer

• 1990–2000: Network and Communications, WWW

• 2000–2010: Ubiquitous Computing

http://www.youtube.com/watch?v=2HHEQuspi4o

3/42

Computers Determine Our Life

Communication: e-mail, cell-phone, sms, social networks: facebook,

twitter, LinkedIn . . .

Writing: text-processing, spreadsheets, presentation tools

Reading: Google eBooks, e-Reader: Kindle, iPad, Sony Reader, Digital

Book Index provides links to more than 165,000 full-text digital books

Music: iTune, e-music, MP3

Radio and Television: digital, Internet

Photography: software has replaced chemically processed films

Search for Information: libraries, archives available on-line, Wikipedia

many more examples . . .

4/42

However!
Teaching K-12 Computer Science in the Digital Age Fails! a

• Computer science and the technologies it enables now lie at the

heart of our economy, our daily lives, and scientific enterprise.

• The digital age has transformed the world and workforce, but

education has fallen woefully behind in preparing students with the

fundamental CS knowledge and skills they need for future success.

• To be a well-educated citizen as we move toward an ever-more

computing-intensive world and to be prepared for the jobs of the

21st Century, students must have a deeper understanding of the

fundamentals of computer science.

aACM and CSTA released the startling findings of their computer science edu-

cation standards report, Running on Empty: The Failure to Teach K-12 Computer

Science in the Digital Age, at the National Press Club in Washington, DC.

5/42

Same Failure in Other Countries

• Switzerland: only since two years CS is introduced as an elective.

ICTswitzerlanda and SVIAb push for a mandatory subject equivalent

to mathematics, physics or chemistry.

• Germany: GI c and BITKOM d observe

– CS as an Interdisciplinary technology is of special importance

because it advances innovation in many other disciplines

– We demand therefore in the curriculum of the schools CS for all

students as an independent subject.

– In high school the subjects biology, chemistry, computer science

and physics have to be offered equivalently.
aumbrella organization of the computer science and telecommunication sector
bComputer Science Teacher Association
cGesellschaft für Informatik
dBundesverband Informationswirtschaft, Telekommunikation und neue Medien

6/42

The CSTA Voice is a bi-monthly publication for members of the

Computer Science Teachers Association

http://csta.acm.org/Communications/sub/CSTAVoice.html

http://csta.acm.org/Communications/sub/CSTAVoice.html

7/42

.

A surgeon of 1900 would not recognize anything
in todays operating room. A mathematics
teacher of 1900 in todays classroom would
just continue teaching the same way. TED

Nicholas Negroponte, MIT Media LabChange Curriculum?

• Very hard to realize, many excuses. Most frequent is: “We cannot

add more new material”

• Good way is to redefine the necessary knowledge and skills needed in

the 21 century

• Done in France by Ministry of Education:
“Le socle commun des connaissances et des compétences”,
Tout ce qu’il est indispensable de mâıtriser à la fin de la scolarité
obligatoire.a (Décret du 11 juillet 2006)

• Such a decree is not possible everywhere, especially not in

Switzerland
aThe common knowledge and skills, the essentials to master at the end of com-

pulsory education.

http://www.google.com/edu/computational-thinking/index.html

8/42

Progress in USA: CS Education Act
www.acm.org/press-room/news-releases/2010/cs-ed-act

Landmark progress July 30, 2010: congressional representatives from

both political parties introduced legislation to strengthen CS education

• Defines CS education and its concepts to clarify the confusion of

terms around K–12 CS education

• Establishes planing grants for 5 years implementation to develop CS

standards curriculum, teachers certification programs and on-line

courses

• Create blue-ribbon commission to review state of CS education and

to address CS teacher certification crisis

• Establishes K–12 teacher preparation programs at institutions of

higher education

www.acm.org/press-room/news-releases/2010/cs-ed-act

9/42

CS: Fundamentals versus Application

• We all need to be able to use a computer ICT↔CS:David Braben

• However, we need to know more to understand todays world

• Computational Thinking

Definition by Jan Cuny, Larry Snyder, and Jeannette M. Wing,

Carnegie Mellon University, USA:

Computational Thinking is the thought processes involved

in formulating problems and their solutions so that the

solutions are represented in a form that can be effectively

carried out by an information-processing agent.

– CMU www.cs.cmu.edu/~CompThink/

• Also supported by Google

www.google.com/edu/computational-thinking/index.html

http://www.youtube.com/watch?v=pQ7N4rycsy4
www.cs.cmu.edu/~CompThink/
www.google.com/edu/computational-thinking/index.html

10/42

If you don’t understand the fundamentals then . . .

11/42

Computer

• originally: calculating machine

• today: information-processing machine for digital data:

texts, pictures, music, speech . . .

• Properties

– can store vast amounts of data

– can compute extremely fast

– can communicate with other computers

– can be programmed for special tasks

The possibility of being programmed makes the computer a

universal machine

12/42

Solving Problems with Computer

• analyze a task or problem, model and formulate it mathematically

• search for a way to solve it, find or design an algorithm

• program

• run the program: let the computer work, maybe correct, modify the

program

Why is programming important for general education?

• creative and

• constructive activity work of engineers!

• teaches precise working and

• computational thinking

http://www.youtube.com/watch?v=BMzfgnTted0

13/42

How do I get the computer to solve a problem?

• The algorithm has to be programmed.

The single steps to be executed (like a recipe) have to be described

in a language which the computer understands.

• The exists many programming languages e.g. FORTRAN, Algol,

BASIC, Java, C, C++, C#, Ada, A#, Pascal, Matlab, Scilab,

Python, Oberon, Eiffel, Maple, Mathematica . . .

• For each such language there exist compilers which translate the

program in executable machine code for the specific computer.

• I will use in my examples Matlab. However, the language is not

relevant for my goal to hopefully arouse your enthusiasm for

programming!

14/42

• Problem: decide if a given number n is prime.

• Analysis: a number is prime if it has no divisors except 1 and itself

• Solution: Check if n cannot be factored by a smaller number

• Program:

function prim=primetest(n)

% n is prime if prim=1

prim=1; % we are optimistic

k=2; % smallest possible divisor

while k<=n-1 & prim % for all smaller numbers

prim=rem(n,k) ~= 0; % test if remainder nonzero

k=k+1;

end

• Run the program:

>> [primetest(13), primetest(10)]

ans =

1 0

15/42

All Primes up to a Number m

• Problem: Compute primes and store them as a list

• Analysis and Solution: test each number from 2 to m using

primetest and store it if it is prime

• Program: primes1

function [p,hm]=primes1(m);

p=[]; % empty list

for n=2:m

if primetest(n) % if prime

p=[p,n]; % then store in list

end

end

hm=length(p); % length of list

• Run the program:
>> [p,hm] = primes1(30)

p =

2 3 5 7 11 13 17 19 23 29

hm =

10

16/42

Creative Improvement!

• is it necessary to divide by all smaller numbers?

• No, it is sufficient to divide up to
√
n!

remainder

29 = 2× 14 + 1

3× 9 + 2

4× 7 + 1

5× 5 + 4

6× 4 + 5

7× 4 + 1

8× 3 + 5

9× 3 + 2

10× 2 + 9

11× 2 + 7

12× 2 + 5

· · ·
28× 1 = 1

function prim=primetest2(n)

% n is prime if prim=1

prim=1; % we are optimistic

k=2; % smallest possible divisor

while k<=sqrt(n) & prim % for all numbers up to sqrt(n)

prim=rem(n,k) ~= 0; % test if remainder nonzero

k=k+1;

end

since
√

29 = 5.3852 test only up to 5

17/42

Even smarter

• not test for all smaller numbers up to
√
n but only for already found

smaller primes!

• We want to compute and store all primes up to m

function [p,hm]=primes2(m);

p=[]; % empty list

for n=2:m % for each n test if prime

prim=1; % optimistic

wu=sqrt(n); % upper bound

for k=p % for all primes in list

if k>wu, break,end % which are < sqrt(n)

prim=rem(n,k)~=0; % test remainder

if ~prim, break, end % exit loop if not prime

end

if prim, p=[p,n]; end % store if prime

end

hm=length(p); % length of list

18/42

Different Approach, Other Algorithm Sieve of Eratosthenes

Analysis: a number prime if it is not a multiple of another number

Solution: cross out in the list of the numbers 2, 3, . . . ,m all multiples of
2, 3, . . .: the numbers left are the primes

Program: t1.m
function [p,hm]=sieve(m);

s=1:m; s(1)=0; % 1 is not prime

p=[]; k=2; % 2 is first prime

while k<m

p=[p,k]; % store prime

j=k+k; % first multiple

while j<=m

s(j)=0; j=j+k; % cross out multiples

end

j=k+1; % find next prime

while (s(j)==0)&(j<m)

j= j+1;

end

k=j; % k is prime

end

hm=length(p);

19/42

Prime Number Theorem (the second question)

• Gauss (1800), Hadamard, Vallée Poussin (1896) conjectured and

proved for the prime-counting function π(x) ∼ x
lnx− 1

• Verification by computer:

% Prime Number Theorem

clear, clf

n=50000

[p,hm] = primes2(n);

%[p,hm] = sieve(n);

y=[];

x = [2:n];

for k = 2:n

y = [y sum(p<k)];

end

plot(x,y)

hold

plot(x,x./(log(x)-1),’r’)

20/42

Shipwrecked Sailors (First question, Quiz in American. Newspaper 1926)

• 5 sailors strand on an island, collect coconuts and want to divide

them next day. Go to sleep.

• First sailor wakes up, divides the nuts, one is left for the monkey,

hides his part, shuffles the leftover together, goes back to sleep.

• The same repeats with the other sailors.

• Next morning, no one makes a remark, they divide the pile again,

and again one nut is left for the monkey.

• How many nuts did they collect?

Solution:

• 1926 solve diophantine equation.

• Today: brute force! Program the dividing process for nuts

n = 1, 2, 3, . . . until a number is found which fulfills the conditions.

21/42

Program: Shipwrecked Sailors
function [n,parts]=nuts;

n=0; % initialize number of nuts

good=0; % boolean variable

while ~good

n=n+1; % try with next n

leftover=n;

good=1; % optimistic

i=0;

while (i<5) & good % try to divide for all sailors

good=rem(leftover,5)==1; % good if one nut remains

if good,

i=i+1; % count sailor

parts(i)=fix(leftover/5); % saylor i takes his part

leftover =parts(i)*4; % shuffles the leftover together

end

end

good=good & (rem(leftover,5)==1);% next morning:one nut left for monkey

parts=(leftover-1)/5+parts; % add morning share to each sailor

end

22/42

Results

• >> [n,parts]=nuts

n = 15621

parts = 4147 3522 3022 2622 2302

• for the variant that no nut is leftover for the monkey in the morning we
change

good=good & (rem(leftover,5)==1); % next morning:one nut left for monkey

parts=(leftover-1)/5+parts; % add morning share to each sailor

to

good=good & (rem(leftover,5)==0); % next morning: no nut for monkey

parts=leftover/5+parts; % add morning share to each sailor

and get

>> [n,parts]=nuts

n = 3121

parts = 828 703 603 523 459

23/42

Sorting Algorithms

• Problem: The numbers 19 11 8 3 12 14 are to be

sorted in numerical order.

• Solution: we look for the minimum value and swap it with the value

in the first position (selection sort)

19 11 8 3 12 14 swap 19 and 3

3 |11 8 19 12 14 swap 8 and 11

3 8 |11 19 12 14 no swap

3 8 11 |19 12 14 swap 19 and 12

3 8 11 12 |19 14 swap 19 and 14

3 8 11 12 14 19 sorted!

24/42

Program Selection Sort

function a=minsort(a)

n=length(a);

for i=1:n-1 % we need n-1 steps

k=i; % assume a(k)is min

for j=i+1:n

if a(j)<a(k), k=j; end % look for smaller element

end

if k~=i % swap if i~=k

h=a(k); a(k)=a(i); a(i)=h;

bar(a); pause(0.1)

end

end

25/42

Bubble Sort
Sweep through num-

bers, compare pairs

and swap adjacent

numbers. Repeat

sweeps until no swap

occur anymore.

19 11 8 3 12 14 1. sweep

11 19 8 3 12 14

11 8 19 3 12 14

11 8 3 19 12 14

11 8 3 12 19 14

11 8 3 12 14 19

11 8 3 12 14 19 2. sweep

8 11 3 12 14 19

8 3 11 12 14 19

8 3 11 12 14 19 3. sweep

3 8 11 12 14 19 sorted!

26/42

Program Bubble Sort

function a=bubble(a)

n=length(a);

done=0; % boolean variable

while ~done

done=1; % optimistic

for k=1:n-1

if a(k)>a(k+1), % if pair not ordered

h=a(k); a(k)=a(k+1); a(k+1)=h; % swap

done=0; % needs another sweep

bar(a); pause(0.01)

end

end

end

27/42

Quicksort

Ingenious, more complex (recursive) but very fast!

• choose a number in the middle of the sequence

19 11 8 3 12 14

• look left for a number ≥ 8 and right for a number ≤ 8.

Swap both numbers

3 11 8 19 12 14

• repeat the process

{3} 8 {11 19 12 14}

• we obtained two sets with all numbers ≤ 8 and ≥ 8

• apply the same procedure to the two sets (recursion)

28/42

Program Quicksort sortieren(60)

function quick(left,right)

global a;

mid=fix((left+right)/2); % choose middle element

i=left; j=right; x=a(mid); % sort a(i) ... a(j)

while i<=j

while a(i)<x, i=i+1; end % search left a(i)>=x

while x<a(j), j=j-1; end % search right a(j)<=x

if i<=j % swap if found

u=a(i); a(i)=a(j); a(j)=u;

i=i+1; j=j-1; % advance indices

bar(a); pause(0.01)

end

end % sort the two sets

if left<j, quick(left,j) ; end % recursively

if i<right,quick(i,right); end

29/42

Programming with Recursion

Problem: prime factors of a number

Algorithm: search factor j of n, then search factor of nj

Program: t2.m
function factors= factorize(n)

factors =[]; wu=sqrt(n);

j=1; remainder=1;

while j<=wu & remainder~=0 % search factor

j=j+1; remainder=rem(n,j);

end

if remainder~=0, factors=[factors n]; % n is a prime, store

else factors=[factors j]; % j is a factor of n, store

factors=[factors factorize(n/j)]; % recursion with n/j

end

Example: >> f = factorize(36284)

f = 2 2 47 193

Simple recursion when only one branch = iteration

30/42

Genuine Recursion: Hilbert Curve
(N. Wirth: Algorithms + Data Structures = Programs)

a

d

c

b
. a2 : d← a ↓ a→ b . d2 : a ↓ d← d ↑ c

31/42

Programming the Four Cases
function a(i);

global x y h;

if i>0,

d(i-1); plot([x-h,x],[y,y]); x=x-h;

a(i-1); plot([x,x],[y-h,y]); y=y-h;

a(i-1); plot([x,x+h],[y,y]); x=x+h;

b(i-1);

end

function b(i);

global x y h;

if i>0,

c(i-1); plot([x,x],[y,y+h]); y=y+h;

b(i-1); plot([x,x+h],[y,y]); x=x+h;

b(i-1); plot([x,x],[y-h,y]); y=y-h;

a(i-1);

end

function c(i);

global x y h;

if i>0,

b(i-1); plot([x,x+h],[y,y]); x=x+h;

c(i-1); plot([x,x],[y,y+h]); y=y+h;

c(i-1); plot([x-h,x],[y,y]); x=x-h;

d(i-1);

end

function d(i);

global x y h;

if i>0,

a(i-1); plot([x,x],[y-h,y]); y=y-h;

d(i-1); plot([x-h,x],[y,y]); x=x-h;

d(i-1); plot([x,x],[y,y+h]); y=y+h;

c(i-1);

end

a b c d

a2 : d← a ↓ a→ b b2 : c ↑ b→ b ↓ a c2 : b→ c ↑ c← d d2 : a ↓ d← d ↑ c

32/42

Hilbert Curve a(6) hilbert2.m

% HILBERT CURVES

global x y h;

h0=1024;

for n=1:6

clf

axis([-600,800,-600,800])

axis square, hold

x=600; y=600 ;

h=h0/2^n; n

a(n)

pause(2)

end

33/42

Superposed Hilbert Curves
hilbert.m

% Superposed Hilbert Curves

clear, clf

global x y h ;

h0=512;

n=5

axis([-600,800,-600,800])

axis square, hold

x0=h0/4; y0=h0/4; h=h0;

for i=1:n

x0=x0 + h/2; y0=y0+h/2;

x=x0; y=y0;

a(i)

h=h/2;

end

.

34/42

Number Representation in a Computer

real numbers ↔ machine numbers

• mathematics: real numbers R = continuum

every interval (a, b) ∈ R with a < b contains ∞ set of numbers

• computer: finite machine, can only

– store a finite set of numbers

– perform a finite number of operations

• computer: the machine numbers M (finite set)

• mapping R→M: a whole interval ∈ R→ ã ∈M:
a ∈ R

ã ∈M
ãmin 0 ãmax

35/42

IEEE Floating Point Standard (since 1985)

• a real number is represented as

floating point number using 64 bits

S

ez }| {
EEEEEEEEEEE

mz }| {
FFFFF · · ·FFFFF

0 1 11 12 63

• normal case: 0 < e < 2047, (211 = 2048)

ã = (−1)S × 2e−1023 × 1.m

• realmin = 2.2251 · 10−308 = 2−1022

realmax = 1.7977 · 10308

• underflow, overflow

William Kahan

(Father IEEE F.P.S.)

36/42

computer calculate on principle inaccurately!

Matlab program results

a = 10 a = 10

b = a/7 b = 1.428571428571429

c = sqrt(sqrt(sqrt(sqrt(b)))) c = 1.022542511383932

d = exp(16 ∗ log(c)) d = 1.428571428571427

e = d ∗ 7 e = 9.999999999999991

a− e ans = 8.881784197001252e−15

Rounding errors: machine precision=spacing of number in (1, 2) is

ε = 2.22 · 10−16. For a basic operation ⊗ ∈ {+,−,×, /} we have:

a ⊗̃ b = (a⊗ b)(1 + η), |η| < ε

study/controlling of rounding errors ⇒ numerical analysis

37/42

Correct Results in Spite of Rounding Errors

• Example: computing the square root

x =
√
a ⇐⇒ x2 = a, x > 0

using only the basic operations {+,−,×, /}

• Method: Guess and correct. We want to find x such that

a

x
= x

• Start with some initial value x1, compute
a

x1

if
a

x1
6= x1 take the mean x2 =

1
2

(
x1 +

a

x1

)
• Iterate and obtain sequence {xk} converging to

√
a

38/42

√
20 =?

approximation divide take mean

4
20
4

= 5 larger 4.5 =
4 + 5

2

4.5
20
4.5

= 4.4444 smaller 4.4722 =
4.5 + 4.4444

2

4.4722
20

4.4722
= 4.4721 smaller . . .

• sequence xk →
√
a as k →∞

xk+1 =
1
2

(
xk +

a

xk

)
Heron

• initial value? termination criterion?

39/42

Alternative Derivation of Heron’s Iteration Solve

f(x) = x2 − a = 0 with Newton’s method

xk+1 = xk −
f(xk)
f ′(xk)

f(x) = x2 − a, f ′(x) = 2x

⇒ xk+1 = xk −
x2

k − a
2xk

=
1
2

(
xk +

a

xk

)
if x1 >

√
a then monotonous con-

vergence:
√
a < · · · < x2 < x1

x1x2x3x4

40/42

Program mysqrt with Smart Termination
Stop iteration when monotonicity is violated!

function xnew=mysqrt(a);

% computes w=sqrt(a) using Heron’s algorithm

xold=(1+a)/2; % start > sqrt(a)

xnew=(xold+a/xold)/2; % first iterate

while xnew<xold % if monotone

xold=xnew; % iterate

xnew=(xold+a/xold)/2;

end
>> a= 12345.654321;

>> RelErr=(sqrt(a)-mysqrt(a))/sqrt(a)

RelErr = 1.2790e-16

Relative error is smaller than machine precision ε = 2.22 · 10−16

41/42

Summary: Why is Programming FUN?

• Creative activity (inventing algorithms is fascinating)

• Constructive – one designs and constructs a machine (in software)

which then can be run.

• Programming trains accuracy and discipline – good programs are

elegant and aesthetical.

• When programming, the student is active not a passive consumer.

• Debugging programs is often an interesting detective work.

• Programming has a playful component: teach a machine to do

something.

• Multidisciplinary: when programming, one gets to know applications

in various disciplines.

42/42

Fred Brooks: Mythical Man Month (1974)

Why is programming fun? What delights may its practioner expect as

his reward?

First is the sheer joy of making things. As the child delights in his mud

pie, so the adult enjoys building things, especially things of his own

design. I think this delight must be an image of God’s delight in making

things, a delight shown in the distinctness and newness of each leaf and

each snowflake.

Second is the pleasure of making things that are useful to other people.

Deep within, we want others to use our work and to find it helpful. In

this respect the programming system is not essentially different from the

child’s first clay pencil holder “for Daddy’s office.”

Third is the fascination of fashioning complex puzzle-like objects of

interlocking moving parts and watching them work in subtle cycles,

43/42

playing out the consequences of principles built in from the beginning.

The programmed computer has all the fascination of the pinball machine

or the jukebox mechanism, carried to the ultimate.

Fourth is the joy of always learning, which springs from the nonrepeating

nature of the task. In one way or another the problem is ever new, and

its solver learns something: sometimes practical, sometimes theoretical,

and sometimes both.

Finally, there is the delight of working in such a tractable medium. The

programmer, like the poet, works only slightly removed from pure

thought-stuff. He builds his castles in the air, from air, creating by

exertion of the imagination. Few media of creation are so flexible, so

easy to polish and rework, so readily capable of realizing grand

conceptual structures.

