Change of basis in polynomial interpolation

W. Gander
Institute of Computational Science
ETH Zurich
CH-8092 Zurich
Switzerland

SUMMARY

Several representations for the interpolating polynomial exist: Lagrange, Newton, orthogonal polynomials etc. Each representation is characterized by some basis functions. In this paper we investigate the transformations between the basis functions which map a specific representation to another. We show that for this purpose the $L U$ - and the $Q R$ decomposition of the Vandermonde matrix play a crucial role. Copyright © 2000 John Wiley \& Sons, Ltd.

KEY WORDS: Polynomial interpolation, basis change

1. REPRESENTATIONS OF THE INTERPOLATING POLYNOMIAL

Given function values

$$
\begin{array}{c|cccc}
x & x_{0}, & x_{1}, & \cdots & x_{n} \\
\hline f(x) & f_{0}, & f_{1}, & \cdots & f_{n}
\end{array}
$$

with $x_{i} \neq x_{j}$ for $i \neq j$. There exists a unique polynomial P_{n} of degree less or equal n which interpolates these values, i.e.

$$
\begin{equation*}
P_{n}\left(x_{i}\right)=f_{i}, \quad i=0,1, \ldots, n . \tag{1}
\end{equation*}
$$

Several representations of P_{n} are known, we will present in this paper the basis transformations among four of them.

1.1. Monomial Basis

We consider first the monomials $\boldsymbol{m}(x)=\left(1, x, x^{2}, \ldots, x^{n}\right)^{T}$ and the representation

$$
P_{n}(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n} .
$$

[^0]Contract/grant sponsor: Publishing Arts Research Council; contract/grant number: 98-1846389

The coefficients $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{T}$ are determined by the interpolation condition (1) as solution of the linear system $V \boldsymbol{a}=\boldsymbol{f}$ with the Vandermonde matrix

$$
V=\left(\begin{array}{ccccc}
1 & x_{0} & \ldots & x_{0}^{n-1} & x_{0}^{n} \\
1 & x_{1} & \ldots & x_{1}^{n-1} & x_{1}^{n} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n-1} & x_{n}^{n}
\end{array}\right)
$$

and the right hand side $\boldsymbol{f}=\left(f_{0}, f_{1}, \ldots, f_{n}\right)^{T}$. With this notation the interpolating polynomial becomes $P_{n}(x)=\boldsymbol{a}^{T} \boldsymbol{m}(x)$.

1.2. Lagrange Basis

A second representation is by means of the Lagrange polynomials $\boldsymbol{l}(x)=\left(l_{0}(x), l_{1}(x), \ldots, l_{n}(x)\right)^{T}$ with

$$
l_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}, \quad i=0,1, \ldots, n
$$

Since $l_{i}\left(x_{i}\right)=1$ and $l_{i}\left(x_{j}\right)=0$ for $i \neq j$ the interpolation polynomial can be written as linear combination

$$
\begin{equation*}
P_{n}(x)=\sum_{j=0}^{n} f_{j} l_{j}(x)=\boldsymbol{f}^{T} \boldsymbol{l}(x) \tag{2}
\end{equation*}
$$

Interpolating with the Lagrange formula (2) is not very efficient, since for every new value x we have to perform $O\left(n^{2}\right)$ operations. There exists a variant called the Barycentric Formula [5] which requires only $O(n)$ operations per interpolation point. We define the coefficients

$$
\lambda_{i}=\frac{1}{\left(x_{i}-x_{0}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)}, \quad i=0, \ldots, n
$$

Then for new interpolation points x we compute the weights $\mu_{i}=\lambda_{i} /\left(x-x_{i}\right)$ and evaluate so

$$
\begin{equation*}
P_{n}(x)=\frac{\sum_{i=0}^{n} \mu_{i}(x) f_{i}}{\sum_{i=0}^{n} \mu_{i}(x)} \tag{3}
\end{equation*}
$$

with only $O(n)$ operations. Thus in this form the Lagrange polynomials are computed by

$$
l_{i}(x)=\frac{\mu_{i}(x)}{\sum_{i=0}^{n} \mu_{i}(x)}, \quad i=0,1, \ldots, n
$$

1.3. Newton Basis

The basis polynomials are the Newton polynomials $\boldsymbol{\pi}(x)=\left(\pi_{0}(x), \pi_{1}(x), \ldots, \pi_{n}(x)\right)^{T}$ with

$$
\pi_{0}(x) \equiv 1, \quad \pi_{k}(x)=\prod_{j=0}^{k-1}\left(x-x_{j}\right), \quad k=1, \ldots, n
$$

The interpolation polynomial becomes

$$
P_{n}(x)=d_{0} \pi_{0}(x)+d_{1} \pi_{1}(x)+\cdots d_{n} \pi_{n}(x)=\boldsymbol{d}^{T} \boldsymbol{\pi}(x)
$$

where the coefficients $\boldsymbol{d}=\left(d_{0}, d_{1}, \ldots, d_{n}\right)^{T}$ are obtained from the interpolation condition (1) as solution of the linear system $U^{T} \boldsymbol{d}=\boldsymbol{f}$ with the lower triangular matrix

$$
\left(\begin{array}{ccc}
\pi_{0}\left(x_{0}\right) & \cdots & \pi_{n}\left(x_{0}\right) \\
\pi_{0}\left(x_{1}\right) & \cdots & \pi_{n}\left(x_{1}\right) \\
\vdots & \cdots & \vdots \\
\pi_{0}\left(x_{n}\right) & \cdots & \pi_{n}\left(x_{n}\right)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & & & \\
1 & x_{1}-x_{0} & & & \\
1 & x_{2}-x_{0} & \left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) & & \\
\vdots & \vdots & \vdots & \ddots & \\
1 & x_{n}-x_{0} & \left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) & \cdots & \prod_{j=0}^{n-1}\left(x_{n}-x_{j}\right)
\end{array}\right)
$$

The matrix U is (upper) triangular since $\pi_{k}\left(x_{j}\right)=0, j<k$. Notice that an alternative way to compute the coefficients \boldsymbol{d} is by means of the divided differences:

$$
\begin{array}{cccccc}
x_{0} & f_{0}=f\left[x_{0}\right] \\
x_{1} & f_{1}=f\left[x_{1}\right] & f\left[x_{0}, x_{1}\right] & & & \\
x_{2} & f_{2}=f\left[x_{2}\right] & f\left[x_{1}, x_{2}\right] & f\left[x_{0}, x_{1}, x_{2}\right] & & \\
\vdots & \vdots & \vdots & \vdots & \ddots & \\
x_{n} & f_{n}=f\left[x_{n}\right] & f\left[x_{n-1}, x_{n}\right] & f\left[x_{n-2}, x_{n-1}, x_{n}\right] & \cdots & f\left[x_{0}, \ldots, x_{n}\right]
\end{array}
$$

which are defined recursively by

$$
f\left[x_{i}, x_{i+1}, \ldots, x_{i+k}\right]=\frac{f\left[x_{i+1}, x_{i+1}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}}
$$

The coefficients are given by the diagonal of the divided difference scheme

$$
\boldsymbol{d}=\left(d_{0}, d_{1}, \ldots, d_{n}\right)^{T}=\left(f\left[x_{0}\right], f\left[x_{0}, x_{1}\right], \ldots, f\left[x_{0}, \ldots, x_{n}\right]\right)^{T}
$$

1.4. Aitken-Neville-Interpolation

This representation of the interpolating polynomial is based on a hierarchical computation of interpolating polynomials.

Let $T_{i j}(x)$ be the polynomial of degree less or equal j that interpolates the data

$$
\begin{array}{c|cccc}
x & x_{i-j}, & x_{i-j+1} & \cdots & x_{i} \\
\hline f(x) & f_{i-j}, & f_{i-j+1} & \cdots & f_{i}
\end{array}
$$

We arrange these polynomials in a lower triangular matrix (the so called Aitken-Neville scheme) (see [4]):

x	y				
x_{0}	$f_{0}=T_{00}$				
x_{1}	$f_{1}=T_{10}$	T_{11}			
\vdots	\vdots		\ddots		
x_{i}	$f_{i}=T_{i 0}$	$T_{i 1}$	\cdots	$T_{i i}$	
\ldots	\ldots	\cdots		\ldots	\ddots.

The polynomials $T_{i j}$ can be computed through the following recursion

$$
\left.\begin{array}{rl}
T_{i 0} & =f_{i} \tag{5}\\
T_{i j} & =\frac{\left(x_{i}-x\right) T_{i-1, j-1}+\left(x-x_{i-j}\right) T_{i, j-1}}{x_{i}-x_{i-j}} \\
j & =1,2, \ldots, i
\end{array}\right\} \quad i=0,1,2, \ldots
$$

The interpolating polynomial for the $n+1$ interpolation points then becomes $P_{n}(x)=$ $T_{n n}(x)$. This representation of the interpolating polynomial is effective and usually used for extrapolation for some fixed numerical value of x.

1.5. Orthogonal Polynomials

A set $\left\{p_{j}(x)\right\}$ of polynomials is said to be orthogonal if

$$
\left\langle p_{j}, p_{k}\right\rangle=0, \quad j \neq k
$$

where the indices j and k indicate the degrees. The scalar product is defined in our case on the discrete set $\left\{x_{i}\right\}, i=0, \ldots, n$:

$$
\left\langle p_{j}, p_{k}\right\rangle=\sum_{i=0}^{n} p_{j}\left(x_{i}\right) p_{k}\left(x_{i}\right)
$$

Orthogonal polynomials are related by a three term recurrence (see e.g. [2])

$$
\begin{gathered}
p_{-1}(x) \equiv 0, \quad p_{0}(x) \equiv 1 \\
p_{k+1}(x)=\left(x-\alpha_{k+1}\right) p_{k}(x)-\beta_{k} p_{k-1}(x), \quad k=0,1,2, \ldots
\end{gathered}
$$

where

$$
\alpha_{k+1}=\frac{\left\langle x p_{k}, p_{k}\right\rangle}{\left\|p_{k}\right\|^{2}} \quad \beta_{k}=\frac{\left\|p_{k}\right\|^{2}}{\left\|p_{k-1}\right\|^{2}}
$$

We use here the norm: $\left\|p_{k}\right\|^{2}=\left\langle p_{k}, p_{k}\right\rangle$. Thus the coefficients α_{k} and β_{k} and the value of the polynomials in the nodes x_{i} can be computed recursively

$$
k=0: \Rightarrow \alpha_{1}, p_{1}, \quad k=1: \Rightarrow \alpha_{2}, \beta_{1}, p_{2}, \quad \text { etc. }
$$

Let $\boldsymbol{p}(x)=\left(p_{0}(x), \ldots, p_{n}(x)\right)^{T}$ and consider now the approximation problem

$$
\begin{equation*}
b_{0} p_{0}\left(x_{j}\right)+b_{1} p_{1}\left(x_{j}\right)+\ldots+b_{k} p_{k}\left(x_{j}\right) \approx f\left(x_{j}\right), \quad j=0, \ldots, n \tag{6}
\end{equation*}
$$

or in matrix notation $P \boldsymbol{b} \approx \boldsymbol{f}$

$$
\left(\begin{array}{cccc}
p_{0}\left(x_{0}\right) & p_{1}\left(x_{0}\right) & \cdots & p_{k}\left(x_{0}\right) \tag{7}\\
p_{0}\left(x_{1}\right) & p_{1}\left(x_{1}\right) & \cdots & p_{k}\left(x_{1}\right) \\
\vdots & \vdots & \cdots & \vdots \\
p_{0}\left(x_{n}\right) & p_{1}\left(x_{n}\right) & \cdots & p_{k}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
\vdots \\
b_{k}
\end{array}\right) \approx\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

If $k=n$ then we have $n+1$ equations for $n+1$ unknowns b_{i}. However, if $k<n$ then we will solve (7) as a least squares problem. Since the columns of the matrix P are orthogonal due to the orthogonality of the polynomials the solution is easily obtained with the normal equations:

$$
P^{T} P \boldsymbol{b}=P^{T} \boldsymbol{f}
$$

Because $P^{T} P=D^{2}$ is diagonal with $D=\operatorname{diag}\left\{\left\|p_{0}\right\|,\left\|p_{1}\right\|, \ldots,\left\|p_{k}\right\|\right\}$ the solution is

$$
b_{j}=\frac{\sum_{i=0}^{n} p_{j}\left(x_{i}\right) f_{i}}{\sum_{i=0}^{n} p_{j}\left(x_{i}\right)^{2}}=\frac{\left\langle p_{j}, \boldsymbol{f}\right\rangle}{\left\|p_{j}\right\|^{2}}, \quad j=0, \ldots, k
$$

For $k=n$ we obtain the interpolating polynomial in the form $P_{n}(x)=\boldsymbol{b}^{T} \boldsymbol{p}(x)$.

2. BASIS TRANSFORMATIONS

We consider the following four representations of the interpolating polynomial

$$
P_{n}(x)=\boldsymbol{a}^{T} \boldsymbol{m}(x)=\boldsymbol{f}^{T} \boldsymbol{l}(x)=\boldsymbol{d}^{T} \boldsymbol{\pi}(x)=\boldsymbol{b}^{T} \boldsymbol{p}(x)
$$

The question we would like to answer is: what are the transformation matrices between the basis $\boldsymbol{m}(x), \boldsymbol{l}(x), \boldsymbol{\pi}(x)$ and $\boldsymbol{p}(x)$?

2.1. Lagrange Representations

We use the following important observation to relate the Lagrange polynomials to another basis. Let $f_{i}=Q_{k}\left(x_{i}\right), i=0,1, \ldots, n$ be function values of a polynomial Q_{k} of degree $k \leq n$. Then

$$
\begin{equation*}
\sum_{i=0}^{n} f_{i} l_{i}(x)=\sum_{i=0}^{n} Q\left(x_{i}\right) l_{i}(x)=Q_{k}(x) \tag{8}
\end{equation*}
$$

Equation (8) is called the Lagrange-representation of the polynomial Q_{k}. Using this relation, it is straightforward to obtain the following mappings:
a) Lagrange - monomials: $(V$ is the Vandermonde matrix $)$:

$$
V^{T} \boldsymbol{l}(x)=\boldsymbol{m}(x)
$$

Recall that for the coefficients for the monomial basis we have the relation $V \boldsymbol{a}=\boldsymbol{f}$.
b) Lagrange - Newton: $U \boldsymbol{l}(x)=\boldsymbol{\pi}(x)$ where

$$
\begin{align*}
U & =\left(\begin{array}{cccc}
\pi_{0}\left(x_{0}\right) & \pi_{0}\left(x_{1}\right) & \cdots & \pi_{0}\left(x_{n}\right) \\
\pi_{1}\left(x_{0}\right) & \pi_{1}\left(x_{1}\right) & \cdots & \pi_{1}\left(x_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\pi_{n}\left(x_{0}\right) & \pi_{n}\left(x_{1}\right) & \cdots & \pi_{n}\left(x_{n}\right)
\end{array}\right) \tag{9}\\
& =\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{1}-x_{0} & x_{2}-x_{0} & \cdots & x_{n}-x_{0} \\
& & \left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) & \cdots & \left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \\
& & \ddots & \vdots \\
& & & \prod_{j=0}^{n-1}\left(x_{n}-x_{j}\right)
\end{array}\right)
\end{align*}
$$

is upper triangular. Recall that the coefficients \boldsymbol{d} for the Newton basis are the solution of $U^{T} \boldsymbol{d}=\boldsymbol{f}$.
An explicit expression for U^{-1} exists. The divided differences are symmetric functions of their arguments. This is seen from the representation given in [5]:

$$
\begin{equation*}
f\left[x_{0}, \ldots, x_{k}\right]=\sum_{j=0}^{k} \frac{f_{j}}{\prod_{\substack{p=0 \\ p \neq j}}^{k}\left(x_{j}-x_{p}\right)} \tag{10}
\end{equation*}
$$

Notice that $\prod_{\substack{p=0 \\ p \neq j}}^{k}\left(x_{j}-x_{p}\right)=\pi_{k}^{\prime}\left(x_{j}\right)$ and therefore

$$
d_{k}=f\left[x_{0}, \ldots, x_{k}\right]=\sum_{j=0}^{k} \frac{f_{j}}{\pi_{k}^{\prime}\left(x_{j}\right)}
$$

which is in matrix notation $\boldsymbol{d}=U^{-T} \boldsymbol{f}$ with

$$
U^{-T}=\left(\begin{array}{cccc}
\frac{1}{\pi_{1}^{\prime}\left(x_{0}\right)} & & & \\
\frac{1}{\pi_{2}^{\prime}\left(x_{0}\right)} & \frac{1}{\pi_{2}^{\prime}\left(x_{1}\right)} & & \\
\frac{1}{\pi_{3}^{\prime}\left(x_{0}\right)} & \frac{1}{\pi_{3}^{\prime}\left(x_{1}\right)} & \frac{1}{\pi_{3}^{\prime}\left(x_{2}\right)} & \\
\cdots & \cdots & \cdots & \ddots
\end{array}\right)
$$

Thus we obtain

$$
U^{-1}=\left(\begin{array}{cccc}
\frac{1}{\pi_{1}^{\prime}\left(x_{0}\right)} & \frac{1}{\pi_{2}^{\prime}\left(x_{0}\right)} & \cdots & \frac{1}{\pi_{n+1}^{\prime}\left(x_{0}\right)} \\
& \frac{1}{\pi_{2}^{\prime}\left(x_{1}\right)} & \cdots & \frac{1}{\pi_{n+1}^{\prime}\left(x_{1}\right)} \\
& & \ddots & \vdots \\
& & & \frac{1}{\pi_{n+1}^{\prime}\left(x_{n}\right)}
\end{array}\right)
$$

c) Lagrange - orthogonal polynomials: The Lagrange representation of the orthogonal polynomials is

$$
P^{T} \boldsymbol{l}(x)=\boldsymbol{p}(x)
$$

Recall that the coefficients \boldsymbol{b} for the orthogonal basis are the solution of $P \boldsymbol{b}=\boldsymbol{f}$.

2.2. Monomials - Newton

Since both basis functions have the same degrees

$$
\operatorname{degree}\left(m_{k}(x)\right)=\operatorname{degree}\left(\pi_{k}(x)\right)=k, \quad k=0, \ldots, n
$$

there must exist a lower triangular matrix L such that

$$
L \boldsymbol{\pi}(x)=\boldsymbol{m}(x)
$$

By eliminating \boldsymbol{l} in the two equations

$$
V^{T} \boldsymbol{l}=\boldsymbol{m}, \quad U \boldsymbol{l}=\boldsymbol{\pi}
$$

we get

$$
V^{T} U^{-1} \boldsymbol{\pi}=\boldsymbol{m}
$$

thus $V^{T} U^{-1}=L$ must be lower triangular and

$$
\begin{equation*}
V^{T}=L U \tag{11}
\end{equation*}
$$

Equation (11) is a LU-decomposition of the transposed Vandermonde matrix.

We can give an explicit expression for the lower triangular matrix L. Let $H_{p}\left(x_{0}, \ldots, x_{k}\right)$ be the sum of all homogeneous products of degree p of the variables x_{0}, \ldots, x_{k}, e.g.

$$
\begin{aligned}
H_{p}\left(x_{0}\right) & =x_{0}^{p} \\
H_{1}\left(x_{0}, \ldots, x_{k}\right) & =\sum_{j=0}^{k} x_{j} \\
H_{p}\left(x_{0}, x_{1}\right) & =\sum_{j=0}^{p} x_{0}^{j} x_{1}^{p-j}=\sum_{j=0}^{p} H_{j}\left(x_{0}\right) H_{p-j}\left(x_{1}\right) .
\end{aligned}
$$

For these functions Miller [3] shows that the recursion

$$
H_{p}\left(x_{0}, \ldots, x_{k}\right)=\frac{H_{p+1}\left(x_{0}, \ldots, x_{k-1}\right)-H_{p+1}\left(x_{1}, \ldots, x_{k}\right)}{x_{0}-x_{k}}
$$

holds. Furthermore Miller also shows that the divided differences eliminate coefficients in the following sense. Let

$$
f_{i}=P_{n}\left(x_{i}\right)=a_{0}+a_{1} x_{i}+\cdots a_{n} x_{i}^{n}
$$

then

$$
\begin{equation*}
f\left[x_{i}, \ldots, x_{i+k}\right]=a_{k}+\sum_{j=k+1}^{n} a_{j} H_{j-k}\left(x_{i}, \ldots, x_{i+k}\right) \tag{12}
\end{equation*}
$$

Thus $a_{0}, a_{1}, \ldots, a_{k-1}$ have been eliminated. From Equation (12) we immediately obtain the relation $L^{T} \boldsymbol{a}=\boldsymbol{d}$ where

$$
L=\left(\begin{array}{ccccc}
1 & & & & \\
H_{1}\left(x_{0}\right) & 1 & & & \\
H_{2}\left(x_{0}\right) & H_{1}\left(x_{0}, x_{1}\right) & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
H_{n}\left(x_{0}\right) & H_{n-1}\left(x_{0}, x_{1}\right) & \cdots & H_{1}\left(x_{0}, \ldots, x_{n-1}\right) & 1
\end{array}\right)
$$

Since $\operatorname{diag}(L)=1$, Equation (11) is the standard LU-decomposition of V^{T} ! We have obtained the

Theorem Let $V^{T}=L U$ be the standard LU-decomposition of the transposed Vandermonde matrix. Then L maps the Newton polynomials to the monomials and U maps the Lagrange polynomials to the Newton polynomials.

If we solve $V^{T} \boldsymbol{l}=\boldsymbol{m}$ for \boldsymbol{l} using Gaussian elimination then $L(U \boldsymbol{l})=\boldsymbol{m}$ and we obtain as intermediate result of the forward-substitution in $L \boldsymbol{\pi}=\boldsymbol{m}$ the vector of the Newtonpolynomials. By back-substitution in $U \boldsymbol{l}=\boldsymbol{\pi}$ we obtain the vector of the Lagrange polynomials. The connection between Newton form and Gauss elimination has already been observed by Carl de Boor [1] in one of the examples for his general expression for the inverse of a basis.

2.3. Monomials - orthogonal polynomials

Because again the degrees are the same we conclude that there must exist a lower triangular matrix C with

$$
C \boldsymbol{p}(x)=\boldsymbol{m}(x)
$$

Let $D=\operatorname{diag}\left\{\left\|p_{0}\right\|,\left\|p_{1}\right\|, \ldots,\left\|p_{n}\right\|\right\}$ and write this equation for $x=x_{0}, x_{1}, \ldots, x_{n}$. We obtain $C P^{T}=V^{T}$ or

$$
V=P C^{T}=\underbrace{\left(P D^{-1}\right)}_{Q} \underbrace{\left(D C^{T}\right)}_{R}
$$

which is the $Q R$-decomposition of the Vandermonde V ! We obtained no explicit expressions for this decomposition. However, to compute the matrix C we can proceed as follows: compute the QR-decomposition $V=Q R$ and since $R=D C^{T}$

$$
C=R^{T} D^{-1}
$$

Alternatively if V and P are known then $P^{T} V=D^{2} C^{T}$ and

$$
C=V^{T} P D^{-2}
$$

Because $P_{n}(x)=\boldsymbol{b}^{T} \boldsymbol{p}(x)=\boldsymbol{a}^{T} \boldsymbol{m}(x)=\boldsymbol{a}^{T} C \boldsymbol{p}(x)$ we get for the coefficients of both bases the relation

$$
C^{T} \boldsymbol{a}=\boldsymbol{b}
$$

Thus we obtain the following result:
Theorem Let $D=\operatorname{diag}\left\{\left\|p_{0}\right\|,\left\|p_{1}\right\|, \ldots,\left\|p_{n}\right\|\right\}$ and $V=Q R$ be the QR-decomposition of the Vandermonde matrix. Then the transformation matrix from the orthogonal basis to the monomial basis is given by $C=R^{T} D^{-1}$ and the coefficients are transformed by $C^{T} \boldsymbol{a}=\boldsymbol{b}$.

2.4. Newton - orthogonal polynomials

We start with the general remark: consider the $L U$ - and $Q R$-decomposition of a non-singular $(n \times n)$ matrix A

$$
A=L U=Q R
$$

Then $U^{T} L^{T}=R^{T} Q^{T}$ and

$$
\begin{equation*}
R^{-T} U^{T}=Q^{T} L^{-T} \tag{13}
\end{equation*}
$$

Note that $R^{-T} U^{T}$ is lower triangular and the right hand side of Equation (13) is the $Q R$ decomposition of this matrix.

In our case we have $V=Q R=\left(P D^{-1}\right)\left(D C^{T}\right)$ and $V^{T}=L U$ thus $V=U^{T} L^{T}$. Therefore Equation (13) becomes

$$
\begin{equation*}
C^{-1} L=P^{T} U^{-1} \tag{14}
\end{equation*}
$$

Since $L \boldsymbol{\pi}(x)=\boldsymbol{m}=C \boldsymbol{p}$ we get

$$
C^{-1} L \boldsymbol{\pi}=\boldsymbol{p}
$$

Because of Equation (14) the transformation matrix is also given by $P^{T} U^{-1}$. For the coefficients we have the relation $U^{T} \boldsymbol{d}=\boldsymbol{f}=P \boldsymbol{b}$. Therefore

$$
\boldsymbol{d}=U^{-T} P \boldsymbol{b}=\left(P U^{-1}\right)^{T} \boldsymbol{b}=\left(C^{-1} L\right)^{T} \boldsymbol{b}
$$

3. Summary of the results

We have considered the interpolation polynomial represented in four bases:

$$
P_{n}(x)=\boldsymbol{a}^{T} \boldsymbol{m}(x)=\boldsymbol{d}^{T} \boldsymbol{\pi}(x)=\boldsymbol{f}^{T} \boldsymbol{l}(x)=\boldsymbol{b}^{T} \boldsymbol{p}(x)
$$

We obtained explicit expressions for the $L U$-decomposition of $V^{T}=L U$ and also an explicit expression for U^{-1}.

Let $D=\operatorname{diag}\left\{\left\|p_{0}\right\|,\left\|p_{1}\right\|, \ldots,\left\|p_{n}\right\|\right\}$ and $V=Q R$ be the QR-decomposition of the Vandermonde. Then $C=R^{T} D^{-1}$ and $P=Q D$.

Polynomials	Basis Transform	Transform of Coefficients
Lagrange/Monomials	$V^{T} \boldsymbol{l}=\boldsymbol{m}$	$V \boldsymbol{a}=\boldsymbol{f}$
Lagrange/Newton	$U \boldsymbol{l}=\boldsymbol{\pi}$	U^{T}
Lagrange/O-Pol	$L \boldsymbol{l}=\boldsymbol{p}$	$=\boldsymbol{f}$
Newton/Monomials	$C \boldsymbol{m}=\boldsymbol{m}$	$P \boldsymbol{b}=\boldsymbol{f}$
O-Pol/Monomials	$C^{T} \boldsymbol{a}=\boldsymbol{d}$	
Newton/O-Pol	$C^{-1} L \boldsymbol{\pi}=\boldsymbol{p}$	$C^{T} \boldsymbol{a}=\boldsymbol{b}$
		$\left(C^{-1} L\right)^{T} \boldsymbol{b}=\boldsymbol{d}$

REFERENCES

1. De Boor, C., What is the Inverse of a Basis, BIT 2001, Vol. 41, No. 5, pp. 880-890.
2. Gautschi W., Numerical Analysis: An Introduction, Birkhäuser, Boston, 1997
3. Miller, J. C. P., Neville's and Romberg's Processes: A fresh Appraisal with Extensions, Philosophical Transactions of the Royal Society of London, Series A, Volume 263, 1968-1969.
4. Stoer, J., Bulirsch, R. Introduction to Numerical Analysis, 3rd ed., 2002.
5. Rutishauser, H., Lectures on Numerical Mathematics, Birkhäuser, 1990.

[^0]: ${ }^{\dagger}$ Please ensure that you use the most up to date class file, available from the NLA Home Page at http://www.interscience.wiley.com/jpages/1070-5325/

