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SUMMARY

Several representations for the interpolating polynomial exist: Lagrange, Newton, orthogonal
polynomials etc. Each representation is characterized by some basis functions. In this paper we
investigate the transformations between the basis functions which map a specific representation to
another. We show that for this purpose the LU - and the QR decomposition of the Vandermonde
matrix play a crucial role. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. REPRESENTATIONS OF THE INTERPOLATING POLYNOMIAL

Given function values
x x0, x1, · · · xn

f(x) f0, f1, · · · fn
,

with xi 6= xj for i 6= j. There exists a unique polynomial Pn of degree less or equal n which
interpolates these values, i.e.

Pn(xi) = fi, i = 0, 1, . . . , n. (1)

Several representations of Pn are known, we will present in this paper the basis transformations
among four of them.

1.1. Monomial Basis

We consider first the monomials m(x) = (1, x, x2, . . . , xn)T and the representation

Pn(x) = a0 + a1x + . . . + an−1x
n−1 + anxn.
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2 W. GANDER

The coefficients a = (a0, a1, . . . , an)T are determined by the interpolation condition (1) as
solution of the linear system V a = f with the Vandermonde matrix

V =


1 x0 . . . xn−1

0 xn
0

1 x1 . . . xn−1
1 xn

1
...

...
...

...
1 xn . . . xn−1

n xn
n


and the right hand side f = (f0, f1, . . . , fn)T . With this notation the interpolating polynomial
becomes Pn(x) = aT m(x).

1.2. Lagrange Basis

A second representation is by means of the Lagrange polynomials l(x) = (l0(x), l1(x), . . . , ln(x))T

with

li(x) =
n∏

j=0
j 6=i

x− xj

xi − xj
, i = 0, 1, . . . , n.

Since li(xi) = 1 and li(xj) = 0 for i 6= j the interpolation polynomial can be written as linear
combination

Pn(x) =
n∑

j=0

fj lj(x) = fT l(x). (2)

Interpolating with the Lagrange formula (2) is not very efficient, since for every new value x
we have to perform O(n2) operations. There exists a variant called the Barycentric Formula
[5] which requires only O(n) operations per interpolation point. We define the coefficients

λi =
1

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, i = 0, . . . , n.

Then for new interpolation points x we compute the weights µi = λi/(x− xi) and evaluate so

Pn(x) =
∑n

i=0 µi(x)fi∑n
i=0 µi(x)

(3)

with only O(n) operations. Thus in this form the Lagrange polynomials are computed by

li(x) =
µi(x)∑n
i=0 µi(x)

, i = 0, 1, . . . , n.

1.3. Newton Basis

The basis polynomials are the Newton polynomials π(x) = (π0(x), π1(x), . . . , πn(x))T with

π0(x) ≡ 1, πk(x) =
k−1∏
j=0

(x− xj), k = 1, . . . , n.

The interpolation polynomial becomes

Pn(x) = d0π0(x) + d1π1(x) + · · · dnπn(x) = dT π(x)
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CHANGE OF BASIS IN POLYNOMIAL INTERPOLATION 3

where the coefficients d = (d0, d1, . . . , dn)T are obtained from the interpolation condition (1)
as solution of the linear system UT d = f with the lower triangular matrix

π0(x0) · · · πn(x0)
π0(x1) · · · πn(x1)

... · · ·
...

π0(xn) · · · πn(xn)

 =


1
1 x1 − x0

1 x2 − x0 (x2 − x0)(x2 − x1)
...

...
...

. . .
1 xn − x0 (xn − x0)(xn − x1) · · ·

∏n−1
j=0 (xn − xj)

 .

The matrix U is (upper) triangular since πk(xj) = 0, j < k. Notice that an alternative way to
compute the coefficients d is by means of the divided differences:

x0 f0 = f [x0]
x1 f1 = f [x1] f [x0, x1]
x2 f2 = f [x2] f [x1, x2] f [x0, x1, x2]
...

...
...

...
. . .

xn fn = f [xn] f [xn−1, xn] f [xn−2, xn−1, xn] · · · f [x0, . . . , xn]

which are defined recursively by

f [xi, xi+1, . . . , xi+k] =
f [xi+1, xi+1, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi
.

The coefficients are given by the diagonal of the divided difference scheme

d = (d0, d1, . . . , dn)T = (f [x0], f [x0, x1], . . . , f [x0, . . . , xn])T .

1.4. Aitken-Neville-Interpolation

This representation of the interpolating polynomial is based on a hierarchical computation of
interpolating polynomials.

Let Tij(x) be the polynomial of degree less or equal j that interpolates the data

x xi−j , xi−j+1 · · · xi

f(x) fi−j , fi−j+1 · · · fi
.

We arrange these polynomials in a lower triangular matrix (the so called Aitken-Neville
scheme) (see [4]):

x y
x0 f0 = T00

x1 f1 = T10 T11

...
...

. . .
xi fi = Ti0 Ti1 · · · Tii

· · · · · · · · · · · ·
. . .

(4)

The polynomials Tij can be computed through the following recursion

Ti0 = fi

Tij = (xi − x)Ti−1,j−1 + (x− xi−j)Ti,j−1
xi − xi−j

j = 1, 2, . . . , i

 i = 0, 1, 2, . . . (5)
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4 W. GANDER

The interpolating polynomial for the n + 1 interpolation points then becomes Pn(x) =
Tnn(x). This representation of the interpolating polynomial is effective and usually used for
extrapolation for some fixed numerical value of x.

1.5. Orthogonal Polynomials

A set {pj(x)} of polynomials is said to be orthogonal if

〈pj , pk〉 = 0, j 6= k

where the indices j and k indicate the degrees. The scalar product is defined in our case on
the discrete set {xi}, i = 0, . . . , n:

〈pj , pk〉 =
n∑

i=0

pj(xi)pk(xi).

Orthogonal polynomials are related by a three term recurrence (see e.g. [2])

p−1(x) ≡ 0, p0(x) ≡ 1

pk+1(x) = (x− αk+1)pk(x)− βkpk−1(x), k = 0, 1, 2, . . .

where

αk+1 =
〈x pk, pk〉
‖pk‖2

βk =
‖pk‖2

‖pk−1‖2
.

We use here the norm: ‖pk‖2 = 〈pk, pk〉. Thus the coefficients αk and βk and the value of the
polynomials in the nodes xi can be computed recursively

k = 0 : ⇒ α1, p1, k = 1 : ⇒ α2, β1, p2, etc.

Let p(x) = (p0(x), . . . , pn(x))T and consider now the approximation problem

b0p0(xj) + b1p1(xj) + . . . + bkpk(xj) ≈ f(xj), j = 0, . . . , n (6)

or in matrix notation Pb ≈ f
p0(x0) p1(x0) · · · pk(x0)
p0(x1) p1(x1) · · · pk(x1)

...
... · · ·

...
p0(xn) p1(xn) · · · pk(xn)


 b0

...
bk

 ≈


f0

f1

...
fn

 (7)

If k = n then we have n + 1 equations for n + 1 unknowns bi. However, if k < n then we will
solve (7) as a least squares problem. Since the columns of the matrix P are orthogonal due to
the orthogonality of the polynomials the solution is easily obtained with the normal equations:

PT Pb = PT f .

Because PT P = D2 is diagonal with D = diag{‖p0‖, ‖p1‖, . . . , ‖pk‖} the solution is

bj =

n∑
i=0

pj(xi)fi

n∑
i=0

pj(xi)2
=
〈pj ,f〉
‖pj‖2

, j = 0, . . . , k.

For k = n we obtain the interpolating polynomial in the form Pn(x) = bT p(x).
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CHANGE OF BASIS IN POLYNOMIAL INTERPOLATION 5

2. BASIS TRANSFORMATIONS

We consider the following four representations of the interpolating polynomial

Pn(x) = aT m(x) = fT l(x) = dT π(x) = bT p(x).

The question we would like to answer is: what are the transformation matrices between the
basis m(x), l(x), π(x) and p(x)?

2.1. Lagrange Representations

We use the following important observation to relate the Lagrange polynomials to another
basis. Let fi = Qk(xi), i = 0, 1, . . . , n be function values of a polynomial Qk of degree k ≤ n.
Then

n∑
i=0

fi li(x) =
n∑

i=0

Q(xi) li(x) = Qk(x). (8)

Equation (8) is called the Lagrange-representation of the polynomial Qk. Using this relation,
it is straightforward to obtain the following mappings:

a) Lagrange – monomials: (V is the Vandermonde matrix):

V T l(x) = m(x)

Recall that for the coefficients for the monomial basis we have the relation V a = f .

b) Lagrange – Newton: U l(x) = π(x) where

U =


π0(x0) π0(x1) · · · π0(xn)
π1(x0) π1(x1) · · · π1(xn)

...
...

...
...

πn(x0) πn(x1) · · · πn(xn)

 (9)

=


1 1 1 · · · 1

x1 − x0 x2 − x0 · · · xn − x0

(x2 − x0)(x2 − x1) · · · (xn − x0)(xn − x1)
. . .

...∏n−1
j=0 (xn − xj)


is upper triangular. Recall that the coefficients d for the Newton basis are the solution
of UT d = f .

An explicit expression for U−1 exists. The divided differences are symmetric functions
of their arguments. This is seen from the representation given in [5]:

f [x0, . . . , xk] =
k∑

j=0

fj

k∏
p=0
p6=j

(xj − xp)

. (10)
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Notice that
k∏

p=0
p6=j

(xj − xp) = π′k(xj) and therefore

dk = f [x0, . . . , xk] =
k∑

j=0

fj

π′k(xj)

which is in matrix notation d = U−T f with

U−T =



1
π′
1(x0)

1
π′
2(x0)

1
π′
2(x1)

1
π′
3(x0)

1
π′
3(x1)

1
π′
3(x2)

. . . . . . . . .
. . .

 .

Thus we obtain

U−1 =



1
π′
1(x0)

1
π′
2(x0)

· · · 1
π′

n+1(x0)

1
π′
2(x1)

· · · 1
π′

n+1(x1)

. . .
...
1

π′
n+1(xn)

 .

c) Lagrange – orthogonal polynomials: The Lagrange representation of the orthogonal
polynomials is

PT l(x) = p(x).

Recall that the coefficients b for the orthogonal basis are the solution of Pb = f .

2.2. Monomials – Newton

Since both basis functions have the same degrees

degree(mk(x)) = degree(πk(x)) = k, k = 0, . . . , n

there must exist a lower triangular matrix L such that

Lπ(x) = m(x).

By eliminating l in the two equations

V T l = m, U l = π

we get
V T U−1π = m

thus V T U−1 = L must be lower triangular and

V T = LU. (11)

Equation (11) is a LU-decomposition of the transposed Vandermonde matrix.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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CHANGE OF BASIS IN POLYNOMIAL INTERPOLATION 7

We can give an explicit expression for the lower triangular matrix L. Let Hp(x0, . . . , xk) be
the sum of all homogeneous products of degree p of the variables x0, . . . , xk, e.g.

Hp(x0) = xp
0

H1(x0, . . . , xk) =
k∑

j=0

xj

Hp(x0, x1) =
p∑

j=0

xj
0x

p−j
1 =

p∑
j=0

Hj(x0)Hp−j(x1).

For these functions Miller [3] shows that the recursion

Hp(x0, . . . , xk) =
Hp+1(x0, . . . , xk−1)−Hp+1(x1, . . . , xk)

x0 − xk

holds. Furthermore Miller also shows that the divided differences eliminate coefficients in the
following sense. Let

fi = Pn(xi) = a0 + a1xi + · · · anxn
i

then

f [xi, . . . , xi+k] = ak +
n∑

j=k+1

ajHj−k(xi, . . . , xi+k). (12)

Thus a0, a1, . . . , ak−1 have been eliminated. From Equation (12) we immediately obtain the
relation LT a = d where

L =


1

H1(x0) 1
H2(x0) H1(x0, x1) 1

...
...

. . . . . .
Hn(x0) Hn−1(x0, x1) · · · H1(x0, . . . , xn−1) 1

 .

Since diag(L) = 1, Equation (11) is the standard LU-decomposition of V T ! We have obtained
the

Theorem Let V T = LU be the standard LU-decomposition of the transposed Vander-
monde matrix. Then L maps the Newton polynomials to the monomials and U maps the
Lagrange polynomials to the Newton polynomials.

If we solve V T l = m for l using Gaussian elimination then L(U l) = m and we obtain
as intermediate result of the forward-substitution in Lπ = m the vector of the Newton-
polynomials. By back-substitution in U l = π we obtain the vector of the Lagrange polynomials.
The connection between Newton form and Gauss elimination has already been observed by
Carl de Boor [1] in one of the examples for his general expression for the inverse of a basis.

2.3. Monomials – orthogonal polynomials

Because again the degrees are the same we conclude that there must exist a lower triangular
matrix C with

C p(x) = m(x).

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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Let D = diag{‖p0‖, ‖p1‖, . . . , ‖pn‖} and write this equation for x = x0, x1, . . . , xn. We obtain
CPT = V T or

V = PCT = (PD−1)︸ ︷︷ ︸
Q

(DCT )︸ ︷︷ ︸
R

which is the QR-decomposition of the Vandermonde V ! We obtained no explicit expressions
for this decomposition. However, to compute the matrix C we can proceed as follows: compute
the QR-decomposition V = QR and since R = DCT

C = RT D−1.

Alternatively if V and P are known then PT V = D2CT and

C = V T PD−2.

Because Pn(x) = bT p(x) = aT m(x) = aT Cp(x) we get for the coefficients of both bases the
relation

CT a = b.

Thus we obtain the following result:
Theorem Let D = diag{‖p0‖, ‖p1‖, . . . , ‖pn‖} and V = QR be the QR-decomposition of

the Vandermonde matrix. Then the transformation matrix from the orthogonal basis to the
monomial basis is given by C = RT D−1 and the coefficients are transformed by CT a = b.

2.4. Newton – orthogonal polynomials

We start with the general remark: consider the LU - and QR-decomposition of a non-singular
(n× n) matrix A

A = LU = QR.

Then UT LT = RT QT and
R−T UT = QT L−T . (13)

Note that R−T UT is lower triangular and the right hand side of Equation (13) is the QR-
decomposition of this matrix.

In our case we have V = QR = (PD−1) (DCT ) and V T = LU thus V = UT LT . Therefore
Equation (13) becomes

C−1L = PT U−1. (14)

Since Lπ(x) = m = Cp we get
C−1Lπ = p.

Because of Equation (14) the transformation matrix is also given by PT U−1. For the coefficients
we have the relation UT d = f = Pb. Therefore

d = U−T Pb = (PU−1)T b = (C−1L)T b.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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3. Summary of the results

We have considered the interpolation polynomial represented in four bases:

Pn(x) = aT m(x) = dT π(x) = fT l(x) = bT p(x).

We obtained explicit expressions for the LU -decomposition of V T = LU and also an explicit
expression for U−1.

Let D = diag{‖p0‖, ‖p1‖, . . . , ‖pn‖} and V = QR be the QR-decomposition of the
Vandermonde. Then C = RT D−1 and P = QD.

Polynomials Basis Transform Transform of Coefficients

Lagrange/Monomials V T l = m V a = f
Lagrange/Newton U l = π UT d = f
Lagrange/O-Pol PT l = p Pb = f
Newton/Monomials Lπ = m LT a = d
O-Pol/Monomials Cp = m CT a = b
Newton/O-Pol C−1Lπ = p (C−1L)T b = d
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