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Abstract

In this paper we present the theory and practical computational aspects of the linear least
squares problem with a quadratic constraint. New theorems characterizing properties of the
solutions are given and extended for the problem minimizing a general quadratic function
subject to a quadratic constraint. For two important regularization methods we formulate
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0. Introduction

In this paper we consider the linear least squares problem with a quadratic constraint. The matrices
and vectors will be real and we use capital letters A, B, . . . for matrices and small letters a,b, . . .
for vectors. ‖ ‖ will be used for the Euclidean vector-norm.

Given A,C,b,d and a number α ≥ 0 we consider the problem to find x such that

‖Ax− b‖ = min
subject to ‖Cx− d‖ = ≤ α.

}
(1)

This problem is a generalization of the linear least squares problem with equality constraints

‖Ax− b‖ = min
subject to Cx = d

}
(2)

since for α = 0 every solution of (1) is also a solution of (2).
The motivation why to consider (1) rather than (2) is explained best by the following example.

Let’s assume we are given m values of a function f

yi = f(ti), i = 1, . . . ,m

and we seek the coefficients of a polynomial

p(t) =

n−1∑
i=0

xit
i

that approximates f .
If we insist that p interpolate the given data, then we have to solve the system (m equations

and n unknowns)
Ax = y (3)

with aij = tji . If m > n, (3) may have no solution. If m < n, the solution is not unique. If m = n,
there is a unique solution if ti 6= tj , i 6= j. However it is well known that A is ill conditioned which
means that x is difficult to compute accurately and that usually the norm of x will be large. The
polynomial p with large coefficients will be useless since cancellation will affect its evaluation. It
may therefore be better not to interpolate but to approximate the data in the least squares sense.
This leads to the unconstrained least squares problem

‖Ax− y‖ = min . (4)

This problem has for m ≥ n and if A has full rank a unique solution. If A is rank deficient (4) has
infinitely many solutions and therefore one usually looks for the solution with minimal norm

min ‖x‖
subject to ‖Ax− y‖ = min .

}
(5)

The solution of (5) is given explicitly by

x = A+y

where A+ is the pseudoinverse of A. However the solution of (4) [35] and (5) may also suffer having
a large norm. The problem is then said to be ill posed and we consider two ways to regularize [42]
the solution. We can prescribe a bound for ‖x‖ and thus look for the solution of

‖Ax− y‖ = min
subject to ‖x‖ ≤ α.

}
(6)

Alternatively we may prefer that the deviation from the given data points be bounded. This
leads to

‖x‖ = min
subject to ‖Ax− y‖ ≤ α.

}
(7)
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The question how to choose α is not simple to answer. It may be necessary to use some statistical
tools to estimate α [17].

We observe that (6) and (7) are east squares problems with a quadratic constraint. The degree
of the polynomial (n − 1) may be chosen independently of the number of given points. We may
wish to compute a low degree polynomial (m >> n) or a polynomial with large degree m < n but
with small coefficients. Problems (6) and (7) have a unique solution (if it exists) and we will show
how to compute it efficiently.

Returning to our example, let us consider a partitioning of the data points in two sets. We
may ask for a polynomial that interpolates the data of the first set exactly. This leads to a least
squares problem with equality constraints:

‖Cx− y2‖ = min
subject to Bx = y1.

}
(8)

where y1 contains the function values of the first set. Instead of interpolating on the first set we
could ask for a bound of the deviation and get again problem (1)

‖Cx− y2‖ = min
subject to ‖Bx− y1‖ ≤ α.

}
(9)

In contrast to (6) and (7), (9) may not have a unique solution. As we shall see the solution is
unique if and only if the nullspaces of C and B intersect trivially.
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1 Basic Definitions and Remarks

The following notation will be used

Problem (P1):

‖Ax− b‖ = min (10)

subject to
‖Cx− d‖ ≤ α. (11)

If we have ‖Cx − d‖ = α instead of (11) we will refer to the problem as (P1E). Two special
cases of (P1) will be considered:

Problem (P2): like (P1) but C = I, d = 0.
Problem (P3): like (P1) but A = I, b = 0.

Finally (P2E) and (P3E) will be the corresponding problems with equality sign in the constraint.
The solution of (P1) is a stationary point of the Lagrange function (with the Lagrange multi-

plier λ)
L(x, λ) = ‖Ax− b‖2 + λ

(
‖Cx− d‖2 − α2

)
and therefore a solution of ∂L

∂x = 0 and ∂L
∂λ = 0, which are the “normal equations”:

(A>A+ λC>C)x = A>b + λC>d (12)

‖Cx− d‖2 = α2. (13)

If the matrix A>A+ λC>C is nonsingular, then we can define

f(λ) := ‖Cx(λ)− d‖2 (14)

where x(λ) is the solution of (12). We will call f the “length function”. To determine a solution
we have to solve the “secular equation”

f(λ) = α2. (15)

Finally we observe that for λ > 0 equations (12) and (13) are the normal equations of the least
squares problem ∥∥∥∥( A√

λC

)
x−

(
b√
λd

)∥∥∥∥ = min .

A useful tool for the analysis of problem (P2) and (P3) is the singular value decomposition (SVD)
[14] and its generalization (BSVD) [45] for (P1). These decompositions can also be used for the
practical computations. However for the problems (P1E), (P2E) and (P3E) there are less expensive
ways [8]. In some applications [33], A and C are band matrices and (P1) may be solved efficiently
without transformations as we shall show.

2 The Least Squares Problem with a Quadratic Constraint

Let A be an (m × n) matrix, C a (p × n) matrix, b an m vector, d a p vector, and α a positive
number.

We consider the problem to find an n-vector x so that

‖Ax− b‖ = min
subject to ‖Cx− d‖ = α.

}
(P1E)

For n = 2 we can interpret this problem geometrically. The level lines of ‖Ax − b‖2 = const are
ellipses centered at A+b. The constraints ‖Cx− d‖2 = α2 is also an ellipse.
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We are looking for a point x on the ellipse ‖Cx − d‖2 = α2 which has the smallest value of
‖Ax− b‖2. Clearly it is the point 1. At that point the gradients of the two functions

‖Cx− d‖2, ‖Ax− b‖2

are parallel, i.e., some λ exist so that

grad ‖Ax− b‖2 = −λ grad ‖Cx− d‖2.

If we rearrange this equation we have

(A>A+ λC>C)x = A>b + λC>d

which is equation (12) that we obtained using the technique of the Lagrange multipliers.
We observe that there are three other points for which the gradients of the two functions are

parallel (2,3,4). However for these three points λ is negative since the gradients have the same
directions.

We can think of problem (P1E) as blowing up a ballon centered at A+b which has an ellipsoid
shape until it touches the ellipsoid ‖Cx− d‖2 = α2.

If A+b is outside of ‖Cx−d‖2 then at the point of touch the gradients will have opposite sign,
i.e. λ > 0. However if A+b is inside the gradients have the same sign and λ < 0.

For the problem with inequality constraints (P1), (P2) and (P3) we have only to consider the
case that A+b is outside of ‖Cx− d‖2. If it is inside then x = A+b solves the problem.

2.1 Characterization of the Solution

The solution of (P1E) is among the solutions (x, λ) of the normal equations (see Section 1):

(A>A+ λC>C)x = A>b + λC>d

‖Cx− d‖2 = α2.
(16)

The following theorem compares two solutions of these equations:

Theorem 1. If (x1, λ1) and (x2, λ2) are solutions of the normal equations (16), then

‖Ax2 − b‖2 − ‖Ax1 − b‖2 =
λ1 − λ2

2
‖C(x1 − x2)‖2. (17)
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Proof. Since (x1, λ1) and (x2, λ2) are solutions of (16) we have

A>Ax1 −A>b = −λ1C>Cx1 + λ1C
>d (18)

A>Ax2 −A>b = −λ2C>Cx2 + λ2C
>d (19)

x>2 (19) - x>1 (18) gives

‖Ax2‖2 − ‖Ax1‖2 − b>A(x2 − x1) = λ1(‖Cx1‖2 − d>Cx1)− λ2(‖Cx2‖2 − d>Cx2) (20)

x>2 (18) - x>1 (19) gives

− b>A(x2 − x1) = λ1(−x>2C
>Cx1 + d>Cx2)− λ2(−x>1C

>Cx2 + d>Cx1). (21)

Observe that

‖Ax2 − b‖2 − ‖Ax1 − b‖2 = ‖Ax2‖2 − ‖Ax1‖2 − 2 b>A(x2 − x1).

So that if we add (20) – (21) we get

‖Ax2 − b‖2 − ‖Ax1 − b‖2

= λ1
(
‖Cx1‖2 − d>Cx1)− x>1C

>Cx2 + d>Cx2

)
− λ2

(
‖Cx2‖2 − d>Cx2)− x>1C

>Cx2 + d>Cx1

)
. (22)

Now we have

‖Cx1 − d‖2 = ‖Cx2 − d‖2 = α2

=⇒ ‖Cx1‖2 − 2 d>Cx1 + ‖d‖2 = ‖Cx2‖2 − 2 d>Cx2 + ‖d‖2

=⇒ ‖Cx1‖2 − d>Cx1 + d>Cx2 = ‖Cx2‖2 − d>Cx2 + d>Cx1 (23)

From (23) we conclude that the factors of λ1 and λ2in (22) are the same. Therefore they also equal
their arithmetic mean which is

1

2

(
‖Cx1‖2 − 2 x>1C

>Cx2 + ‖Cx2‖2
)

=
1

2
‖C(x1 − x2)‖2.

Corrolary 1. The solution of (P1E) is the solution x(λ) of the normal equations (16) with the
largest λ.

Proof. From (17) we have that if λ1 > λ2, then ‖Ax2 − b‖2 > ‖Ax1 − b‖2.

The next theorem gives a result very similar to Theorem 1.

Theorem 2. Assume (x1, λ1) and (x2, λ2) are solutions of the normal equations (16). Assume
that |λ1|+ |λ2| 6= 0. Then

‖Ax2 − b‖2 − ‖Ax1 − b‖2 =
λ2 − λ1
λ2 + λ1

‖A(x1 − x2)‖2.

Proof. From (A>A+ λC>C)x = A>b + λC>d we have

λ1C
>Cx1 − λ1C>d = −A>Ax1 +A>b (24)

λ2C
>Cx2 − λ2C>d = −A>Ax2 +A>b (25)

λ1x1
> (25)-λ2 x2

> (24) gives

λ1λ2
(
(x2 − x1)>C>d

)
= (λ2 − λ1)x1

>A>Ax2 + (λ1x1 − λ2 x2)>A>b. (26)
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λ1x2
> (25)-λ2 x1

> (24) gives

λ1λ2
(
‖Cx2‖2 − ‖Cx1‖2 + (x1 − x2)C>d

)
= λ2‖Ax1‖2 − λ1‖Ax2‖2 + (λ1x2 − λ2 x1)>A>b. (27)

Observe that

0 = ‖Cx2 − d‖2 − ‖Cx1 − d‖2 = ‖Cx2‖2 − ‖Cx1‖2 + 2(x1 − x2)>C>d.

So that if we subtract (27) - (26) we get

0 = λ2‖Ax1‖2 − λ1‖Ax2‖2 + (λ1x2 − λ2 x1 − λ1x1 + λ2 x2)>A>b + (λ1 − λ2)x1
>A>Ax2,

or by rearranging

λ1
(
‖Ax2‖2 − x>2A

>b + x>1A
>b− x>1A

>Ax2

)
= λ2

(
‖Ax1‖2 − x>1A

>b + x>2A
>b− x>1A

>Ax2

)
. (28)

Now the ( ) on the left hand side of (28) is

1

2
‖Ax2‖2 +

1

2

(
‖Ax2‖2 − 2 x>1A

>Ax2 + ‖Ax1‖2
)

− 1

2
‖Ax1‖2 + x>1A

>b− x>2A
>b +

1

2
‖b‖2 − 1

2
‖b‖2

=
1

2

(
‖Ax2 − b‖2 − ‖Ax1 − b‖2 + ‖A(x2 − x1)‖2

)
.

The right hand side of (28) simplifies analogously and by rearranging we obtain:

(λ1 + λ2)
(
‖Ax2 − b‖2 − ‖Ax1 − b‖2

)
= (λ2 − λ1)‖A(x2 − x1)‖2. (29)

We now prove by contradiction that λ1 + λ2 6= 0. Assume (x1, λ) and (x2,−λ) were solutions of
the normal equations (16) with λ > 0. Then by (29) we would have

‖A(x2 − x1)‖2 = 0 =⇒ Ax2 = Ax1 =⇒ ‖Ax2 − b‖2 = ‖Ax1 − b‖2.

But by Corrolary 1

λ1 = λ > −λ = λ2 =⇒ ‖Ax2 − b‖2 > ‖Ax1 − b‖2.

Therefore λ1 + λ2 6= 0 and we may divide in 29).

If we combine both results from Theorem 1 and Theorem 2we have

Corrolary 2. Let (x1, λ1) and (x2, λ2) be two solutions of the normal equations (16). If |λ1| +
|λ2| 6= 0, then

− λ1 + λ2
2

‖C(x1 − x2)‖2 = ‖A(x1 − x2)‖2. (30)

From (30) we see immediately:

Corrolary 3. The normal equations (16) have at most one solution (x∗, λ∗) with λ∗ > 0. For
every other solution (x2, λ2) we have λ < −λ∗.

The next theorem gives conditions for a unique solution of (P1E).

Theorem 3. The solution x of (P1E) is unique (if it exists) if

NS(A) ∩NS(C) = {0}

and
λ 6= −µi

where (x, λ) is a solution of the normal equations (16) and µi is an eingenvalue of the generalized
eigenvalue problem

det
(
A>A− µC>C

)
= 0.

12



Proof. The proof is by contradiction. Assume (x1, λ1) and (x2, λ2) are solutions of the normal
equations (16) which also solve (P1E).

If λ1 6= λ2 then we must have

‖Ax1 − b‖2 = ‖Ax2 − b‖2 = min
x
‖Ax− b‖2.

Theorem 1 implies
‖C(x1 − x2)‖2 = 0 =⇒ C(x1 − x2) = 0. (31)

While Theorem2 gives
‖A(x1 − x2)‖2 = 0 =⇒ A(x1 − x) = 0. (32)

Now if x1 6= x2 then (31) and (32) show that A and C have non-trivially intersecting nullspaces,
which is a contradiction.

Therefore we must have λ1 = λ2 = λ. But in this case wwe then have

(A>A+ λC>C)(x1 − x2) = 0.

If x1 6= x2 then λ = −µi which is also a contradiction. Therefore we must have λ1 = λ2 and
x1 = x2.

A and C have a trivial intersection of their nullspaces if and only if

rank

(
A
C

)
= n.

Therefore a necessary condition for a unique solution is

m+ p > n

which means that we must have “enough” equations to determine x.
We shall assume in the following (till the end of the paper) that NS(A) ∩ NS(C) = {0}. In

Section2.2 we shall analyse the existence of solutions of the normal equations. We shall see that
(P1E) has a solution if the constraint

‖Cx− d‖2 = α2

is feasible, i.e., if
min
x
‖Cx− d‖2 = ‖(CC+ − I)d‖2 < α2.

2.2 The Solutions of the Normal Equations

In this section we shall discuss the solutions of

(A>A+ λC>C)x = A>b + λC>d (33)

‖Cx− d‖2 = α2. (34)

We note that we have assumed NS(A) ∩NS(C) = {0}.
If λ 6= −µi where µi ≥ 0 is an eigenvalue of the eigenvalue problem det

(
A>A− µC>C

)
= 0

then
x(λ) =

(
A>A+ λC>C

)−1
(A>b + λC>d). (35)

If we now choose λ so that the secular equation is satisfied:

f(λ) := ‖Cx(λ)− d‖2 = α2 (36)

then (x(λ), λ) is a solution of (33), (34). We first discuss some properties of the length function f :

Lemma 1. If f is defined by (36),(35), then

1. f is a rational function defined on R− {−µi|det
(
A>A− µiC>C

)
= 0},
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2. f(λ) ≡ ‖d‖2 = const if A>b = 0 and C>d = 0,

3. f has at least one and at most n poles for some λ = −µi,

4. f(λ) > 0, lim
λ→±∞

f(λ) = ‖(CC+ − I)d‖2.

5. f ′(λ) < 0 for 0 < λ <∞.

Proof. We use the generalized singular value decomposition BSVD [45] which gives the decompo-
sition

U>AX = DA = diag(α1, . . . , αn), αi ≥ 0,
V>CX = DC = diag(γ1, . . . , γq), γi ≥ 0, q = min(n, p)

(37)

where U (m ×m) and V (p × p) are orthogonal, and X is(n × n) nonsingular, and DA, DC are
diagonal matrices with γ1 ≥ . . . ≥ γq. The decomposition exists only if m > n which we can
assume since we can add in

‖Ax − b‖2 =

∥∥∥∥(A0
)

x−
(

b
0

)∥∥∥∥2 zero rows in A and zero elements in b without changing the

solutions.
If γ1 ≥ γ2 ≥ · · · ≥ γr > γr+1 = · · · = γq = 0, then the eigenvalue of det

(
A>A− µC>C

)
= 0

are given by

µi =
α2
i

γ2i
, i = 1, . . . , r.

Because we are assuming NS(A) ∩NS(C) = {0} we have

αi > 0, for i = r + 1, . . . , n. [45]

By substituting (37) into (32) we have

X−>
(
D>ADA + λD>CDC

)
X−1x = X−>D>AU

>b + λX−>D>CV
>d

and putting
y := X−>x, c := U>b, e := V>d

we get (
D>ADA + λD>CDC

)
y = D>Ac + λC>e. (38)

Now
f(λ) = ‖Cx(λ)− d‖2 = ‖DCy(λ)− e‖2,

which is in components

f(λ) =

r∑
i=1

(
γi
αici + λγiei
α2
i + λγ2i

− ei
)2

+

p∑
i=r+1

e2i

f(λ) =

r∑
i=1

(
αi
γici − αiei
α2
i + λγ2i

)2

+

p∑
i=r+1

e2i . (39)

Obviously f(λ) is a rational function in λ with some poles. If αi(γici−αiei) 6= 0 for some 1 ≤ i ≤ r
then

λ = −α
2
i

γ2i
= −µi

is a pole of f .
if A>b = 0 and C>d = 0 then from the definition of f (36),(35), we have

f(λ) = ‖d‖2 = const .

From (36) we see that f(λ) > 0.

14



To prove the limit property in (4) we observe that the solution x(λ) of (33) converges for λ→∞
to a solution of C>Cx = C>d. Though x(∞) may not be C+d it has the same residual. Therefore:

‖Cx(∞)− d‖2 = ‖CC+d− d‖2.

This property can of course also be seen from the representation (39).
To prove (5) we differentiate (36) and (33)

f ′(λ) = 2 x′(λ)>C>(Cx(λ)− d). (40)(
A>A+ λC>C

)
x′(λ) = −C>(Cx(λ)− d). (41)

Now since λ > 0 we can perform the Cholesky decomposition(
A>A+ λC>C

)
= R>λRλ. (42)

Using (42) in (40) gives
f ′(λ) = −2‖R−>λ C>(Cx(λ)− d)‖2 < 0. (43)

Every solution λ of the secular equation (36) with λ 6= −µi defines x(λ) and (x(λ), λ) is a
solution of the normal equations (33),(34).

But there might be more solutions for some λ = −µi. In this case the matrix of (33) is singular.
If a solution should exist, the system must be consistent. This is especially true if A>b = C>d = 0
then x(λ) is an eigenvector to λ = −µi. The next lemma describes the condition for consistency:

Lemma 2. Let µi be an eigenvalue of det
(
A>A− µC>C

)
= 0. Then

(A>A− µiC>C)x = A>b− µiC>d (44)

is a consistent system if one of the conditions holds:

(i) lim
λ→−µi

f(λ) = lim
λ→−µi

‖Cx(λ)− d‖2 exists, i.e., −µi is not a pole of f .

(ii) Let J =

{
j | 1 ≤ j ≤ k,

α2
j

γ2j
= µj

}
then αj(cjγj−αjej) = 0 for j ∈ J , where all variables are

defined in the proof of Lemma 1.

Proof. We prove first (ii) using the BSVD to transform (44).

A = UDAX
−1, DA = diag(α1, . . . , αn)

C = V DCX
−1, DC = diag(γ1, . . . , γr, 0, . . . , 0).

With y := X−>x, c := U>b, e := V>d, (A>A+ λC>C)x = A>b + λC>d becomes

(α2
k + λγ2k)yk = αkck + λγkek, k = 1, . . . , r

α2
kyk = αkck, k = r + 1, . . . , n.

}
(45)

Now observe that r = rank of C and because NS(A) ∩NS(C) = {0}, αk 6= 0, k = r + 1, . . . , n. If
λ = −µi = −α2

i /γ
2
i , then for every equation j of (45) with

α2
j − µjγ2j = 0

i.e., for all j ∈ J =

{
j | 1 ≤ j ≤ k, µi =

α2
i

γ2i
=
α2
j

γ2j

}
, the right hand side must be zero:

αjcj −
α2
i

γ2i
γjej = αjcj −

α2
j

γ2j
γjej = 0
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=⇒ αj(γjcj − αjej) = 0 for j ∈ J

We note that the solution of (45) is given by

yk =

 (αkck − µiγkek)/(α2
k − µiγ2k), k /∈ J

arbitrary, k ∈ J
ck/αk, k = r + 1, . . . , n.

 (46)

Furthermore

ỹk := lim
λ→−µi

yk(λ) =

 (αkck − µiγkek)/(α2
k − µiγ2k), k /∈ J

ek/γk, k ∈ J
ck/αk, k = r + 1, . . . , n.

 (47)

From (47) we conclude that

lim
λ→−µi

x(λ) = lim
λ→−µi

Xy(λ) = Xỹ

exists and therefore
lim

λ→−µi
‖Cx(λ)− d‖2

exists. This implies that f has no pole for λ = −µi.
Conversely if f has not a pole for λ = −µi then also

lim
λ→−µi

y(λ)

must exist, which means that the system is consistent.

We can now characterize the solutions of the normal equations precisely:

Theorem 4. Let f be the lenght function defined by (36),(35). If f(λ) = α2 and det
(
A>A+ λC>C

)
6=

0 then there exists a unique x(λ) so that (x(λ), λ) solves the normal equations. If

det
(
A>A− µiC>C

)
= 0 and lim

λ→−µi
f(λ) ≤ α2 (48)

then there exists a x(−µi) so that (x(−µi),−µi) solves the normal equations, but x(−µi) is only
unique if limλ→−µi f(λ) = α2.

Proof. We have only to prove (48). We shall use the terminology defined on the proof of Lemma
2. For λ = −µi the general solution y of the transformed normal equations (45 is given by (46.
We have to see if we can satisfy the equation

‖DCy − e‖2 = α2 (49)

with this solution y. In components (49) is

∑
k/∈J

(γkyk − ek)2 +
∑
k∈J

(γkyk − ek)2 +

n∑
k=r+1

e2k = α2. (50)

We can choose the components of yk, k ∈ J arbitrarily. From (47) we see that

lim
λ→−µi

f(λ) = lim
λ→−µi

‖DCy(λ)− e‖2 = ‖DC ỹ − e‖2 (51)

lim
λ→−µi

f(λ) =
∑
k/∈J

(γkyk − ek)2 +

n∑
k=r+1

e2k. (52)

Therefore ‖DCy − e‖2 is minimized for y = ỹ.
From (52) we see that if

lim
λ→−µi

f(λ) > α2
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we cannot determine a solution y(λ) that satisfies (49). If

lim
λ→−µi

f(λ) = α2

then the unique solution is ỹ(λ) (47). If

lim
λ→−µi

f(λ) < α2

then we can choose yk, k ∈ J so that∑
k∈J

(γkyk − ek)2 = α2 − lim
λ→−µi

f(λ) (53)

and y(−µi) is not unique.

We remark that the components of y : yk, k ∈ J are (possibly) non-zero component of the
eigenvector yµi of (

D>ADA − µiD>CDC

)
yµi = 0.

Therefore a solution for the case where limλ→−µi f(λ) < α2 can also be written in the following
way. Take any eigenvector yµi belonging to µi and determine ρ such that

‖DC(ỹ + ρyµi)− d‖ = α2.

Then (ỹ + ρyµi ,−µi) is a solution of the normal equations.

2.3 The Solution for the Equality Constraint

We now consider problem (P1E)

‖Ax− b‖2 = min

subject to ‖Cx− d‖2 = α2.

We continue to assume that the nullspaces of A and C intersect trivially. To find the solution we
first have to compute the rightmost solution λ of the secular equation. If λ∗ > 0 then x(λ∗) is
the unique solution of (P1E). If λ∗ < 0 then we have to compute the smallest eigenvalue µr of the
generalized eigenvalue problem

det
(
A>A− µC>C

)
= 0

and an eigenvector xr. If λ∗ > µr then again by Theorem 1 x(λ∗) is the unique solution. However
if λ∗ ≤ µr then a solution has the form

x(ρ) = lim
λ→−µr

x(λ) + ρxr

where we have to determine ρ such that

‖Cx(ρ)− d‖2 = α2.

If A>b = C>d = 0 then f(λ) = ‖d‖2 and λ∗ does not exist. Then (ρxr,−µr) solves the problem
if ‖d‖2 ≤ α2 where ρ has to be chosen so that ‖ρCxr − d‖2 = α2.

2.4 The Solution for the Inequality Constraint

We are now ready to solve (P1):
‖Ax− b‖2 = min (54)

subject to ‖Cx− d‖2 ≤ α2. (55)

The weaker condition (55) simplifies the problem. Let M = {x | ‖Ax− b‖ = min} denote the set
of solutions of the unconstrained problem (54). If for some x ∈ M we have ‖Cx− d‖2 ≤ α2 then
this x is a solution.

17



If M 6= {A+b} then µi = 0 is an eigenvalue of det
(
A>A− µC>C

)
= 0. Since 0 is never a pole

of f ( the normal equations (44) are consistent for λ = 0) we can define the number

α2
max := lim

λ→0
f(λ).

Let α2
min := ‖(CC+−I)d‖2 = limλ→∞ f(λ). Then (P1) has no solution if α < αmin. If α ≥ αmax

then
x0 = lim

λ→0

(
A>A+ λC>C

)−1
(A>b + λC>d)

is the solution. Observe that x0 is in general not A+b [40]. Similarly if α = αmin then we have to
determine among the solutions x that minimize ‖Cx−d‖2 the solution that minimizes ‖Ax−b‖2
which is

x∞ = lim
µ→0

(
µA>A+ C>C

)−1
(µA>b + C>d).

In general we will have
αmin < α < αmax.

This means that we have to determine the unique positive solution λ∗ of the secular equation

f(λ) = α2.

And x(λ∗) =
(
A>A+ λ∗C>C

)−1
(A>b + λ∗C>d) will solve (P1).

The extreme cases α = αmax and α = αmin correspond to the two problems

min ‖Cx− d‖
subject to ‖Ax− b‖ = min

}
if α = αmax

min ‖Ax− b‖
subject to ‖Cx− d‖ = min

}
if α = αmin.

Both are of course only nontrivial if A respectively C is rank deficient.
To compute the solution in the case αmin < α < αmax we proceed iteratively. The following

algorithm shows the basic idea.

(a) start with λ > 0

(b) while not converged do

begin

solve the least squares problem(
A√
λC

)
xλ ≈

(
b√
λd

)

correct λ to solve f(λ) = α2 where

f(λ) = ‖Cxλ − d‖2

end

At every step of the iteration we have to solve a least squares problem. If we use an orthogo-
nalization procedure [48] it is more expensive than solving the normal equations by the Cholesky
decomposition [38, 28, 33]. But it is well known [26] that it is numerically preferable to solve the
least squares problem by orthogonal transformations.

We shall show in Section 5 how to reduce the amount of work using a structure of the matrices
A and C or by using an orthogonal decomposition of them.

In the next two sections we shall consider the special cases A = I and C = I. It is interesting
that we can formulate dual equations for these special cases. Furthermore Eldén [8] has showed
how to reduce the general problem to a problem with C = I.
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3 The Relaxed Least Squares Problem

We consider in this section the special case of a least squares problem with a quadratic constraint
(P2E) where C = I

‖Ax− b‖ = min

subject to ‖x‖ = α
(P2E)

The problem with the inequality constraint ‖x‖ ≤ α (P2) was called by Rutishauser [35] the relaxed
least squares problem. Problem (P2E) can be interpreted to find the minimum of a quadratic form
‖Ax − b‖2 on the sphere ‖x‖2 = α2, which is a special case of finding the stationary values of a
quadratic form on a sphere. This problem has been analysed by Forsythe and Golub [10] in 1965.
The two authors proved that if (x1, λ1) and (x2, λ2) are two solutions of the normal equations then

λ1 > λ2 =⇒ ‖Ax2 − b‖2 > ‖Ax1 − b‖2.

Their proof is rather complicated. Kahan [23] gave an elementary proof and stated the theorem

‖Ax2 − b‖2 − ‖Ax1 − b‖2 =
λ1 − λ2

2
‖x2 − x1‖2 (56)

which is Theorem 1 for C = I. Unfortunatly this theorem was never published. In 1972 Spjøtvoll
[39] gave a simpler proof than Forsythe-Golub but did not quite obtain Kahan’s result. He showed
that

|Ax2 − b‖2 − ‖Ax1 − b‖2 = (λ1 − λ2)(α2 − x>1x2)

but did not see that α2 = 1
2 (‖x1‖2 + ‖x2‖2).

3.1 Results from General Theory

Considering the theory of Section 2 and putting C = I and d = 0 we get the normal equations

(A>A+ λI)x = A>b (57)

‖x‖2 = α2. (58)

Theorem 1 gives us Equation 56. This means that the solution of (P2E) is the solution (x, λ) of
57,58 with largest λ. Since NS(A) ∩NS(C) = {0} we have from Theorem 3 that the solution of
(P2E) is unique if λ 6= −σ2

i (where σi is a singular value of A).
The length function f can be written

f(λ) = ‖(A>A+ λI)−1A>b‖2. (59)

Using the singular value decomposition of A [14]

A = UΣV>

where

U , V orthogonal
Σ = diag(σ1, . . . , σp), p = min(m,n)

the right hand side of (59) becomes

f(λ) = ‖(Σ+Σ + λI)−1Σ>c‖2 with c := U>b.

In components this is

f(λ) =

p∑
i=1

(
σici
σ2
i + λ

)2

. (60)

If A>b = 0 then c = 0 and f(λ) ≡ 0. Theorem 4 and the fact that lim
λ→∞

f(λ) = 0 implies that

for every α we have a solution of (P2E) which is not unique if λ = −σ2
i and lim

λ→ −σ2
i

f(λ) < α2.
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This was already stated by Forsythe and Golub in 1965 [10].
For the problem with the inequality constraint ‖x‖2 ≤ α2 (P2) we have either

‖A+b‖2 ≤ α2

then the solution is x = A+b or if ‖A+b‖2 > α2 then we have to determine the unique solution
λ∗ of the secular equation

f(λ) = α2 in (0,∞).

The solution is in that case x(λ∗). We note that we can reduce the length of x arbitrarily by
choosing α small.

3.2 The Dual Normal Equations

Theorem 5. (i) Let (x, λ) be a solution of the primal normal equations

(A>A+ λI)x = A>b (61)

‖x‖2 = α2 (62)

with λ 6= 0. Then (z, λ) with

z =
1

λ
(Ax− b) (63)

is a solution of the dual normal equations

(AA> + λI)z = −b (64)

‖A>z‖2 = α2 (65)

(ii) Let (z, λ) be a solution of the dual normal equations (63), (64). Then (x, λ) with

x = −A>z (66)

is a solution of the primal normal equations (61), (62).

Proof. (i)

(AA> + λI)
1

λ
(Ax− b) =

1

λ
A (A>A+ λI)x︸ ︷︷ ︸

A>b

− 1

λ
AA>b− b

= −b.

Furthermore

‖A>z‖2 = ‖A> 1

λ
(Ax− b)‖2 = ‖x‖2 = α2.

(ii)
(A>A+ λI)(−A>z) = −A> (AA> + λI))z︸ ︷︷ ︸

−b

.

And
‖ −A>z‖2 = ‖x‖2 = α2.

Theorem 5 shows that we may simplify computations to solve (P2) or (P2E). Since A is an
(m×n) matrix one of the linear systems (61) or (63) will be smaller and it may be more economical
to iterate with the smaller.

But Theorem 5 also gives theoretical equations.
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Corrolary 4. Ler A be an (m× n) matrix and λ 6= −σ2
i where σi is a singular value of A. Then

(AA> + λI)−1A> = A>(AA> + λI)−1 (67)

(AA> + λI)−1 =
1

λ

(
I −A(A>A+ λI)−1A>

)
. (68)

Proof. From Theorem 5 (67) follows by equating x, and 68 by equating z for the dual and primal
equations.

As an application we consider (68) for n = 1 (i.e., A is a vector) and λ = 1:

(I + aa>)−1 = I − 1

a>a + 1
aa>. (69)

We observe that Corrolary 4 is a special case of the Sherman-Morrison-Woodbury formula:
Let A be (n× n), U , V (n× p) matrices, then every solution x of

(A+ UV>)x = b (70)

is also the solution of the augmented system

Ax + Uy = b (71)

V>x− y = 0. (72)

Now assume that A is nonsingular. Then we have from (71)

x = A−1b−A−1Uy.

Introducing this in (72) we get

y = (I + V>A−1U)−1V>A−1b

=⇒ x = A−1b−A−1U(I + V>A−1U)−1V>A−1b.

But from (70) and (72) we have also

x = (A+ UV>)−1b

y = V>(A+ UV>)−1b.

Equating both expressions for x and y we get the matrix equations

V>(A+ UV>)−1 = (I + V>A−1U)−1V>A−1

(A+ UV>)−1 = A−1
(
I − U(I + V>A−1U)−1V>A−1

)
.

(Sherman-Morrison-Woodbury formulas)

We note that for A := λI and U = V := A we get the equations (67) and (68).
We finally remark that if λ > 0 the dual equations are the normal equations of the least squares

problem (
A>√
λ I

)
z ≈

(
0

− 1√
λ
b

)
.

The dual equations have no solution if λ = 0. we see this clearly because of the factor − 1√
λ

,

but also from (64) since it is clear that for λ = 0 a solution z of (64) may not exist for arbitrary b
and m > n.
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3.3 Eldén’s Transformation

Eldén [8] has shown how to transform a problem (P1) to a problem (P2) using orthogonal trans-
formations. To illustrate his idea consider the least square representation of (P1)(

A√
λC

)
≈
(

b√
λd

)
(73)

‖Cx− d‖ = α2 (74)

We may assume that the rank of C = p ≤ n. (C is a (p × n) matrix.) If not then we can
perform a QR decomposition with column pivoting

C = Q

(
R
0

)
P>, R =

 0

0 0

 .

Observe that ‖Cx−d‖ = ‖RP>x−Q>d‖. Therefore we can replace C by R, d by Q>d, A by AP ,
and x by y = P>x in (73), (74). The problem for y has now a matrix C (p × n with rank of C
= p. After it is solved we obtain x = Py. The same preprocessing we can apply to A and b and
so assume that rank(A) = m ≤ n.

If p = n then we can make the change of variables

x′ := Cx, A′ := AC−1

which transforms the problem to (
A′√
λ I

)
x′ ≈

(
b√
λd

)
‖x′ − d‖2 = α2.

We assume now p < n and C has rank p. Then we make a QR decomposition of C>:

C> = (V1, V2)

(
R
0

)
}p
}n− p (75)

with nonsingular triangular matrix R.
We change variables:

x =: V1y1 + V2 y2

and 73 becomes: (
AV1 AV2√
λR> 0

)(
y1

y2

)
≈
(

b√
λV>2 d

)
. (76)

Whereas 74 is now
‖R>V1y1 − d‖2 = α2. (77)

Now we perform another QR decomposition

AV2 = (Q1, Q2)

(
U
0

)
}p− n

. (78)

Since we assumed that A has rank m and V2 is orthogonal, U is a nonsingular upper triangular
matrix. Now (76) is the same problem as:Q>1AV1, U

Q>2AV1, 0√
λR>, 0

(y1

y2

)
≈

 Q>1b
Q>2b√
λV>2 d

 . (79)
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Now for every y1 we can determine y2 such that the first p− n equations are exactly satisfied.
Therefore the problem splits as follows(

Q>2AV1√
λR>

)
y1 ≈

(
Q>2b√
λV>2 d

)
(80)

with (77) as constraint. The final change of variables

y′1 := R>y1

gives the desired problem (P2).

3.4 Rutishauser’s Relaxed and Doubly Relaxed Least Squares Problem

In [35] Rutishauser remarked that if we minimize

Q(x) = ‖Ax− b‖2 (81)

for an ill-conditioned matrix A (i.e., κ = ‖A‖‖A+‖ = σ1/σr >> 1, where σ1 ≥ . . . ≥ σr > σr+1 =
. . . = σn = 0 are the singular values of A), that then the exact solution x̂ = A+b may not be
satisfactory because ‖x >> 1‖ and evaluation of Ax̂ will be affected by cancellation.

Replacing (81) by
Qε(x) = ‖Ax− b‖2 + ε2‖x‖2 (82)

will give a shorter solution xε which however does not minimizes (81) anymore. This process
of relaxing can be described as follows: The solution of (81) is the solution of the least squares
problem

Ax ≈ b. (83)

The relaxed solution xε of (82) is obtained by choosing some ε > 0 and solving(
A
εI

)
x ≈

(
b
0

)
. (84)

The connection to problem (P2) is as follows: Instead of presenting a bound for the length of
x: ‖x‖2 ≤ α2 and solve the equation

f(λ) = α2

to determine λ > 0 we simply set λ = ε2 > 0 and solve for x.
Rutishauser [35] defines the double relaxed solution xdε to be the solution of(

A>A+ ε2I + ε(A>A+ ε2I)−1
)
x = A>b. (85)

Observe that xdε is obtained by relaxing the normal equations of the relaxed solution:(
A>A+ ε2I

ε2I

)
x ≈

(
A>b

0

)
. (86)

If we put B := A>A+ ε2I then the normal equations of (86) are

(B>B + ε2I)x = B>A>b. (87)

But B is symmetric and non-singular, therefore we may multoply (87) from the left by B−1 and
we get (

B + ε2B−1
)
x = A>b

which is (85). From (85) we have

Lemma 3. The double relaxed solution xdε minimizes

Qd(x) = ‖(A>A+ ε2I)−A>b‖2 + ε2‖x‖2.
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The aim of relaxing is to approximate the “ideal solution” [13] without explicitely computing
the singular value decomposition. By the “ideal” solution we mean the following: Let

A = UΣV>, U, V orthogonal

Σ = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0

be the singular value decomposition of A. If the datas and the computation were exact then the
shortest solution of

‖Ax− b‖2 = min

would be x = A+b = Uy where y is defined by

yi =


ci
σi

if σi 6= 0 (c := U>b)

0 if σi = 0

In practical computation however it is not clear which σi are to be interpreted as zero [11], [26].
One is forced to make a rank decision, to prescribe a tolerance τ and to compute

ỹi =


ci
σi

if σi ≥ τ

0 if σi < τ

 . (88)

We will call ỹi the “ideal solution”.
Now we consider the function defined on [0,∞)

k(σ) :=


0 if σ < τ

1

σ
if σ ≥ τ

 . (89)

The coefficient of ỹi multiplying ci is given by k(σi). The length of ỹ depends on the choice of τ
and is

‖ỹ‖2 =
∑
σi≥τ

(
ci
σi

)2

.

Let γ := ‖ỹ‖/‖b‖. We can ask the question: how to choose ε such that the relaxed and the
doubly relaxed solution have the same or at least approximately the same length as the ideal
solution. The answer is given in [13]. We have

if ε ≥ 1

2γ
=⇒ ‖xε‖ < γ‖b‖ = ‖ỹ‖

and

if ε ≥ 1

2γ2
=⇒ ‖xdε‖ < γ‖b‖ = ‖ỹ‖.

If we transform the relaxed problem (84) and the doubly relaxed problem (86) using the SVD
we get

(yε)i =
σi

σ2
i + ε2

ci (90)

(ydε)i =
σi

σ2
i + ε2 +

ε2

σ2
i + ε2

ci. (91)

We see that we can think of (90), (91) as approximations of (88). More precisely, we want to
choose ε so that the two functions

kε :=
σ

σ2 + ε2
(92)
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and
kdε :=

σ

σ2 + ε2 +
ε2

σ2 + ε2

(93)

approximate the function k(σ) (89). Rutishauser [35] and Molinari [13] show that indeed kdε is
a better approximation than kε. More research could be done in this direction, e.g. relaxing the
normal equations of the original problem(

A>A
εI

)
x ≈

(
A>b

0

)
would yield the function

k1ε :=
σ

σ2 +
ε2

σ2

which is somewhat between both discussed above. It is clear that those different relaxed solutions
have to be computed without forming the normal equations. A program for xε and xdε is given in
[13].

Theorem 6. Let Aε =

(
A
εI

)
and A+

ε = (B+
ε , Cε). (B+

ε is a (n×n) matrix). Then for ε sufficiently

small we have

B+
ε = A+ +

∞∑
j=1

(−1)jA+
(
(A+)>A+

)2j
ε2j .

Proof. Let A = UΣV> with Σ =


σ1 0

. . .

σr
0 0

 be the singular value decomposition, with

σ1 ≥ . . . ≥ σr > 0. Then

A+
ε = (A>A+ ε2I)−1A>ε = (V Σ> U>U︸ ︷︷ ︸

Im

ΣV> + ε2I)−1(V Σ>U>, Iε)

= V (Σ>Σ + ε2I)−1(Σ>U>, εV>)

= V
([

(Σ>Σ + ε2I)−1Σ>
]
U>, ε(Σ>Σ + ε2I)−1V>

)
= (B+

ε , Cε)

B+
ε = V (Σ>Σ + ε2I)−1Σ>U>

B+
ε = V


σ1

σ2
1+ε

2 0

. . .
σr

σ2
r+ε

2

0 0

U>,

now
σi

σ2
i + ε2

=
1

σi

1

1 + (ε/σi)2
=

1

σi

∞∑
j=0

(ε/σi)
2j for |ε| < σr,

B+
ε =

∞∑
j=0

V


1/σ2j+1

1 0
. . .

1/σ2j+1
r

0 0


︸ ︷︷ ︸

Σ+(Σ+>Σ+)2j

U>ε2j
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where

Σ+ =

m1/σ1 0
. . .

0 1/σr

 n,

We observe
V Σ+(Σ+>Σ+)2jU> = A+(A+>A+)2j .

Remark. Theorem 6 shows that we can extrapolate xM = A+b from the relaxed solution
xε = B+

ε b. Using εi = ε0/2
i we can apply the Romberg extrapolation since only even powers of ε

occur. It has the advantage that the rank of A must not be determined.

4 Minimum Norm Solution with Given Norm of the Resid-
ual

In this section we discuss the special case of a least squares problem with a quadratic constraint
where A = I:

‖x‖ = min
subject to

‖Cx− d‖ = α.

 (P3E)

The problem with inequality constraint ‖Cx− d‖ ≤ α will be denoted by (P3). Geometrically
(P3E) means that we are looking for a point on the ellipsoid ‖Cx − d‖2 = α2 that is nearest to
the origin. From the theory in Section 2 we have that the solution of (P3E) is a solution (x, λ) of
the normal equations

(I + λC>C)x = λC>d (94)

‖Cx− d‖2 = α2 (95)

with largest λ. Since NS(I)∩NS(C) = {0} the solution is unique if λ 6= −γ2i where γi is a singular
value of C. The solution exists only if

α ≥ ‖(CC+ − I)d‖ := αmin.

For problem (P3) the solution is x = 0 if α ≥ ‖d‖. The length function f is in this case

f(λ) = ‖((λC(I + λC>C)−1C> − I)d‖2. (96)

By Corrolary 4, (68), this is equal to

f(λ) = ‖(I + λCC>)−1d‖2 (97)

which gives again the connection to the dual equations.

4.1 The Dual Normal Equations

We transform the normal equations (94) (95) as follows: We multiply (94) ffrom left by C giving

(I + λCC>)Cx = λCC>d. (98)

If we subtract from (98) on both sides λCC>d + d we get

(I + λCC>)(Cx− d) = −d.

Finally introducing the new variable z = Cx− d we get the theorem:

26



Theorem 7. (i) Let (x, λ) be a solution of the primal normal equations

(I + λC>C)x = λC>d
‖Cx− d‖2 = α2 (99)

then (z, λ) with z := Cx− d is a solution of the dual normal equations

(I + λCC>)z = −d
‖z‖2 = α2.

(100)

(ii) Let (z, λ) be a solution of (100) then (x, λ) with x = −λC>z is a solution of (99).

Proof. (i)

(I + λCC>)(Cx− d) = C(I + λC>C)x− d− λCC>d

= C(λC>d)− d− λCC>d = −d

and
α2 = ‖z‖2 = ‖Cx− d‖2.

(ii)
(I + λC>C)(−λC>z) = −λC>(I + λCC>)z = λC>d.

‖Cx− d‖2 = ‖C(−λC>z)− d‖2 = ‖z‖2 = α2.

Equating both expressions for x and z again gives us the identities of Corrolary 4.
In contrast to the relaxed least squares problem, the dual equations exists for evey λ.

4.2 Representation as Least Squares Problem

If we want to solve (P3) then the solution is x = 0 if α > ‖d‖ and exists only if α > αmin =
‖(CC+ − I)d‖. For

αmin < α < ‖d‖,

we have to compute the solution iteratively solving the secular equation f(λ) = α2 where

f(λ) = ‖Cx− d‖2 = ‖z‖2.

x and z are obtained solving either (
I√
λC

)
x ≈

(
0√
λd

)
or the dual problem (

I√
λC>

)
z ≈

(
−d
0

)

5 Computational Aspects

To compute the solution of a least squares problem with a quadratic constraint we have to determine
iteratively the largest solution of the secular equation. For the problems (P1E), (P2E) and (P3E)
we can expect numerical difficulties since at every step of the iteration we have to solve a system
of equations with the matrix

A>A+ λC>C where λ < 0 (101)

which is in general not positive definite. A good way to solve this system is to transform it to
diagonal form using BSVD of van Loan [45]. If A = I or C = I we can use SVD to diagonalize
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the system stably [48]. To avoid the forming of A>A + λC>C we could consider the augmented
(m+ n+ p)× (m+ n+ p) system−I A 0

A> 0 C>

0 C 1
λI

y
x
z

 =

b
0
d

 . (102)

Björk has shown in [1] that for the augmented system(
I A
A> 0

)(
r
x

)
=

(
b
0

)
(103)

we can obtain the condition number 2 · κ(A) with appropriate scaling (instead of κ2(A) for the
normal equations A>Ax = A>b). However in (102) the condition number depends on the value of
λ and may be large if λ is near −µi where µi is an eigenvalue of det

(
A>A− µC>C

)
= 0.

The solution is numerically much better defined for problems (P1), P(2) and (P3) where λ >
0. We can formulate the normal equations as least squares problems and besides BSVD- and
SVD-diagonalization, there are several different ways to compute stably and cheaply the solution,
especially if we can use a structure of the matrix. Since we are solving the secular equation with
some iterative method we may have to compute derivatives of the length function f (see Section
5.4). If the iterative method converges fast it may not be necessary to transform the problem
at all (especially if A amd C are sparse). In general, however, it appears to be best [8], [12] to
bidiagonalize the matrix for problems (P2) and (P3) before iterating.

5.1 Solution of a Relaxed Least Squares Problem with Band Matrix

We consider (P2) with A respectively (P3) with C being a band matrix. For a given λ > 0 we
have to solve the least squares problem (

A√
λ I

)
x ≈

(
b
0

)
(104)

respectively (
I√
λC

)
x ≈

(
0√
λd

)
. (105)

If we interchange the equations in (105) we have in either case a least squares problem of the
form (

B
D

)
x ≈

(
c1
c2

)
(106)

where D is a diagonal matrix (I or
√
λ I) and B is a band matrix (A or

√
λC).

Using Givens rotations we shall show how an orthogonal matrix G can be found such that

G

(
B
D

)
=

(
0
F

)
(107)

where F is a band upper triangular matrix. If the same rotations are applied to the right hand
side the solution can be found by backsubstitution using F .

To describe the transformation we assume that B is an (m× n) matrix with

bij = 0 if i− j > m1 or j − i > m2.

This means that B has m1 diagonals below the main diagonal and m2 diagonals above, that
contains the possible non-zero elements.

Let

kmin(k) := max{k −m2, 1}
kmax(k) := min{k +m1,m}.
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Then the k-th column of B has the only (possibly) non-zero elements

bik, i = kmin(k), . . . , kmax(k).

In n-steps we now perform the transformation (107) annihilating in the k-th step the k-th
column of B and producing the k-th row of F . Let F be at the beginning the diagonal matrix D
and define by

rot(1, k, x)

the multiplication of

(
B
F

)
from left by a Givens matrix that changes the i-th row of B and the

k-th row of F annihilating the element x. Then the transformation (107) is described by

for k := 1 step 1 until n do
for i := kmin(k) step 1 until kmax(k) do

rot(i, k, bik)

In the k-th step of this algorithm we annihilate m1 + m2 + 1 elements (or less at the border
of B) using ∼ 2(m1 + m2 + 1)2 multiplications. For i = kmin = k − m2 the Givens rotation
changes only 2 elements: bik and fkk. Then for i = kmin +1, 4 elements are affected, etc., until for
i = kmax = k+m1 when bk+m1,k is rotated to zero, we have to change m1 +m2 +1 elements. The
whole transformation requires therefore ∼ 2n(m1 +m2 + 1)2 multiplications which is comparable
to Gaussian elimination of the normal equations.

Especially if B is upper bidiagonal the first step to annihilate the first and the second column
is done as follows: 

q1 e1
q2 e2

q3 e3
q4

d1
d2

d3
d4


rot(1, 1, q1)
−→



0 e′1
q2 e2

q3 e3
q4

u1 v1
d2

d3
d4


rot(1, 2, e′1)
↙

0 0
q2 e2

q3 e3
q4

u1 v1
d′2

d3
d4


rot(2, 2, q2)
−→



0 0
0 e2

q3 e3
q4

u1 v1
u2 v2

d3
d4


The following procedure performs the transformation

G

(
B
D

)
=

(
0
F

)
where

B =


q1 e1 0

. . .
. . .

. . . en−1
0 qn

 F =


u1 v1 0

. . .
. . .

. . . vn−1
0 un


and stores the Givens rotations in two arrays co[i], si[i]:
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procedure updec(n,q,e,d,u,v,co,si);
value n; integer n;
array q,e,d,u,v,co,si;
begin integer i; real t,c,s,h;

procedure rot(a,b);
value a,b; real a,b;
begin real t;

if b = 0 then begin c := 0; s := 1 end
else

begin t : −a/b; c := 1/sqrt(1 + t ↑ 2); s := t ∗ c end
end
for i := 1 step 1 until n do u[i] := d[i];
for i := 1 step 1 until n do
begin
rot(q[i], u[i]);
co[2 ∗ i− 1] := c; si[2 ∗ i− 1] := s;
u[i] := −q[i] ∗ s+ u[i] ∗ c;
if i < n then
begin
v[i] := −e[i] ∗ s;h := e[i] ∗ c;
rot(h, u[i+ 1]);
co[2 ∗ i] := c; si[2 ∗ i] := s;
u[i+ 1] := −h ∗ s+ u[i+ 1] ∗ c

end if;
end i;

end updec;

The following procedure performs the transformation

G

(
c1
c2

)
and solves the bidiagonal system by backsubstitution.

procedure solve(n,u,v,co,si,c1,c2,y);
value n; integer n;
array u,v,co,si,c1,c2,y;
begin

integer i; real t,c,s,h;
for i := 1 step 1 until n do
begin
c := co[2 ∗ i− 1]; s := si[2 ∗ i− 1];
h := c1[i] ∗ c+ c2[i] ∗ s;
c2[i] = −c1[i] ∗ s+ c2[i] ∗ c;
c1[i] := h;
if i < n then
begin
c := co[2 ∗ i]; s := si[2 ∗ i];
h := c1[i] ∗ c+ c2[i] ∗ s;
c2[1 + 1] := −c1[i] ∗ s+ c2[i+ 1] ∗ c;
c1[i] := h;

end if;
end i;
y[n] := c2[n]/u[n];
for i := n− 1 step −1 until 1 do
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y[i] := (c2[i]− v[i] ∗ y[i+ 1])/u[i];
end solve

Alternatively we can avoid storing the rotations observing that if(
B
D

)
y ≈

(
c1
c2

)
and if

G

(
B
D

)
=

(
0
F

)
, G orthogonal

then the normal equations are
F>Fy = B>c1 +Dc2.

Therefore we can also find y solving

F>w = B>c1 +Dc2

Fy = w.

The new procedure updec does not contain the variables co and si. Otherwise it is the same as
before. The procedure solve however changes much:

procedure solve2(n,u,v,c,y);
value n; integer n;
array u,v,c,y;

comment solves FTFy = c;
begin integer i;
y[1] := c[1]/u[1];
for i := 2 step 1 until n do
y[i] := (c[i]− v[i− 1] ∗ y[i− 1])/u[i];
y[n] := y[n]/u[n];
for i := n− 1 step −1 until 1 do
y[i] := (y[i]− v[i] ∗ y[i+ 1])/u[i];

end solve 2

Before calling solve2 the right hand side c has to be defined by

c := B>c1 +Dc2.

5.2 Solution of a Least Squares Problem with Two Band Matrices

The algorithm given in Section 5.1 can be generalized to solve a least squares problem of the type(
A
C

)
x ≈

(
b
d

)
(108)

where now A and C are band matrices. We assume that C has a band width which is smaller or
equal to the bandwidth of A. Using Givens rotations we transform

G

(
A
C

)
=

(
0′

A′

)
(109)

where A′ has the same bandwidth as A and 0′ is zero up to some elements in the right bottom
corner. Using the elements of 0′ and A′ we then compute x by back substitution.

In the k-th step of the algorithm we annihilate the k-th column of A and produce the k-th row
of A′. We explain the rotations for the example where A has 4 and C has 3 diagonals.
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

x
x x
x x x
x x x x

x x x x
x x x x

x x x
x x

x x x
x x x

x x x
x x x



1
−→



0 ⊕ ⊕
0 x ⊕
0 x x
0 x x x

x x x x
x x x x

x x x
x x

x x x ⊕
x x x

x x x
x x x


In step 1 we annihilate the elements of the first column of A using the first row of C. This

produces the new non-zero elements ⊕. In a second “cleaning” step we zero the elements ⊕ in the
top part using the third row: 0 ⊕ ⊕

0 x ⊕
0 x x

 −→
 0 ⊕ 0

0 x 0
0 x x

 −→
 0 0 0

0 x 0
0 x x


After these two steps the remaining matrix is

0
0 x
0 x x
0 x x x

x x x x
x x x x

x x x
x x

x x x x
x x x

x x x
x x x


Now we can use the second row of C to zero the second column of A etc. A special treatment

is needed at the border of the matrix. Using the last row of C to zero out the n− 3 column gives

0
0 0
0 0 0
0 0 0 0 x x

0 0 0 x x
0 0 x x

0 x x
x x x x

x x x
x x x

x x x



2
−→



0
0 0
0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 x 0

0 x x
x x x x

x x x
x x x

x x x




0′

A′

.

In the cleaning step 2 we can zero all but 3 elements in the upper part of the matrix using the
last row of A. Now the solution can be computed by backsubstitution: first x6 and x7 using 0′ and
the other unknowns using A′. In Reinsch’s “Smoothing with Spline Functions” [33] the problem

(Q>D2Q+ λT )z = Q>y (110)

subject to

‖DQz‖2 = S2 (111)
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occurs, where λ > 0, D is an (n+ 1)× (n+ 1) diagonal matrix, Q an (n+ 1)× (n− 1) tridiagonal
matrix and T a positive definite tridiagonal (n − 1) × (n − 1) matrix. S is a given constant and
y a given (n + 1) vector. Reinsch solves the normal equation using the Cholesky decomposition
of the penta-diagonal coefficient matrix. Using the above described algorithm we can solve (110)
as a least squares problem without sacrificing the sparseness of the matrices. As preparation we
compute the Cholesky decomposition of T :

T = B>B, B upper bidiagonal

and (110) then becomes (
DQ√
λB

)
z ≈

(
D−1y

0

)
. (112)

The matrix of (112) has the form (n = 5)

x
x x
x x x

x x x
x x

x
x x

x x
x x

x


1
−→



0 ⊕
0 x
0 x x

x x x
x x

x
x x ⊕

x x
x x

x


Zeroing the first column in step 1 leaves ane element ⊕ that has to be removed in the cleaning
step.

5.3 Bidiagonalization

If the matrices A and C are dense then for problems (P2), (P3) and (P1) (after performing Eldén’s
transformation, see Section 3.3) we have to solve a least squares problem of the form(

A√
λ I

)
x ≈

(
b
0

)
(113)

for every new value of λ. If P and Q are orthogonal then an equivalent system to (113) is(
P> 0
0 Q>

)(
A√
λ I

)
QQ>x ≈

(
P>b

0

)

=⇒
(
P>AQ√
λ I

)
y ≈

(
c
0

)
(114)

with y := Q>x and c := P>b.
Now we can choose P and Q so that (114) is simpler to solve than (113). Moré [29] proposed

to choose P and Q so that

B := P>AQ =

 0

0 0

 , (115)

i.e., to perform the QR decomposition of A with column pivoting. However the solution of (114)
in this case is still an n3 process. It has been pointed out by Moré (private communication) that
in his application [29] only k ≤ 2 iterations are needed to solve the secular equation. Therefore
it does not matter in this case if the solution of (114) is an n3 process. In general however we
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will have to perform more iterations (see Section 6). With about double the amount of work to
perform the decomposition (115) we can bidiagonalize A:

B := P>AQ =


 (116)

as proposed by [8] and [12]. Then to solve (114) we can use the algorithm of Section 5.1 that
requires only ∼ n multiplications.

Bidiagonalizing a matrix A is the first step in computing the singular value decomposition [48].
But the diagonalizing of B requires that P and Q be formed explicitely and updated after every
QR-step which makes the process fairly expensive. To transform our problem to bidiagonal form
we do not need P and Q explicitly. It is sufficient to store the vectors of the Householder matrices
that perform the transformation.

Let A be an m× n matrix. Then we can bidiagonalize A in n steps [48]:

B = Pn · · ·P1︸ ︷︷ ︸
P>

AQ1 · · ·Qn−1︸ ︷︷ ︸
Q

where

Pj =

(
Ij−1 0

0 P̃j

)
} j − 1
}m− j + 1

P̃j = I −wjw
>
j with ‖wj‖ =

√
2

and

Qj =

(
Ij 0

0 Q̃j

)
} j
}n− j

Q̃j = I − vjv
>
j with ‖vj‖ =

√
2.

The transformation vectors wj and vj are stored in the matrix A as follows.

A = (117)

To compute the vectors
Px, P>x, Qy, Q>y

we do not need P and Q explicitly. In (117) we have all the information to compute the operator
P , P>, Q or Q> that act on a certain vector.

The computation of y = P>x, i.e., is done by the following procedure:

procedure ptx(m,n,a,x,y)
value m,n; integer m,n;
array a,x,y;
begin integer i,k; real s;

for i := 1 step 1 until m do y[i] := x[i];
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t: for i := 1 step 1 until n do
begin

s := 0;
for k := i step 1 until m do s := s+ a[k, i]× y[k];
for k := i step 1 until m do y[k] := y[k]− a[k, i]× s ;

end i;
end

If we wish to compute y = Px, the only change we have to make in the above procedure is

t: for i:= n step -1 until 1 do

The following procedure bidia bidiagonalizes A, i.e., computes the diagonal q and the super-
diagonal e of B and stores the transformation vectors wj and vj in A (117):

procedure bidia(m,n,a,q,e)
value m,n; integer m,n;
array a,q,e;
begin

integer i,j,k; real s, fak;
for i:= 1 step 1 until n do
begin

comment transforms (aii, . . . , ami) to (qi, 0, . . . , 0);
s := 0;
for j := 1 step 1 until m do s := s+ a[j, i] ↑ 2;
if s=0 then q[i] := 0 else
begin
s :=sqrt(s);
q[i] := if a[i, i] > 0 then −s else s;
fak := sqrt(s× (s+ abs(a[i, i])));
a[i, i] := a[i, i]− q[i];
for k := 1 step 1 until m do a[k, i] := a[k, i]/fak;
for j := i+ 1 step 1 until n do
begin
s := 0;
for k := i step 1 until m do s := a+ a[k, i]× a[k, j];
for k := i step 1 until m do a[k, j] := a[k, j]− a[k, i]× s;

end j;
end s;

comment transform (ai,i+1, . . . , ain) to (ei, 0, . . . , 0);
if i = n then goto ende;
s := 0;
for j := i+ 1 step 1 until n do s := s+ a[j, i] ↑ 2;
if s = 0 then e[i] := 0 else
begin
s :=sqrt(s);
e[i] := if a[i, i+ 1] > 0 then −s else s;
fak := sqrt(s× (s+ abs(a[i, i+ 1])));
a[i, i+ 1]; = a[i, i+ 1]− e[i];
for k := i+ 1 step 1 until n do a[i, k] := a[i, k]/fak:
for j := i+ 1 step 1 until m do
begin
s := 0;
for k := i+ 1 step 1 until n do s := s+ a[j, k]× a[i, k];
for k := i+ 1 step 1 until n do a[j, k] := a[j, k]− a[i, k]× s;

35



end j;
end s;

end i;
ende:

end bidia;

The decomposition using bidia requires ∼ 2(mn2 − n3/3) multiplications. If m > n it is
possible to bidiagonalize A even cheaper [26], [5], [8]. The idea is to transform A first to an upper
triangular matris R and then bidiagonalize R. In this case the operation count is ∼ mn2 + n3.
An alternative approach to bidiagonalizing A has been suggested by Golub and Kahan [14]. This
algorithm uses the matrix A not explicitly. Only the operator Ax is needed. Unfortunately it is
not numerically stable but nevertheless it seems to be useful for sparse matrices [31].

5.4 Computation of the Derivatives of the Length Function

If we want to solve the secular equation

f(λ) = α2 (118)

using some high order iteration method we have to compute derivatives of f . For the general
problem (P1) we have

(A>A+ λC>C)x(λ) = A>b + λC>d (119)

f(λ) = ‖Cx(λ)− d‖2.

By differentiating (119) we get

(A>A+ λC>C)x′ = −C>(Cx− d) (120)

(A>A+ λC>C)x′′ = −2C>Cx′.

In general we have for k ≥ 2

(A>A+ λC>C)x(k) = −kC>Cx(k−1). (121)

Lemma 4. If Bλ := A>A+ λC>C and x(k) is the solution of (121) then

(i) x(k)>Bλx
(k) =


x>(A>b + λC>d), k = 0

−x′>C>(Cx− d), k = 1

−kx(k)>C>Cx(k−1), k ≥ 2

(ii) x(k)>Bλx
(k) =

{
1
2x>Bλx

′′ + x′>C>d, k = 1
k
k+1x(k−1)>Bλx

(k+1), k ≥ 2

(iii) ‖Cx(k)‖2 =

{
−x>Bλx

′ + x>C>d, k = 0

− 1
k+1x(k)>Bλx

(k+1), k ≥ 1

(iv) ‖Cx(k)‖2 =

{
1
2x(2)>C>(Cx− d), k = 1
k
k+1x(k+1)>C>Cx(k−1), k ≥ 2

(v)
d

dλ
(x(k)>Bλx

(k)) =

{
−‖Cx− d‖2 + ‖d‖2, k = 0

−(2k + 1)‖Cx(k)‖2, k ≥ 1

(vi)
d

dλ
‖Cx(k)‖2 =

{
−2 x′>Bλx

′ + 2 x′>C>d), k = 0

− 2
k+1x(k+1)>Bλx

(k+1), k ≥ 1.
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Proof. Equations (i) follow, by multiplying (119), (120), (121) by x(k)> from the left.
Looking at two consecutive equations of (121):

Bx(k) = −kC>Cx(k−1) (122)

Bx(k+1) = −(k + 1)C>Cx(k), (123)

we obtain (ii) by multiplying the first (122) by x(k)> and the second by x(k−1)> and by eliminating
the expression x(k)>C>Cx(k−1). To prove (iii) we multiply the equation for x(k+1) of (121) by x(k)

and (120) by x>. Equation (iv) follows by multiplying (122) by x(k+1)> and (123) by x(k)> and
subtracting both equations.

Finally observe that B′λ = C>C, therefore

d

dλ
(x(k)>Bλx

(k)) = x(k+1)>Bλx
(k) + x(k)>(B′λx

(k) +Bλx
(k+1))

= 2 x(k+1)>Bλx
(k) + ‖Cx‖2.

Now for k = 0 using (iii) we have

d

dλ
(x>Bλx) = −‖Cx‖2 + 2 x>C>d = −‖Cx− d‖2 + ‖d‖2.

For k ≥ 1 using (iii) we get

d

dλ
(x(k)>Bλx

(k)) = −(2k + 1)‖Cx(k)‖2.

Using (i) we can write
d

dλ
‖Cx(k)‖2 = − 2

k + 1
x(k+1)>Bλx

(k+1).

Corrolary 5. If x is the solution of (119) then∫
f(λ) dλ = λ‖d‖2 − x>(A>A+ λC>C)x + const .

= −λd>(Cx− d)− b>Ax + const .

 (124)

Proof. From equation (v) of Lemma 4 we have

f(λ) = ‖Cx− d‖2 = ‖d‖2 − d

dλ
(x>Bλx).

By integrating and using (119) the result follows immediately.

Corrolary 6. If Bλ = (A>A+ λC>C) then for k ≥ 1,

(i)
d

dλ
(x(k)>Bλx

(k)) =
2k + 1

k + 1
x(k)>Bλx

(k+1)

(ii)
d

dλ
(x(k)>Bλx

(k+1)) = 2 x(k+1)>Bλx
(k+1).

Corrolary 7. If x(k) is a solution of (121) then for k ≥ 1

(i)
d

dλ
‖Cx(k)‖2 = 2 x(k+1)>C>Cx(k)

(ii)
d

dλ

(
x(k+1)>C>Cx(k)

)
=

2k + 3

k + 1
‖Cx(k+1)‖2.
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Theorem 8. Let x, x′ and x(k) be solutions (119,(120 and (121 and let Bλ = A>A+λC>C. Then

f(λ) = ‖Cx− d‖2 = −x>Bλx
′ − d>(Cx− d) (125)

f ′(λ) = 2 x′>C>(Cx− d) = −2 x′>Bλx
′ (126)

and for k ≥ 1

f (2k)(λ) = (k + 1)γ2k‖Cx(k)‖2 = −γ2kx(k)>Bλx
(k+1) (127)

f (2k+1)(λ) = (k + 1)γ2k+1x
(k)>C>Cx(k+1)

= −γ2k+1x
(k+1)>Bλx

(k+1) (128)

where

γ2k =
1 · 3 · 5 · · · (2k + 1)

(k + 1)!
2k

γ2k+1 =
1 · 3 · 5 · · · (2k + 1)

(k + 1)!
2k+1

 (129)

Proof. The proof is by induction. If

f(λ) = ‖Cx− d‖2

then differentiating and by Lemma 4 (i) we have

f ′(λ) = 2 x′>C>(Cx− d) = −2 x′>Bλx
′.

Differentiating again using (v) and (iii) of Lemma 4 we get

f ′′(λ) = 2 · 3 ‖Cx′‖2 = −3x′>Bλx
′′

which is (127) for k = 1. Now we can use Corrolary 6 and 7 to compute the higher derivatives.
Assume

f (2k)(λ) = (k + 1)γ2k‖Cx(k)‖2 = −γ2kx(k)>Bλx
(k+1).

then

f (2k+1)(λ) = (k + 1)γ2k · 2 x(k)>C>Cx(k+1)

= −γ2k · 2 x(k)>Bλx
(k+1)

which is (128) for γ2k+1 = 2γ2k. Again differentiating using Corrolary 6 and 7 yields

f (2k+2)(λ) = γ2k+1(2k + 3)‖Cx(k+1)‖2

= −γ2k+1
2k + 3

k + 2
x(k+1)>Bλx

(k+2)

which is 127) for k + 1 and γ2k+2 = γ2k+1
2k+3
k+2 . From this recursion for γi it is easy to verify

(129).

Theorem 8 shows that we can compute cheaply derivatives of f . To compute x(k) we have to
solve a linear system with the same matrix Bλ as for x. Therefore we can use a factorization of
Bλ. If λ > 0 then x,x′, . . . ,x(k) is a solution of the least squares problem(

A√
λC

)
x ≈

(
b√
λd

)
(

A√
λC

)
x′ ≈ − 1√

λ

(
0

Cx− d

)
(

A√
λC

)
x(k) ≈ − k√

λ

(
0

Cx(k−1)

)
, k ≥ 2.
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If we transform by another orthogonal matrix G

G

(
A√
λC

)
=

(
Rλ
0

)
, Rλ upper triangular,

then R>R is the Cholesky decomposition of Bλ = A>A+ λC>C. To solve

Bλx
(k) = −kC>Cx(k−1)

we have two possibilities

(1) compute y(k) by forward substitution from

R>λy(k) = −kC>
(
Cx(k−1)

)
;

(2) compute y(k) using G (
y(k)

h

)
= G

(
0

− k√
λ
Cx(k−1)

)
.

Then we obtain x(k) by backsubstitution in

Rλx
(k) = y(k).

If we define z(k) := Cx(k) then

f (2k−1)(λ) = kγ2k−1z
(k−1)>z(k)

or equivalently
f (2k−1)(λ) = −γ2k−1‖y(k)‖2.

Similarly
f (2k)(λ) = (k + 1)γ2k‖z(k)‖2

or if y(k+1) has been computed

f (2k)(λ) = −γ2ky(k)>y(k+1).

In Section 6 we shall consider third order iteration methods to solve the secular equation for
λ > 0. We need therefore the values of f , f ′ and f ′′, which can be computed as follows:

1. Compute G and Rλ so that

G

(
A√
λC

)
=

(
Rλ
0

)
2. Compute y from

R>y = A>b + λC>d

or using G by (
y
h

)
= G

(
b√
λd

)
.

3. Compute x from Rλx = y and form z := Cx− d.

4. f(λ) = ‖z‖2.

5. Compute y′ by solving
R>y′ = −C>z

or by using G (
y′

h′

)
:= G

(
0

− 1√
λ
z

)
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6. f ′(λ) := −2‖y′‖2.

7. Compute x′ from Rλx
′ = y′ and form z′ := Cx′.

8. f ′′(λ) = 6‖z′‖2.

If we do not want to store G then we have to compute y′ in 5 by forward substitution. However,
y in step 2 can be computed together with the decomposition in step 1 without forming G explicitly.
Eldén gives in [8] similar recursions to compute the derivatives.

6 One-point Iteration Methods to solve the Secular Equa-
tion

In this chapter we discuss how to find the solution λ∗ > 0 of the secular equation

f(λ) = α2 (130)

that we need to solve problem (P1), (P2) or (P3). The leght function f is a positive rational
function for all λ and decreasing in (0,∞). If we start with λ∗ > 0 Newton’s method will produce
a strictly increasing sequence {λn} which converges globally to λ∗. However as it was observed in
[34] if α is small, convergence is slow and as a remedy Reinsch suggested solving the equation

1√
f
− 1

α
= 0 (131)

instead of
√
f − α = 0 using Newton’s method. Indeed convergence is much better in this case.

There are several possible interpretations and explanations for this fact. For our purpose we
compare the Newton step resulting for the three equations

g1(λ) := f(λ)− α2 = 0

g2(λ) :=
√
f(λ)− α = 0

g3(λ) :=
1√
f
− 1

α
= 0.

A short calculation yields the following Newton iteration functions for the three equations:

λ− f − α2

f ′
for g1, (132)

λ− f − α2

f ′
2

1 +
α√
f

for g2, , (133)

λ− f − α2

f ′

2

√
f

α

1 +
α√
f

for g3. (134)

For λ = 0 we typically have f(0) >> α2. Since f ′ < 0 for λ > 0 the step in (133) will be

about twice as big as in (132). But (134) will produce an even larger step, proportional to
√
f
α the

discrepancy of
√
f and α. If f ≈ α2 then all three steps are of about the same size.

We can look at the two functions

h1(λ) = 2

/(
1 +

α√
f

)
h2(λ) = h1(λ)

√
f

α

as functions that help to accelerate the global convergence of (132) by preserving the order (all
iterations are Newton sequences and of second order).
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6.1 Convergence Factors

For the following discussion we change notation. Let f be a given function. We are looking for
a number s such that f(s) = 0. We assume that f has sufficient continuous derivatives in a
neighborhood of s and furthermore we assume that s is a simple zero of f . We consider one point
iteration methods without memory [43]{

x0 arbitrary
xn+1 = F (xn), n = 0, 1, . . .

}
(135)

where

F (x) = x− f(x)

f ′(x)
G(x), (136)

and G(x) is an appropriate chosen function which we will call the “convergence factor”. The
idea is to choose G so that the global convergence using (136) is better than Newton’s iteration
(G(x) ≡ 1). As has been pointed out by Kahan [24], every sequence generated by an iteration (135)
can be interpreted as a sequence obtained by applying Newton’s method to a certain equation

g(x) = 0. (137)

Indeed if we put

x− g(x)

g′(x)
= F (x)

a short calculation yields (with some c 6= 0)

g(x) = c · exp

(∫
dx

x− F (x)

)
. (138)

Solving (137) with (138) using Newton’s method yields the sequence (135). Some example may
illustrate the point.

(1) let xn+1 = 1 +
xn
2

, x0 = 0. This sequence converges linearly to s = 2. Indeed using (138) we

get

g(x) = exp

(∫
dx
/(x

2
− 1
))

=
(x

2
− 1
)2
.

g(x) has a double zero s = 2 and therefore Newon’s iteration converges linearly.

(2) Consider the Halley iteration formula xn+1 = F (xn) with

F (x) = x− 2f(x)f ′(x)

2f ′(x)2 − f ′′(x)f(x)
.

Using (138) we obtain

g(x) = exp

(∫ (
f(x)

f ′(x)
− f ′′(x)

2f ′(x)

)
dx

)
=

f(x)√
f ′(x)

.

Therefore using Halley’s method for f(x) = 0 is applying Newton’s method to

g(x) =
f(x)√
f ′(x)

= 0, [3].

(3) Consider the itertation

xn+1 = xn −
f(xn)− α
f ′(xn)

· f(xn)

α
(139)

to solve f(x) = α. Using (138) we get

g(x) = 1− α

f(x)
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or since g is only determined to a constant we may also devide by −α and get

g(x) =
1

f(x)
− 1

α
.

Therefore (139) is obtained by applying Newton’s method to

1

f(x)
− 1

α
= 0

instead of f(x)− α = 0.

For the class of iteration functions F (x) (136) we would like to consider however it will not
be possible in general to evaluate the integral for g in (138) explicitly and thus provide a nice
explanation of the iteration function.

The order of convergence [22] of an interation formula

xn+1 = F (xn)

is

one (or linear convergence), if |F ′(s)| < 1
two (or quadratic convergence), if F ′(s) = 0
three (or cubic convergence), if F ′(s) = F ′′(s) = 0

...
m, if F ′(s) = F ′′(s) = · · · = F (m−1)(s) = 0.

For G(x) ≡ 1 the iteration with

F (x) = x− f(x)

f ′(x)
G(x) (140)

is Newton’s method and it is of second order for a zero of f with multiplicity one. Differentiating
(140) gives

F ′(x) = 1−
(
f(x)

f ′(x)

)′
G(x)− f(x)

f ′(x)
G′(x).

Since f(s) = 0 we have F ′(s) = 0 if G(s) = 1 and f(s) ·G′(s) = 0. Therefore we have

Lemma 5. Let G be differentiable, G(s) = 1, f(s) ·G′(s) = 0. Then the iteration

xn+1 = xn −
f(xn
f ′(xn)

G(xn)

is of second order for simple zeros s of f .

Since s is unknown we have to choose

G(x) = H(f(x), f ′(x), . . .).

Examples

(4) G(x) = H(f) = 1 + f(x)

=⇒ F (x) = x− f(x)

f ′(x)
(1 + f(x). (141)

(141) yields a second order iteration formula. Indeed using (138) we see that the iteration is
obtained solving g(x) = 0 with Newton where

g(x) = exp

(∫
f ′(x) dx

f(x)(1 + f(x))

)
=

1

1 + f(x)
− 1.

(141) is a special case (a = 1) of
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(5) H(f) =
α+ f

α
for some α 6= 0. Therefore the iteration

xn+1 = xn −
f(xn)

f ′(xn)

α+ f(xn)

α

is the same as applying Newton’s method to

g(x) =
1

f(x) + α
− 1

α
= 0, α 6= 0.

(6)

G(x) =
1

1− 1
2
f(x)f ′′(x)
f ′(x)2

.

This choice is Halley’s method. Again we have G(s) = 1.

6.2 Third Order Iterative Methods

We consider again the iteration

xn+1 = xn −
f(xn)

f ′(xn)
G(xn). (142)

In section 6.1 we saw that if G(s) = 1 then (142) is quadratic convergent. Let u(x) := f(x)
f ′(x) . Then

F (x) = x− u(x)G(x) (143)

and we can ask for the conditions that the iteration (142) be cubically convergent. Differentiating
(143) we get (dropping the argument)

F ′ = 1− u′G− uG′

F ′′ = −u′′G− 2u′G′ − uG′′

u = f/f ′

u′ = 1− ff ′′

f ′2

u′′ = −f
′′

f ′
+ 2

ff ′′2

f ′3
− ff ′′′

f ′2
.

Now we want to have
F ′(s) = F ′′(s) = 0. (144)

Since u(s) = 0, u′(s) = 1 and u′′(s) = 1
2
f ′′(s)
f ′(s) , this is the case if

G(s) = 1 and G′(s) =
1

2

f ′′(s)

f ′(s)
. (145)

Theorem 9. Let H ∈ C2[−a, a] for some a > 0. The iteration xn+1 = F (xn) with

F (x) = x− f(x)

f ′(x)
·H
(
f(x)f ′′(x)

f(x)2

)
(146)

converges cubically to a simple zero of f if and only if

H(0) = 1 and H ′(0) =
1

2
.
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Proof. The function F in (146) is the special case of (143) with

G(x) = H

(
f(x)f ′′(x)

f(x)2

)
.

Let t(x) = f(x)f ′′(x)
f(x)2 . Then t(x) = 1− u′(x) and therefore

t′(s) = −u′′(s) =
f ′′(s)

f ′(s)
.

Clearly G(s) = 1 ⇐⇒ H(0) = 1 and

G′(s) = H ′(t(s))t′(s)

= H ′(0) · f
′′(s)

f ′(s)
=

1

2

f ′′(s)

f ′(s)

⇐⇒ H ′(0) =
1

2
.

Many well known third order iterative methods are special cases of Theorem 9. Let

t :=
f(x)f ′′(x)

f ′(x)2
(147)

(1) Euler’s formula

H(t) =
2

1 +
√

1− 2t
= 1 +

1

2
t+

1

2
t2 +

5

8
t3 + . . .

clearly H(0) = 1 and H ′(0) = 1
2 .

(2) Halley’s formula.

H(t) =
1

1− 1
2 t

= 1 +
1

2
t+

1

4
t2 +

1

8
t3 + . . .

(3) Quadratic inverse interpolation [43].

H(t) = 1 +
1

2
t.

(4) Ostrowski’s square root iteration [30].

H(t) =
1√

1− t
= 1 +

1

2
t+ +

3

8
t2 +

5

16
t3 + . . .

(5) Hansen-Patrick family [19].

H(t) =
α+ 1

α+
√

1− (α+ 1)t
= 1 +

1

2
t+

α+ 3

8
t2 + . . .

(6) To solve the secular equation we will use

H(t) = e
1
2 t = 1 +

1

2
t+

1

8
t2 +

1

48
t3 + . . .

This formula has the advantage that H(t) > 0 even if the starting point is far from the
solution s. For large t, the other formulas may not work (wrong sign in H, argument of the
square root is negative).

The following lemma is useful for construction if third oder iteration methods.
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Lemma 6. Let H1(t) and H2(t) be two functions with

Hi(0) = a and H ′i(0) = b, i = 1, 2.

The the three mean functions

A = (H1 +H2)/2

B =
√
H1H2

C = 2

/(
1

H1
+

1

H2

)
have the same property.

Proof. Obviosly A(0) = B(0) = c(0) = a.

A′ = (H ′1 +H ′2)/2 = b

B′ = (H ′1H2 +H1H
′
2)/(2

√
H1H2)

B′(0) = (ba+ ab)/(2a) = b

C =
2H1H2

H1 +H2

C ′ = 2
(H1 +H2)(H ′1H2 +H1H

′
2)− (H ′1 +H ′2)H1H2

(H1 +H2)2

C ′(0) = 2
2a(2ab)− 2ba2

4a2
= b.

Any of the three means of the examples (1) to (6) yields a new third order iterative method.
Notice that not every third order iterative method must have the form (147). For example,

consider
G(x) = H(t(x)) + f2(x),

with H(0) = 1, H ′(0) = 1/2, and t(x) defined by (147). Clearly this choice of the convergence
factor G leads to a third order formula which has not the form of Theorem 9.

However it is possible to describe all the third order iteration methods. Let

Fk := x+

k−1∑
i=1

(−1)i
f i

i!

(
1

f ′
d

dx

)i−1
1

f ′

denote the Schröder iteration function (see [7] or [21]). The iteration

xn+1 = Fk(xn)

is of k-th order. Now every k-th order iteration function can be written as

F (x) = Fk(x) + fk(x)ϕ(x)

where ϕ is an arbitrary function [7], [43]. Therefore for k = 2 we obtain the most general G for a
third order method

G(x) = 1 +
1

2
t(x) + f2(x)ϕ(x)

which we can write
G(x) = H(t(x)) + f2(x)ψ(x)

with arbitrary ψ.
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6.3 The Convergence Factor for a Third Order Method

Assume xn+1 = xn−K(xn) is a third order iterative method for solving f(x) = 0. We clearly have

K(s) = K ′′(s) = 0, K ′(s) = 1. (148)

Now consider the iteration xn+1 = F (xn) with

F (x) = x−K(x)G(x). (149)

We have
F ′ = 1−K ′G−KG′
F ′′ = −K ′′G− 2K ′G′ −KG′′

}
(150)

Lemma 7. The iteration xn+1 = F (xn) with F defined in (149) is also of third order if G ∈ C2[a, b]
with s ∈ (a, b) and

G(s) = 1, G′(s) = 0. (151)

Proof. If we use (148) and (151) in (150) then we have F ′(s) = F ′′(s) = 0.

If we choose G so that

G′′(s) = −1

3
K ′′′(s)

then we would have a fourth oder iteration. However we think that a third order method with
good global convergence is more useful that a local convergent fourth oder formula.

The following functions are examples of possible convergence factors for a third order iteration:

(1) G(x) = (tβ(x) + t−β(x))/2

where t(x) =
f(x) + α

α
> 0 and α, β ∈ R.

(2) G(x) = cosh(f(x) · r(x))

where r ∈ C2[a, b] with s ∈ (a, b).

(3) G(x) = L(f2(x) · r(x))

where L ∈ C2[−d, d], d > 0 and L(0) = 1, r ∈ C2[a, b] with s ∈ (a, b).

We know now how to choose convergence factors to preserve or increase the order of an iteration
formula. Our aim is however to improve global convergence. Let

F (x) = x−K(x)G(x)

be the iteration function. Then G has to be chosen so that

g(x) = exp

(∫
dx

K(x) ·G(x)

)
(152)

is nearly linear if x is far away from s. Since the iteration xn+1 = f(xn) is the same as applying
Newton’s method to g(x) = 0, global convergence will be good if g is linear far away from the
solution s. However, since (152) may be impossible to compute explicitly, this requirement seems
not to be practical to determine G. We have to estimate G by other means. In Section 6.4 we
shall interpret some G geometrically. Those functions can serve as models for others.

6.4 Geometrical Interpretation of the Convergence Factors

It is possible to derive iterative methods as follows:

(i) choose a “simple” function h so that

f (i)(x) = h(i)(x), i = 0, 1, . . . , k;
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(ii) solve analytically h(z) = α obtaining z = z(x);

(iii) use the iteration xn+1 = z(xn) to solve the equation f(x) = α

The function h should be simple and so that h(z) = α can be solved analytically. h approximates
f and some derivatives locally at one point x and we thus obtain a one point iteration formula
without memory.

Instead of approximating f one can also find iteration methods by approximating the inverse
function locally:

(i) Choose a function h(y) so that(
f [−1](y)

)(i)
= h(i)(y), i = 0, 1, . . . , k.

(ii) Put y = f(xn) and use the iteration formula

xn+1 = h(α)

to solve f(x) = α.

Since we do not know f [−1], the derivatives must be replaced using derivatives of f [21]:

f [−1](y)′ =
1

f ′(f [−1](y))

f [−1](y)′′ = − f
′′(f [−1](y))

f ′3(f [−1](y))
.

If h approximates f resp f [−1] well we can expect a good global convergence. We give in the
following some examples of methods derived by interpolation. The convergence factors of these
examples may help to choose a method analytically.

(1) Newton’s method xn+1 = xn− f(xn)
f ′(xn)

is obtained approximating f or f [−1] locally by a linear

function h (h(x) = ax+ b resp. h(y) = ay + b).

(2) We choose h(z) = a
(z−b)2 and determine a, b so that h(i)(x) = f (i)(x), i = 1, 2, giving (dropping

the argument x):
a = 4f3/f ′2

b = −x− 2f/f ′.

}
(153)

Now h(z) = α gives

z = −b±
√
a

α

using (153) we get

z = x− f

f ′
2

(
±
√
a

α
− 1

)
.

If we use only the + sign we have the iteration

xn+1 = xn −
f(xn)− α
f ′(xn)

G(xn)

with G(x) = 2

√
f

α

/(
1 +

√
f

α

)
.

 (154)

But (154) is Reinsch’s proposal to solve
1√
f
− 1√

α
= 0 with Newton instead of f − α = 0.

We know from Section 3 that the length function f has the form

f(x) =

n∑
i=1

c2i
(x− xi)2

.

Therefore it is reasonable to approximate f by h = a/(x− b)2.
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(3) Instead of solving f(x)− α = 0 with Newton’s method we can also solve

g(x) = f(x)−1/β − α−1/β (155)

if f(x) > 0 and α > 0. Newton’s iteration for (155) yields the same iteration function as if
we approximate f and f ′ locally by

h(x) =
a

(x+ b)β
.

The resulting iteration formula is

xn+1 = xn −
f(xn)− α
f ′(xn)

G(xn)

with

G(x) =
βf

f − α

(
β

√
f

α
− 1

)
. (156)

If we let β →∞ in (156) we get

G(x) =
f

f − α
ln

(
f

α

)
. (157)

This convergence factor is also obtained by solving ln(f)− ln(α) = ln(f/α) = 0 with Newton
of by approximating locally f and f ′ by

h(x) = aebx.

The next examples use functions h that approximate f , f ′ and f ′′ locally

(4) We choose h(z) = a/(z + b) + c and determine a, b, c so that

h(i)(x) = f (i)(x), i = 0, 1, 2.

We obtain (dropping the argument x):

a = −4f ′3/f ′′2

b = −x− 2f ′/f ′′

c = f − 2f ′2/f ′′.

Now solving h(z) = α gives the iteration (with f
(i)
n = f(i)(xn))

xn+1 = xn −
fn − α
f ′n

1

1− 1

2

(fn − α)f ′′n
f ′2n

(158)

which is Halley’s formula to solve g(x) = f(x) − α = 0. Recall (see Section 6.1) that the
same iteration is obtained if we solve with Newton’s method

g(x) =
f(x)− α√
f ′(x)

.

If we approximate the inverse function f [−1](y) locally by h(y) = a/(y + b) + c we get

a = 4f ′3/f ′′2

b = −f + 2f ′2/f ′′

c = x+ 2f ′/f ′′.
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Finally putting xn = x and xn+1 = h(α) yields again (158). Therefore Halley’s formula is
obtained by locally approximating f or f [−1] by a hyperbola.

This rational approximation of f has the following property. Suppose we want to solve
f(x) = α using Halley’s method. We obtain the same iteration (158 for

g1(x) = f(x)− α = 0

or

g2(x) =
1

f(x)
− 1

α
= 0, (159)

i.e., for Halley’s method the transformation (159) has no effect. But as we saw (159 yield
another convergence factor for Newton’s method.

(5) Euler’s method is obtained by approximating f , f ′, and f ′′ locally with

h(z) = az2 + bz + c.

We get

a = f ′/2, b = f ′ − f ′′x

c = f − f ′x+
f ′′

2
x2

and

xn+1 = xn −
fn − α
f ′n

G(xn)

with

G(x) = 2

/(
1 +

√
1− 2

(f − α)f ′′

f ′2

)
.

(6) Approximating f [−1] by a parabola h(y) = ay2 + by + c, yields

a = −1

2

f ′′

f ′3

b =
1

f ′
+
f ′′

f ′3
f

c = x− f

f ′
− 1

2

f ′′

f ′3
f2.

We obtain the iteration formula for f(x)− α = 0

xn+1 = xn −
fn − α
f ′n

(
1 +

1

2

(fn − α)f ′′n
f ′n

2

)

(7) Approximating f locally by h(z) = aebz + c yields

a =
f ′

2

f ′′
exp

(
−f
′′

f ′
x

)
b = f ′′/f ′

c = f − f ′2/f ′′.

Solving h(z) = α gives the iteration

xn+1 = xn −
f ′n
f ′′n

ln

(
1− (fn − α)f ′′n

f ′2n

)
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which we can write

xn+1 = xn −
fn − α
f ′n

G(xn)

with

G(x) = − ln(1− t(x))/t(x)

t(x) = (f(x)− α)f ′′(x)/f ′2(x).

From Theorem 9 we know that all the methods (4)–(7) are cubically convergent.

6.5 Solving the Secular Equation

A very good and simple method to solve f(λ) = α2 is Reinsch’s proposal

λn+1 = λn −
f(λn)− α
f ′(λn)

G(λn) (160)

where

G(λ) = 2

√
f(λ)

α

/(
1 +

α√
f(λ)

)
.

Iteration 160) can also be written as

λn+1 = λn −
f(λn)

f ′(λn)
· 2

(√
f(λn)

α
− 1

)

Reinsch proved in [34] that the sequence λn obtained with this iteration converges starting
with λ1 = 0 monotonically increasing to the solution. This property together with good global
convergence makes this iteration very attractive.

If we use another method with starting value λ1 = 0, e.g. Halley’s iteration, global convergence
may not be guaranteed. As an example, consider Problem (P3)

min ‖x‖
subject to

‖Ax− b‖ ≤ α

where n = m = 6, A Hilbert matrix, aij = 1/(i+ j − 1), b = [1, 0, 0, 0, 0, 0]>.
If we start with λ0 = 0.1 we get α1 = −0.7975 instead of a value bigger than λ0. The other

third order methods involving a term

1− 1

2
t or 1− t, t =

ff ′′

f ′2

may also fail if t > 1. The quadratic inverse interpolation

H(t) = 1 +
1

2
t (161)

yields a correction with the right sign but numerical experiments show that if Halley converges, it
converges globally much faster.

An improvement of (161) is to use

H(t) = exp(t/2). (162)

However global convergence has to be accelerated by a convergence factor H.
Therefore we propose to use

λn+1 = λn −
f(λn)− α2

f ′(λn)
exp

(
1

2

ff ′′

f ′2

)
·H(λn) (163)
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with

H(λ) =
1

2

(√
f(λ)

α
+

α√
f(λ)

)
.

Since we cannot prove monotonicity or global convergence properties, it is necessary to take mea-
sures against too big steps. If the step is too big (usually at the beginning) we use Reinsch’s
iteration (160). For the above mentioned example with the Hilbert matrix we obtain using (163)
and λ0 = 0.1 the solution of the secular equation λ ≈ 7.7× 1011 in four iterations.

To illustrate the behaviour of the different methods we computed the only positive solution of
the equation

f(λ) = 1

where

f(λ) = 0.6 +

20∑
i=1

2 + 0.8i

(λ+ 0.8i)2
.

We used ALGOL W and double precision (ca. 16 decimal digits) on the IBM 360 of SLAC. The
results are displayed in Table 1. Newton’s method uses 21 steps to converge to machine precision.
Reinsch’s variant converges after 7 steps. The improved Halley’s method needs only four steps.
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Table 1

Example for the behaviour of different methods to solve g(λ) = f(λ)− α = 0.

Second order methods λn+1 = F (λn):
Newton Reinsch Newton for ln(f/α) = 0

F (λ) = λ− g

g′
λ− f

f ′
2

(
f

α
− 1

)
λ− f

f ′
ln(f/α)

Third order methods λn+1 = λn −
g

g′
H(t) with t :=

gg′′

g′2
:

The following two methods fail for starting values < 6.8:

Ostrowski Euler

H(t) = 1/(1− t)0.5 2/(1 + (1− 2t)0.5)

Table 1 (cont.)

Halley Inverse interp.

1/(1− t/2) 1 + t/2 exp(t/2)
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Third order methods with convergence factor G =

(√
f

α
+

α√
f

)
/2 :

Halley

H(t) = G/(1− t/2) G exp(t/2)

7 Generalizations

Let A be an (n× n) matrix, b a given n vector, C an m× n matrix, d a given m vector and γ, α
real numbers. We consider the problem

F (x) = x>Ax + b>x + γ = min (164)

subject to
‖Cx− d‖ = α. (165)

Using a Lagrange multiplier λ/2 the solution of (164), (165) is a stationary point (x, λ) of

L(x, λ) = F (x) +
λ

2

(
‖Cx− d‖2 − α2

)
. (166)

∂L
∂x = 0 and ∂L

∂λ = 0 gives

(A+A> + λC>C)x = −b + λC>d
‖Cx− d‖2 = α2.

}
(167)

Theorem 10. Let (xi, λi), i = 1, 2, be two solutions of (167), then

F (x1)− F (x2) =
λ2 − λ1

4
‖C(x1 − x2)‖2. (168)

Proof. This theorem is a generalization of Theorem 1 and the proof is very similar. We have

(A+A> + λ1C
>C)x1 = −b + λ1C

>d (169)

(A+A> + λ2C
>C)x2 = −b + λ2C

>d. (170)

x1
> (169) gives

2 x1
>Ax1 + λ1‖Cx1‖2 = −x1

>b + λ1x1
>C>d,

or rearranged
2(x1

>Ax1 + x1
>b) = x1

>b− λ1(‖Cx1‖2 − x1
>C>d). (171)

Similarly we have

2(x2
>Ax2 + x2

>b) = x2
>b− λ2(‖Cx2‖2 − x2

>C>d). (172)

Now x2
> (169) −x1

> (170) gives

(λ1 − λ2)x2
>C>Cx1 = −x2

>b + x1
>b + λ1x2

>C>d− λ2 x1
>C>d

=⇒ (x1 − x2)>b = (λ1 − λ2)x2
>C>Cx1 − d>(λ1Cx2 − λ2Cx1). (173)

Subtracting (171) - (172) and replacing (x1 − x2)>b by (173) we get

2(F (x1)− F (x2)) =− λ1
{
‖Cx1‖2 − x1

>C>d− x2
>C>Cx1 + x2

>C>d
}

+ λ2
{
‖Cx2‖2 − x2

>C>d− x2
>C>Cx1 + x1

>C>d
}
.

Now like in the proof of Theorem 1 we know that both { } are equal and therefore we replace
them by their arithmetic mean which gives the desired result.
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Corrolary 8. The solution of (164), (165) is the solution (x, λ) of (167) with largest λ.

Proof. From (168) we have
λ2 < λ1 =⇒ Fx2) > F (x1)

Theorem 11. Let (xi, λi), i = 1, 2, be two solutions of (167), then

(λ1 + λ2)(F (x1)− F (x2)) = (λ1 − λ2)(x1 − x2)>A(x1 − x2). (174)

Proof.

λ1C
>Cx1 − λ1C>d = −(A+A>)x1 − b (175)

λ2C
>Cx2 − λ2C>d = −(A+A>)x2 − b. (176)

λ1x
>
1 (176) −λ2x>2 (175) gives

λ1λ2
(
(x2 − x1)>C>d

)
= (λ2 − λ1)x>1 (A+A>)x2 − (λ1x1 − λ2 x2)>b. (177)

λ1x
>
2 (176) −λ2x>1 (175) gives

λ1λ2
(
‖Cx2‖2 − ‖Cx1‖2 + (x1 − x2)>C>d

)
= 2λ1x

>
2Ax2 + 2λ2 x>1Ax1 − (λ1x2 − λ2 x1)>b. (178)

Observe that

0 = ‖Cx2 − d‖2 − ‖Cx1 − d‖2 = ‖Cx2‖2 − ‖Cx1‖2 + 2((x1 − x2)>C>d.

So that if we subtract (178)−(177) we get

0 = 2λ2 x>1Ax1 − 2λ1x
>
2Ax2 − (λ1x2 − λ2 x1 − λ1x1 + λ2x2)>b + (λ1 − λ2)x>1 (A+A>)x2.

Rearranged we have

λ1
{

2x>2Ax2 + x>2b− x>1b− x>1 (A+A>)x2

}
= λ2

{
2x>1Ax1 + x>1b− x>2b− x>1 (A+A>)x2

}
.

(179)

Now observe that the left hand side of (179) is

{ } = F (x2)− F (x1) + (x1 − x2)>A(x1 − x2).

Similarly the right hand side simplifies. Therefore

λ1
{
F (x2)− F (x1) + (x1 − x2)>A(x1 − x2)

}
= λ2

{
F (x1)− F (x2) + (x1 − x2)>A(x1 − x2)

}
or rearranged

(λ1 + λ2)(F (x1)− F (x2)) = (λ1 − λ2)(x1 − x2)>A(x1 − x2).

Corrolary 9. Let (xi, λi), i = 1, 2, be two solutions of (167) with λ1 6= λ2. Then

(x1 − x2)>A(x1 − x2) = −λ1 + λ2
4

‖C(x1 − x2)‖2. (180)

Proof. We combine the results of Theorems 10 and 11 .
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8 Smoothing of Datas

Rutishauser proposed in [36] a method to smooth datas. We present here a modified version. Let

di, i = 1, . . . , n

be given datas of a smooth function. However let’s assume the di are perturbed by measurement
errors. We look for a new set of datas

xi, i = 1, . . . , n

that does not deviate too much from the di and that is smoother. If we assume that the di are
equidistant then we may want to solve

n−1∑
i=2

(xi+1 − 2xi + xi−1)2 = min (181)

subject to
n∑
i=1

(xi − di)2 ≤ nδ2. (182)

Here δ2 is a measure for the variance, the mean deviation we want to alow the new data xi to
differ from di:

δ ≈

√√√√√ n∑
i=1

(xi − di)2

n
.

The larger δ the more the xi will be smoothed.
Introducing the (n− 2)× n tridiagonal matrix

A =


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1


and the vectors d and x, equations (181) and (182) become

‖Ax‖ = min
subject to

‖x− d‖ ≤ α :=
√
n · δ

 (183)

and we have problem (P1) for b = 0 and C = I. The normal equations are

(A>A+ λI)x = λd (184)

‖x− d‖2 = α2. (185)

Instead of solving (184), Rutishauser proposed to choose some “smoothing” parameter γ and to
solve

(I + γA>A)x = d (186)

which is (184) for λ = 1/γ. The condition number of the matrix in (186) is 16γ. For large n one
may have to choose γ large which leads to numerical problems [36]. However large γ or small λ
may be meaningful: for γ → ∞ (λ → 0) the new values x lie on a straight line, i.e., are values of
a linear function. Of course one would like to have as limit the linear regression to the datas d.

If we make a change of variables in (183)

w := x− d
b := −Ad

(187)
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then our problem becomes
‖Aw − b‖ = min

subject to
‖w‖ ≤ α

 (188)

Problem (188) leads to a relaxed least squares problem

(A>A+ λI)w = A>b
‖w‖ = α

}
(189)

We can use the dual equations for (189) (see Section 3:

(AA> + λI)z = −b = Ad (190)

‖A>z‖ = α (191)

with
w = −A>z. (192)

Observe that now λ→ 0 causes no problems since AA> is not singular. Furthermore since b = −Ad
we can write (190) as (

A>√
λ I

)
z ≈

(
d
0

)
(193)

A is tridiagonal, therefore we shall use the algorithm described in Section 5.1 to solve for a given
λ ≥ 0 the least squares problem (193) .

For n = 8, e.g. the remaining matrix before and after the third step is:

0
0 0
0 0 r

0 s t
1 −2 1

1 −2 1
1 −2

1
x x x

x x x√
λ √

λ √
λ √

λ



step 3
−→



0
0 0
0 0 0

0 0 r
0 s t

1 −2 1
1 −2

1
x x x

x x x
d13 d23 d33√

λ √
λ √

λ


The following algorithm transforms

U>
(
A>√
λ I

)
=

(
0
R

)
and U>

(
d
0

)
=

(
c
y

)
where U is orthogonal and R upper triangular and tridiagonal:

R =



d11 d21 d31
d12 d22 d32

. . .
. . .

. . .

. . .
. . . d3n−4
. . . d2n−3

d1n−2


.

The matrix A is not stored, we work only with three simple variables r, s, and t. We use the
notation (

0 a′2 a′3
b′1 b′2 b′3

)
:= G

(
a1 a2 a3
b1 b2 b3

)
(194)
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where G is a Givens matrix

G =

(
cosα sinα
− sinα cosα

)
and α has been chosen so that the zero in the left hand side of (194) appears.

begin
comment zeroing columns 1 to n− 4 ;
r := t := 1; s := −2; c1 := d1; c2 := d2;
for i := 1 step 1 until n− 4 do
begin(

0 ci
d1i yi

)
:= G1

(
r ci√
λ 0

)
;

(
0 r ci+1

d1i d2i yi

)
:= G2

(
s t ci+1

d1i 0 yi

)
;(

0 s t ci+2

d1i d2i d3i yi

)
:= G3

(
1 −2 1 di+2

d1i d2i 0 yi

)
;

end;

comment column n− 3;(
0 cn−3

d1n−3 yn−3

)
:= G1

(
r cn−3√
λ 0

)
;

(
0 r cn−2

d1n−3 d2n−3 yn−3

)
:= G2

(
s t cn−2

d1n−3 0 yn−3

)
;(

0 s cn−1
d1n−3 d2n−3 yn−3

)
:= G3

(
1 −2 dn−1

d1n−3 d2n−3 yn−3

)
;

comment column n− 2;(
0 cn−2

d1n−2 yn−2

)
:= G1

(
r cn−2√
λ 0

)
;

(
0 cn−1

d1n−2 yn−2

)
:= G2

(
s cn−1

d1n−2 yn−2

)
;(

0 cn
d1n−2 yn−2

)
:= G3

(
1 dn

d1n−2 yn−2

)
;

end.

To solve the problem we need the derivtives of f(λ) defined by

(AA> + λI)z(λ) = Ad

f(λ) = ‖A>z(λ)‖2.

We cannot apply the results of Section 5.4 since f is not of the same form. We have

(AA> + λI)z(k) = −z(k−1), k ≥ 1.

We shall use Reinsch’s proposal and therefore we need only f ′:

f ′(λ) = 2 z′>AA>z

= −2 z>(z + λz′).

An ALGOL W procedure smooth(n,δ,d,x) is given at the end of this section. The following
example has been computed with this procedure using single precision (ca. 6 decimal digits) on
the SLAC computer (IBM 360).
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Example

We choose n = 30 and
di =

√
i+ 0.2 sin(i), i = 1, . . . , 30.

For this example we have f(0) = 1.825814, therefore if

δ >

√
f(0)

n
= 0.246699

the smoothed value xi are the same as obtained by linear regression.
On the other hand if δ = 10−4 we have ‖x − d‖ = 5.4 × 10−4 and the xi differ only in the

fourth decimal from the di. If we interpret the di as perturbed value of
√
i then because the mean

of |0.2 sin(i)| is approximately

0.2
1

π

∫ π

0

sin(x) dx =
0.4

π
≈ 1.3

we expect the best smoothing for δ ≈ 1.3 which indeed can be seen clearly in Table 2.

Table 2: Smoothing of di =
√
i+ 0.2 sin(i), i = 1, . . . , 30.

δ =

‖x − d‖[∑
(∆2xi)

2
]1/2[∑

(xi −
√
i)2

]1/2
# of iteration

λ = f−1(nδ2)
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Table 2 (cont.)
δ =

‖x − d‖[∑
(∆2xi)

2
]1/2[∑

(xi −
√
i)2

]1/2
# of iteration

λ = f−1(nδ2)

PROCEDURE SMOOTH(INTEGER VALUE N;

REAL VALUE DELTA ;

REAL ARRAY D,X(*)) ;

BEGIN

REAL G,F0,FA,F1,F2,LAMB,LAMBN,WLAMB,R,S,T,ALPHA,ALPHA2,CO,SI,H ;

REAL ARRAY C,AZ,AZS(1::N) ;

REAL ARRAY D1,Y,Z,ZS(1::N-2) ;

REAL ARRAY D2(1::N-3); REAL ARRAY D3(1::N-4) ;

INTEGER I ;

PROCEDURE ATZ(REAL ARRAY Z,Y(*)) ;

BEGIN INTEGER I ;

Y(1) := Z(1) ;

Y(2) := -2*Z(1) + Z(2) ;

FOR I := 3 STEP 1 UNTIL N-2 DO

Y(I) := Z(I-2) -2*Z(I-1) + Z(I) ;

Y(N-1) := Z(N-3) -2*Z(N-2) ;

Y(N) := Z(N-2) ;

END ATZ ;

PROCEDURE BACK(INTEGER VALUE N; REAL ARRAY A,B,C,D,X(*)) ;

BEGIN INTEGER I ;

X(N) := D(N)/A(N) ;

X(N-1) := (D(N-1) - X(N)*B(N-1))/A(N-1) ;

FOR I := N-2 STEP -1 UNTIL 1 DO

X(I) := (D(I) - X(I+1)*B(I) - X(I+2)*C(I))/A(I) ;

END BACK ;

PROCEDURE VORW(INTEGER VALUE N; REAL ARRAY A,B,C,D,X(*)) ;

BEGIN INTEGER I ;

X(1) := D(1)/A(1) ;

X(2) := (D(2) - X(1)*B(1))/A(2) ;

FOR\, I := 3 STEP 1 UNTIL N DO

X(I) := (D(I) - X(I-1)*B(I-1) - X(I-2)*C(I-2))/A(I) ;

END VORW ;

PROCEDURE ROT(REAL VALUE A; REAL VALUE B) ;

BEGIN REAL T ;

IF B = 0 THEN
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BEGIN CO := 0 ; SI := 1 END

ELSE

BEGIN

T := -A/B ; CO := 1/SQRT(1 + T**2) ;

SI := T*CO ;

END ;

END ROT ;

REAL PROCEDURE INPROD(INTEGER VALUE N; REAL ARRAY X,Y(*)) ;

BEGIN INTEGER I ; REAL S ;

S := 0 ;

FOR I := 1 STEP 1 UNTIL N DO S := S + X(I)*Y(I) ;

S

END INPROD ;

ALPHA := SQRT(N)*DELTA ; ALPHA2 := ALPHA**2 ;

LAMB := 0;

IT:WLAMB := SQRT(LAMB) ;

COMMENT COLUMNS 1 TO N-4

R := T := 1 ; S := -2 ; C(1) := D(1); C(2) := D(2) ;

FOR I := 1 STEP 1 UNTIL N-4 DO

BEGIN

ROT(R,WLAMB) ;

D1(I) := -SI*R + CO*WLAMB ;

Y(I) := -SI*C(I) ; C(I) := CO*C(I) ;

ROT(S,D1(I)) ;

D1(I) := -SI*S + CO*D1(I) ;

R := CO*T ; D2(I) := -SI*T ;

H := CO*C(I+1)+SI*Y(I); Y(I):=-SI*C(I+1)+CO*Y(I) ;

C(I+1) := H ;

ROT(1,D1(I)) ;

D1(I) := -SI + CO*D1(I) ;

S := -2*CO + SI*D2(I) ; D2(I) := 2*SI + CO*D2(I) ;

T := CO ; D3(I) := -SI ;

H := CO*D2(I+2) + SI*Y(I) ;

Y(I) := -SI*D(I+2) + CO*Y(I) ; C(I+2) := H ;

END ;

FOR I := N-3,N-2 DO

BEGIN

COMMENT COLUMNS N-3 AND N-2

ROT(R,WLAMB) ;

D1(I) := -SI*R + CO*WLAMB ;

Y(I) := -SI*C(I) ; C(I) := CO*C(I) ;

ROT(S,D1(I)) ;

D1(I) := -SI*S + CO*D1(I) ;

IF I = N-3 THEN

BEGIN

R := CO*T ; D2(I) := -SI*T ;

END

H := CO*C(I+1) + SI*Y(I) ;

Y(I) := -SI*C(I+1) + CO*Y(I) ; C(I+1) := H ;

ROT(1,D1(I)) ;

D1(I) := -SI + CO*D1(I) ;

IF I = N-3 THEN

BEGIN

S := -2*CO + SI*D2(I) ; D2(I) := 2*SI + CO*D2(I) ;

END

C(I+2) := CO*D(I+2) + SI*Y(I) ;

Y(I) := -SI*D(I+2) + CO*Y(I) ;

END I ;

IF LAMB = 0 THEN FA:= 2*INPROD(N,C,C) ;
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BACK(N-2,D1,D2,D3,Y,Z) ;

ATZ(Z,AZ) ;

F0 := INPROD(N,AZ,AZ) ;

VORW(N-2,D1,D2,D3,Z,ZS) ;

COMMENT ZS IS -Z’

BACK(N-2,D1,D2,D3,ZS,ZS) ;

ATZ(ZS,AZS) ;

F1 := -2*INPROD(N,AZS,AZ) ;

LAMBN := LAMB -F0/F1*2*(SQRT(F0)/ALPHA-1) ;

IF (FA <= F0) OR (F0 < ALPHA2) OR (LAMBN <= LAMB)

THEN GOTO FIN ;

FA := F0; LAMB := LAMBN ;

GOTO IT ;

FIN:

FOR I := 1 STEP 1 UNTIL N DO

X(I) := D(I) - AZ(I);

END SMOOTH ;
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