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1 Introduction

Polynomial optimization and the problem of global nonnegativity of polynomials are active
fields of research and remain in the focus of researchers from various areas as real algebra,
semidefinite programming and operator theory. Shor [25] was the first who introduced
the idea of applying a convex optimization technique to minimize an unconstrained mul-
tivariate polynomial. Also, Nesterov [17] was one of the first who discussed to exploit the
duality of moment cones and cones of nonnegative polynomials in a convex optimization
framework. He showed the characterization of a moment cone by linear matrix inequalities,
i.e., semidefinite constraints, in case the elements of the corresponding cone of nonnegative
polynomials can be written as sum of squares. The next milestone in minimizing multi-
variate polynomials was given by Lasserre [11], who realized to apply recent real algebraic
results by Putinar [22] to construct a sequence of semidefinite program relaxations whose
optima converge to the optimum of a polynomial optimization problem. Another approach
to apply real algebraic results to attempt the problem of nonnegativity of polynomials
was introduced by Parrilo [18]. Recent developments in polynomial optimization are for
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instance the exploitation of sparsity in order to achieve strong numerical improvements by
proposing a sequence of sparse SDP relaxations by Waki, Kim, Kojima and Muramatsu
[27], and other approaches to characterize the polynomial optimization problem by semidef-
inite programs via finite varieties by Laurent [14].
We attempt to solve the following polynomial optimization problem:

min p(x)
s.t. gi(x) ≥ 0 ∀i = 1, . . . ,m (1.1)

where p, g1, . . . , gm ∈ R [x]. Problem (1.1) can also be written as

minx∈K p(x) (1.2)

where K the closed semialgebraic set that is defined by the polynomials g1, . . . , gm. Let p?

denote the optimal value of problem (1.2) and K? := {x? ∈ K | ∀x ∈ K : p(x?) ≤ p(x)}.
Since K compact, K? 6= ∅, if K 6= ∅.
The structure of this paper is outlined as follows: After introducing some notations in
chapter 2, will discuss the most important concepts for characterizations of globally non-
negative polynomials and polynomials nonnegative or positive on closed semialgebraic sets
in chapter 3 at first. In particular we will present the connections of sum of squares char-
acterizations by Parrilo and the Positivstellensätze by Schmüdgen and Putinar. In chapter
4 we will discuss the problem of moments which is closely interlinked to the problem of
nonnegativity of polynomials and some applications of the related concepts by Bertsimas
and Popescu. In chapter 5 we will present Lasserre’s approach to solve the polynomial opti-
mization problem (1.1) by constructing a sequence of convergent semidefinite programming
relaxations. Also, we discuss further topics as the problem of extracting the global min-
imizers of (1.1) and an approach to exploit sparsity in polynomial optimization problems
by Waki, Kim, Kojima and Muramatsu. Finally, we introduce an alternative approach by
Laurent to attempt problem (1.1) in case its complex variety is finite.

2 Notations

We briefly introduce notions and objects from real algebra that will be used in the subse-
quent sections. A monograph which provides a detailed insight in these objects, the real
algebraic concepts and their relations is given in the book ’Positive Polynomials’ [21] by
Prestel and Delzell.
Let R [x] denote the ring of polynomials with coefficients in R where x ∈ Rn, and

∑
R[x]2

the convex cone of elements in R [x] that can be written as sums of squares of polyno-
mials in R[x],

∑
R[x]2 =

{
p ∈ R[x]; p =

r∑
i=1

p2
i , pi ∈ R [x] for some r ∈ N

}
.

A closed semialgebraic set is denoted by

K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} ,

where g1, . . . , gm ∈ R [x].
If K the semialgebraic set defined by g1, . . . , gm ∈ R[x], let M(K) be the quadratic
module generated by g1, . . . , gm, i.e.

M(K) =
∑

R[x]2 + g1

∑
R[x]2 + . . .+ gm

∑
R[x]2.
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Let Σ2〈g1, . . . , gm〉

:=
∑

R[x]2 + g1

∑
R[x]2 + . . .+ gm

∑
R[x]2 +g1g2

∑
R[x]2 + . . .+ g1g2 · · · gm

∑
R[x]2

:= M(K) +g1g2

∑
R[x]2 + . . .+ g1g2 · · · gm

∑
R[x]2

be the multiplicative convex cone generated by
∑

R[x]2 and g1, . . . , gm.
Let O(g1, . . . , gm) denote the multiplicative monoid generated by g1, . . . , gm, i.e. the set
of finite products of the elements g1, . . . , gm:

O(g1, . . . , gm) = {
r∏
i=1

ti | ti ∈ {g1, . . . , gm} for i ∈ {1, . . . ,m} and r ∈ N}.

Let I(g1, . . . , gm) denote the ideal generated by g1, . . . , gm, i.e. the set

I(g1, . . . , gm) := 〈g1, . . . , gm〉R[x] = {
∑m
i=1 figi, fi ∈ R [x]}

= R[x] + g1R[x] + . . .+ gmR[x].

In the language of linear algebra I(g1, . . . , gm) can be understood as a R[x]−submodule of
the R[x]-module R[x]. Recall, a R−module is a generalization of the notion of a R−vector
space, with R being a ring with 1 instead of R being a field.
R[x]ω ⊆ R[x] denotes the set of all real polynomials of degree less than ω ∈ N and

Λ(ω) := {α ∈ Nn : | α |≤ ω} ,

the set of all multivariate indices of degree less than or equal to ω ∈ N.
Given a set A ⊆ Nn of multivariate indices, the monomial vector u(x,A) is defined as

u(x,A) = (xα | α ∈ A) ,

in fact its elements form a basis for R[x,A] := {p ∈ R[x] | supp(p) ⊆ A}. The length of the
vector u(x,Λ(ω)) of all monomials of degree less or equal than ω is denoted as

s(ω) =
(
n+ ω
ω

)
,

also, it equals the dimension of R[x]ω. u(x) denotes the (infinite dimensional) basis of R[x].
Obviously holds R[x]ω = R[x,Λ(ω)].

3 Positive Polynomials

3.1 Decomposition of globally nonnegative polynomials

The origin of research in characterizing nonnegative and positive polynomials lies in Hilbert’s
17th problem, whether it is possible to express a nonnegative rational function as sum of
squares of rational functions. This question was answered positively by Artin in 1927. Fur-
thermore the question arises, whether it is possible to express any nonnegative polynomial
as sum of squares of polynomials. In case of univariate polynomials the answer to this
question is yes, as stated in the following theorem.

Theorem 3.1 Let p ∈ R [x], x ∈ R. Then, p(x) ≥ 0 for all x ∈ R if and only if p ∈∑
R[x]2.
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Proof ”⇐ ” : Trivial.
”⇒ ” : Let p(x) ≥ 0 for all x ∈ R. It is obvious that deg(p) = 2k for some k ∈ N. Then, the
real roots of of p(x) should have even multiplicity, otherwise p(x) would alter its sign in a
neighborhood of a root. Let λi, i = 1, . . . , r be its real roots with corresponding multiplicity
2mi. Its complex roots can be arranged in conjugate pairs, aj + Ibj , aj − Ibj , j = 1, . . . , h.
Then,

p(x) = C

r∏
i=1

(x− λi)2mi

h∏
j=1

((x− aj)2 + b2j ).

Note that the leading coefficient C needs to be positive. Thus, by expanding the terms in
the products, we see that p(x) can be written as a sum of squares of polynomials, of the
form

p(x) =
k∑
i=0

 k∑
j=0

vijx
j

2

. �

Nevertheless, Hilbert himself noted already that not every nonnegative polynomial can be
written as sum of squares. For instance the Motzkin form M ,

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2

is nonnegative but not sum of squares. In fact Hilbert gave a complete characterization
of the cases where nonnegativity and the existence of a sum of squares decomposition are
equivalent.

Definition 3.2 A form is a polynomial where all the monomials have the same total degree
m. Pn,m denotes the set of nonnegative forms of degree m in n variables, Σn,m the set of
forms p such that p = Σkh2

k, where hk are forms of degree m
2 .

There is a correspondance between forms in n with power m and polynomials in n − 1
variables with degree less or equal to m. In fact, a form in n variables of degree m can
be dehomogenized to a polynomial in n − 1 variables by fixing any of the n variables to
the constant value 1. Conversely, given a polynomial in n − 1 variables in can be homog-
enized by multiplying each monomial by powers of a new variable such that the degree of
all monomials equals m. Obviously, Σn,m ⊆ Pn,m holds for all n and m. The following
Theorem is due to Hilbert.

Theorem 3.3 Σn,m ⊆ Pn,m holds with equality only in the following cases:

(i) Bivariate forms: n = 2,

(ii) Quadratic forms: m = 2,

(iii) Ternary quartic forms: n = 3, m = 4.

We interprete the three cases in Theorem 3.3 in terms of polynomials. The first one corre-
sponds to the equivalence of nonnegativity and sum of squares condition in the univariate
case as in Theorem (3.1). The second one is the case of quadratic polynomials, where the
sum of squares decomposition follows from an eigenvalue/eigenvector factorization. The
third case corresponds to quartic polynomials in two variables.
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Relevance of sum of squares characterizations Recall that the constraints of our
original polynomial optimization problem are nonnegativity constraints for polynomials
of the type gi(x) ≥ 0 (i = 1, . . . ,m). The question, whether a given polynomial is
globally nonnegative is decidable, for instance by the Tarski-Seidenberg decision procedure
[2]. Nonetheless, regarding complexity, the general problem of testing global nonnegativity
of a polynomial function is NP-hard [16], if the degree of the polynomial is at least four.
Therefore it is reasonable to substitute the nonnegativity constraints by expressions that
can be decided easier. It was shown by Parrilo that the decision whether a polynomial is
sum of squares is equivalent to a semidefinite program as stated in the following theorem.

Theorem 3.4 The existence of a sum of squares decomposition of a polynomial in n vari-
ables of degree 2d can be decided by solving a semidefinite programming feasibility prob-
lem [18]. If the polynomial is dense, the dimensions of the matrix inequality are equal to(
n+ d
d

)
×
(
n+ d
d

)
.

Proof Let p ∈ R [x] with degree 2d. Recall u(x,Λ(d)) denotes the ordered vector of
monomials xα1

1 xα2
2 · · ·xαnn with

∑n
i=1 αi ≤ d. The length of u(x,Λ(d)) is s := s(d) =(

n+ d
d

)
.

Claim: p ∈
∑

R[x]2 if and only if ∃V ∈ Ss+ such that p = u(x,Λ(d))TV u(x,Λ(d)).
Pf: ⇒: p ∈

∑
R[x]2, i.e.

p =
r∑
i=1

q2
i =

r∑
i=1

(wTi u(x,Λ(d)))2 = u(x,Λ(d))T
(

r∑
i=1

wiw
T
i

)
u(x,Λ(d)).

Thus, V =
∑r
i=1 wiw

T
i and V ∈ Ss+.

⇐: As V ∈ Ss+ there exists a Cholesky factorization V = WWT , where W ∈ Rs×s and let
wi denote the ith column of W . We have

p = u(x,Λ(d))TV u(x,Λ(d)) =
s∑
i=1

wiw
T
i u(x,Λ(d)) =

s∑
i=1

(wTi u(x,Λ(d)))2,

i.e., p ∈ R[x]. Thus, the claim follows.
Expanding the quadratic form gives p =

∑s
i,j=1 Vi,ju(x,Λ(d))iu(x,Λ(d))j . Equating the

coefficients in this expression with the coefficients of the corresponding monomials in the
original form for p generates a set of linear equalities for the variables Vi,j (i, j = 1, . . . , s).
Adding the constraint V ∈ Ss+ to those linear equality constraints, we obtain conditions
for p which are equivalent to claiming p ∈

∑
R[x]2. Therefore, the decidability problem

whether p ∈
∑

R[x]2 is equivalent to a semidefinite programming feasibility problem. �

3.2 Decomposition of polynomials positive on closed semialgebraic
sets

Real algebraic geometry deals with the analysis of the real solution set of a system of
polynomial equations. The main difference to algebraic geometry in the complex case lies
in the fact that R is not algebraically closed. One of the main results of real algebra
are the Positivstellensätze which provide certificates in the case a semialgebraic set is
empty. Improved versions of the Positivstellensätze can be obtained in case of compact
semialgebraic sets.
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3.2.1 General semialgebraic sets

The Positivstellensatz below is due to Stengle; a proof can be found in [2].

Theorem 3.5 (Stengle) Let (fj)j=1,...,t, (gk)k=1,...,m, (hl)l=1,...,k be finite families of
polynomials in R [x]. The following properties are equivalent:

(i)

x ∈ Rn |
gj(x) ≥ 0, j = 1, . . . ,m
fs(x) 6= 0, s = 1, . . . , t
hi(x) = 0, i = 1, . . . , k

 = ∅.

(ii) There exist g ∈ Σ2〈g1, . . . , gm〉, f ∈ O(f1, . . . , ft), the multiplicative monoid gen-
erated by f1, . . . , ft, h ∈ I(h1, . . . , hk), the ideal generated by h1, . . . , hk, such that
g + f2 + h = 0.

To understand the differences between the real and the complex case, and the use of the
Positivstellensatz 3.5 consider the following example.

Example 3.6 Consider the very simple standard quadratic equation

x2 + ax+ b = 0.

By the fundamental theorem of algebra, the equation has always solutions on C. For the
case when the solution is required to be real, the solution set will be empty if and only if the
discriminant D satisfies

D := b− a2

4
> 0.

In this case taking

g :=
(

1√
D

(x+
a

2
)
)2

, f := 1, h := − 1
D

(x2 + ax+ b),

the identity g + f2 + h = 0 is satisfied.

It is to remark, the Positivstellensatz represents the most general deductive system for
which inferences from the given equations can be made. It guarantees the existence of
infeasibility certificates given by the polynomials f , g and h. For complexity reasons
these certificates cannot be polynomial time checkable for every possible instance, unless
NP=co-NP. Parrilo showed that it is possible that the problem of finding infeasibility
certificates is equivalent to an semidefinite program, if the degree of the possible multipliers
is restricted [18].

Theorem 3.7 Consider a system of polynomial equalities and inequalities as in Theorem
3.5. Then, the search for bounded degree Positivstellensatz infeasibility certificates can be
done using semidefinite programming. If the degree bound is chosen to be large enough ,
then the SDPs will be feasible, and the certificates are obtained from its solution.

Proof: Consequence of the Positivstellensatz and Theorem 3.4, c.f. [18].

As the feasible set of initial problem (1.2) is a closed semialgebraic set, we are interested
in characterizations for these sets and polynomials positive on semialgebraic sets. The
Positivstellensatz allows to deduce conditions for the positivity or the nonnegativity of a
polynomial over a semialgebraic set. A direct consequence of the Positivstellensatz is the
following corollary [2], pp. 92.
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Corollary 3.8 Let g1, . . . , gm ∈ R [x] ,
K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} and f ∈ Σ2〈g1, . . . , gm〉. Then:

(i) ∀x ∈ K f(x) ≥ 0 ⇔ ∃ s ∈ N ∃ g, h ∈ Σ2〈g1, . . . , gm〉 s.t. fg = f2s + h.

(ii) ∀x ∈ K f(x) > 0 ⇔ ∃ g, h ∈ Σ2〈g1, . . . , gm〉 s.t. fg = 1 + h.

Proof

(i) Apply the Positivstellensatz to the set

{x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0,−f(x) ≥ 0, f(x) 6= 0} .

(ii) Apply the Positivstellensatz to the set

{x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0,−f(x) ≥ 0} . �

Those conditions for the nonnegativity and positivity of polynomials on semialgebraic sets
can be improved under additional assumptions. We present these improved conditions for
compact semi-algebraic sets in the following section.

3.2.2 Compact semialgebraic sets

It is our aim to characterize polynomials that are positive or nonnegative on compact
semialgebraic sets. A first characterization is a theorem due to Schmüdgen [23]:

Theorem 3.9 (Schmüdgen) Let K = {x ∈ Rn; g1(x) ≥ 0, . . . , gm(x) ≥ 0} be a com-
pact semialgebraic subset of Rn and let p be a positive polynomial on K. Then p ∈
Σ2〈g1, . . . , gm〉.

It was Putinar [22] who simplified this characterization under an additional assumption.

Definition 3.10 A quadratic module M(K) is called archimedean if N −
∑n
i=1 x

2
i ∈

M(K) for some N ∈ N.

Theorem 3.11 (Putinar) Let p be a polynomial, positive on the compact semialgebraic
set K and M(K) archimedian, then p ∈M(K).

Thus, under the additional assumption of an archimedian quadratic module M(K), we ob-
tain the stricter characterization p ∈M(K) ⊆ Σ2〈g1, . . . , gm〉 instead of p ∈ Σ2〈g1, . . . , gm〉.
A further theorem by Schmüdgen [23] provides equivalent conditions for M(K) being archi-
median.

Theorem 3.12 The following are equivalent:

(i) There exist finitely many t1, . . . , ts ∈M(K) such that the set

{x ∈ Rn | t1(x) ≥ 0, . . . , ts(x) ≥ 0}

(which contains K) is compact and
∏
i∈I ti ∈M(K) for all I ⊂ {1, . . . , s}.

(ii) There exists some p ∈M(K) such that {x ∈ Rn | p(x) ≥ 0} is compact.

(iii) There exists an N ∈ N such that N −
∑n
i=1 x

2
i ∈M(K), i.e., M(K) is archimedian.
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(iv) For all p ∈ R [x], there is some N ∈ N such that N ± p ∈M(K).

Thus, for any polynomial p positive on K, p ∈ M(K) holds, if one of the conditions in
Theorem 3.12 is satisfied. Whether it is decidable that one of the equivalent conditions
hold is not known and subject of current research.

Example 3.13 Consider the compact semialgebraic set

K =
{
x ∈ R2 | g(x) = 1− x2

1 − x2
2 ≥ 0

}
.

The quadratic module M(K) is archimedian, as 1 − x2
1 − x2

2 = 02 + 12 · g(x) ∈ M(K).
The polynomials f1(x) := x1 + 2 and x3

1 + 2 are positive on K. Thus f1, f2 ∈ M(K) with
Theorem 3.11. Their decomposition can be derived as

f1(x) = x1 + 2 = 1
2 (x1 + 1)2 + 1

2x
2
2 + 1 + 1

2 (1− x2
1 − x2

2),
f2(x) = 2x3

1 + 3 = (x3
1 + 1)2 + (x2

1x2)2 + (x1x2)2 + x2
2 + 1 + (x4

1 + x2
1 + 1) (1− x2

1 − x2
2).

The next example demonstrates that in general not every polynomial nonnegative on a
compact semialgebraic set K is contained in M(K) even if M(K) is archimedian.

Example 3.14 Consider the compact semialgebraic set

K =
{
x ∈ R | g1(x) := x2 ≥ 0, g2(x) := −x2 ≥ 0

}
.

It is obvious that M(K) is archimedian. Also, it is easy to see that there are no q, r, s ∈∑
R[x]2 such that

p(x) := x = q(x) + r(x)x2 + s(x) (−x2),

although p is nonnegative on K. Nevertheless, the polynomial pa ∈ R[x] defined by pa(x) =
x+ a for a > 0 can be decomposed as

pa(x) = x+ a =
1
4a

(x+ 2a)2 − 1
4a
x2.

Thus pa ∈M(K) for all a > 0.

The original proof of Theorem 3.11 is due to Putinar [22]. In this proof Putinar applies
the separation theorem for convex sets and some arguments from functional analysis. A
new proof was found by Schweighofer [24] that avoids the arguments from functional anal-
ysis and requires only results from elementary analysis. As Theorem 3.11 is of central
importance in Lasserre’s approach to solve polynomial optimization problems we will out-
line Schweighofer’s proof of this theorem here. Before we will state Polya’s theorem and a
lemma that are both applied in his proof.

Theorem 3.15 (Polya) Suppose F ∈ R[x] is homogeneous and satisfies F > 0 on [0,∞)n\
{0}. Then for all k big enough, the polynomial (x1 + . . .+ xn)kF has only nonnegative co-
effcients.

Proof C.f. [20].

Lemma 3.16 Suppose C ⊆ Rn is compact and gi ≤ 1 on C for all i ∈ {1, . . . ,m}. Suppose
p ∈ R[x] satisfies p > 0 on S. Then there exists s ∈ N such that for all sufficiently large
k ∈ N,

p− s
m∑
i=1

(1− gi)2kgi > 0 on C.
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Proof C.f. [24].
Proof of Theorem 3.11 Assume N ∈ N such that N −

∑n
i=1 x

2
i ∈ M(K). Consider the

compact set

∆ :=
{
y ∈ [0,∞)2n | y1 + . . .+ y2n = 2n(N +

1
4

)
}
⊆ R2n

and let C := l(∆) ⊂ Rn be its image under the linear map

l : R2n → Rn, y 7→
(
y1 − yn+1

2
, . . . ,

yn − y2n

2

)
.

Since l(∆) is compact, we can scale each gi with a positive factor such that gi ≤ 1 on C.
So we an apply Lemma 3.16 and get s, k ∈ N such that

q := p− s
m∑
i=1

(gi − 1)2kgi > 0 on C.

It is sufficient to show that q ∈M(K), and we shall even show that

q ∈ T :=
∑

R[x]2 +
∑

R[x]2
(
N −

n∑
i=1

x2
i

)
⊆M(K).

In order to show that, write q =
∑d
i=0Qi where d := deg q and Qi ∈ R[x] is homogeneous

of degree i, i = 0, . . . , d. Define

F :=
d∑
i=0

Qi

(
y1 − yn+1

2
, . . . ,

yn − y2n

2

)(
y1 + . . .+ y2n

2n(N + 1
4 )

)d−i
∈ R[y]

where y ∈ R2n. For each y ∈ ∆, we obtain

F =
d∑
i=0

Qi (l(y)) = q(l(y)) > 0,

since l(y) ∈ l(∆) = C. Since F is a homogeneous polynomial, it has constant sign on each
ray emanating by the origin, whence F > 0 on [0,∞)2n \ {0}. By Polyas’s Theorem 3.15,
there is some e ∈ N such that

G :=
(
y1 + . . .+ y2n

2n(N + 1
4 )

)e
F ∈ R[y]

has only nonnegative coefficients. Now we apply on this polynomial the R−algebra homo-
morphism φ : R[y]→ R[x] defined by

yi 7→ (N +
1
4

) + xi, yn+i 7→ (N +
1
4

)− xi (i ∈ {1, . . . , n}).

Note that φ(yi) ∈ T for each i ∈ {1, . . . , 2n} since

(
N +

1
4

)
± xi =

∑
j 6=i

x2
j +

(
xi ±

1
2

)2

+

N − n∑
j=1

x2
j

 ∈ T.
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Noting that T is closed under addition and multiplication, we obtain therefore that

φ(G) = φ(F ) =
d∑
i=0

Qi = q

is contained in T. �

Remark 3.17 Obviously it holds, given a compact semialgebraic set K, any positive poly-
nomial on K belongs to the cone M(K) if and only if M(K) is archimedian.

Theorem 3.11 is called Putinar’s Positivstellensatz. Obviously, it does not really char-
acterize the polynomials positive on K since the polynomials in M(K) must only be non-
negative on K. Also, it does not fully describe the polynomials nonnegative on K since they
are not always contained in M(K). But it is Theorem 3.11 that is exploited by Lasserre in
order to attempt the polynomial optimization problem, as we will see in chapter 5.

4 Moment problems

A field closely interlinked with the theory of nonnegative polynomials and sum of squares
decompositions is the problem of moments. As we will see, many questions in the field of
moment problems can be answered by applying convex and in particular semidefinite opti-
mization methods. Therefore particular moment problems are tractable and can be solved
in appropriate time. In particular, we are able to exploit the real algebraic results from the
previous chapter in case of K-moment problems, if K a closed or compact semialgebraic
set.

4.1 The general moment problem

The moment problem is the following:
Given a sequence y = (yα)α∈Nn , does there exist a Borel measure µ ∈M(Rn) such that yα
is the α-th moment of µ, i.e. yα =

∫
xα dµ, for all α ∈ Nn0 ?

The key connection between moment problems and semidefinite optimization lays in the
notion of a feasible moment vector.

Definition 4.1 y = (yα)α≤ω is a feasible (n, ω,Ω)-moment vector, if there is a Borel
measure µ ∈M(Ω) whose moments are given by y, that is yα =

∫
xα dµ for all α ≤ ω.

A notion that is useful in order to derive conditions for a moment vector to be feasible is
is given in the next definition.

Definition 4.2 Let y = (yα)α≤k = (yα1 , . . . , yαt) be a vector. The Hankel matrix H(y)
is defined by

H(y) =


yα1 yα2 . . . yαt−1 yαt
yα2 yα3 . . . yαt yαt+1

...
...

. . .
...

...
yαt−1 yαt . . . yα2(t−1) yα2t−1

yαt yαt+1 . . . yα2t−1 yα2t

 .

11



The problem whether a given y is a feasible moment vector has been completely character-
ized in the univariate case (n = 1).

Theorem 4.3 (a) The vector (y1, . . . , y2n+1) is a feasible (1, 2n+ 1,R+)-moment vector
if and only if the following matrices are positive semidefinite:

H ((1, y1, . . . , y2n)) =


1 y1 . . . yn
y1 y2 . . . yn+1

...
...

. . .
...

yn yn+1 . . . y2n

 < 0,

H ((y1, . . . , y2n+1)) =


y1 y2 . . . yn+1

y2 y3 . . . yn+2

...
...

. . .
...

yn+1 yn+2 . . . y2n+1

 < 0.

(b) The vector (y1, . . . , y2n) is a feasible (1, 2n,R)-moment vector if and only if

H ((1, y1, . . . , y2n)) < 0.

Proof C.f. [3], pp. 65.

In the multivariate case, there are known necessary conditions for a vector y to be
a feasible (n, ω,Rn)−vector that also involve the semidefiniteness conditions for Hankel
matrices derived from y. However, these conditions are not sufficient. The complexity
whether a vector y is a feasible (n, ω,Rn)-moment vector has not been resolved, yet. A
typical necessary condition is given by the following theorem.

Theorem 4.4 Let σ be a feasible (2, 2k,R2)−moment vector. Then H(σ) < 0 hold for the
Hankel matrix H of σ.

Proof: C.f. [3], pp. 204. Let p : R2 → R be a polynomial of degree k with coefficients
ci,j ,

p(x) =
k∑
i=0

k−i∑
j=0

ci,jx
i
1x
j
2,

and let µ be a Borel measure on R2 with moments σi,j . Then, Eµ
[
p(x)2

]
can be expressed

as a quadratic form in c,
0 ≤ E

[
p(x)2

]
= cTH(σ)c,

where H is the Hankel matrix of σ. Thus, H(σ) < 0. �
Nevertheless, characterizations are known in some special cases.

Theorem 4.5 A vector y = (M,Γ) is a feasible (n, 2,Rn)−vector if and only if the follow-
ing matrix is positive semidefinite:

S =
(

1 MT

M Γ

)
< 0.

12



Proof ” ⊆ ” : Suppose (M,Γ) is a feasible (n, 2,Rn)-moment vector. Then, there exists
a Borel measure µ ∈ M(Rn) such that M = Eµ [x] and Γ = Eµ

[
xxT

]
. The matrix

(x−M)(x−M)T is positive semidefinite. Taking expections with respect to µ, we obtain
that

E
[
(x−M)(x−M)T

]
= Γ−MMT < 0,

which expresses the fact that the covariance matrix needs to be positive semdefinite. Ob-
viously, Γ−MMT < 0 if and only if S < 0.
” ⊇ ” : If S < 0, then Γ − MMT < 0. Let µ be an Borel measure on M(Rn) with
M = Eµ [x] and covariance matrix Γ − MMT . Therefore y := (M,Γ) is a feasible
(n, 2,Rn)−moment vector.�
For various applications of moment problems and their semidefinite characterizations or
approximations see chapter 16 in [28].

4.2 The K-moment problem

The K-moment problem is given by:
Let K be a closed semialgebraic set and y = (yα)α∈Nn be a sequence, does there exist
a Borel measure µ ∈ M(K) supported on K such that yα is the α-th moment of µ, i.e.
yα =

∫
xα dµ, for all α ∈ Nn0 ?

A convenient notion in order to characterize this problem is given by the next definition.

Definition 4.6 Let y = (yα1 , yα2 , . . . , yαs(2r)) with yα1 = 1 be a sequence of length s(2r) =(
n+ 2r

2r

)
. The moment matrix Mr(y) is constructed as follows. Mr(y)(i, 1) = yαi and

Mr(y)(1, j) = yαj for i, j ∈ {1, . . . , s(r)}, and Mr(y)(i, j) = yαi+αj for i, j ∈ {2, . . . , s(r)}.
For instance, if n = 2 and r = 2, M2(y) is given by

M2(y) =


1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 .

Moreover Mr(y) defines a bilinear form 〈., .〉y on R [x]r by

〈q(x), v(x)〉y := 〈q,Mr(y)v〉, q(x), v(x) ∈ R [x]r ,

and if y is a sequence of moments of some measure µy, then

〈q,Mr(y)q〉 =
∫
q(x)2 dµy ≥ 0,

so that Mr(y) < 0.
Let p(x) ∈ R [x] with coeffcient vector (pβ)β∈Nn0 , we define the localizing matrix Mr(py)
by

Mr(py)(i, j) =
∑
β

pβyαi+αj+β .

13



For instance, with

M1(y) =

 1 y10 y01

y10 y20 y11

y01 y11 y02

 and p(x) = a− x2
1 − x2

2,

we obtain

M1(py) =

 a− y20 − y02 ay10 − y30 − y12 ay01 − y21 − y03

ay10 − y30 − y12 ay20 − y40 − y22 ay11 − y31 − y13

ay01 − y21 − y03 ay11 − y31 − y13 ay02 − y22 − y04

 .

Under the condition that µy is a Borel measure with moment sequence y, which is supported
on {p(x) ≥ 0}, it holds Mr(py) < 0.

Schmüdgen [23] gave a complete characterization of the K-moment problem in case the
semialgebraic set K is compact.

Theorem 4.7 Let the closed semialgebraic set K defined by g1, . . . , gm ∈ R [x] be compact.
Then a sequence y = (yα)α∈Nn is a K-moment sequence if and only if Mr ((yα)α≤2r) < 0
for all r ∈ N and Mr (((gj1 · · · gjky)α)α≤2r) < 0 for all possible choices j1, . . . , jk of pairwise
different numbers from {1, . . . ,m} and for all r ∈ N.

This theorem by Schmüdgen characterizes infinite moment sequences. In real case prob-
lems, we are often facing the case of a truncated moment sequence. For instance a truncated
sequence (yα)α≤ω is given, which reflects our knowledge of the moments up to order ω of an
unknown distribution. Furthermore dealing with an infinite sequence of semidefiniteness
conditions leads to numerically intractable problems. For this reason, representations for
truncated moment vectors y are in demand. The truncated complex K-moment problem
was analyzed in detail by Curto and Fialkow [5]. It is to be stated that the multivariate case
differs from the univariate case as it might happen that for a vector y the moment matrix
Mr(y) � 0 for some r ∈ N, but there exists no representing measure µy. Thus, Mr(y) < 0
for a finite number of r ∈ N does in general not imply there exists a representing Borel
measure µy. Nevertheless, we know by Schmüdgens Theorem 4.7 that the converse holds.
Another solution of the K-moment problem for compact semialgebraic sets is Theorem 5.1,
which is presented in the next chapter and applied in Lasserre’s approach to solve problem
(1.2). Also, Curto and Fialkow provided solutions of the moment problem in case the rank
of the infinite matrix M(y) is finite, which we apply in section 6.3.
As mentioned before, moment problems arise in settings where partial moment data (mo-
ments up to a certain order) of a unknown distribution are known and the class of distribu-
tions fitting to this truncated moment sequence is to be examined. Some of these problems
can be solved by semidefinite programming characterizations. We will present a problem
by Bertsimas and Popescu [1] as an example of those problems.

4.3 Optimal bounds in probability

Suppose σ ∈ Rs(ω,n) is a vector of moments up to order ω ∈ N and µ ∈ MP (Rn) is a
probability measure with σα =

∫
Ω
xα dµ for all α ≤ ω. The (n, ω,Ω)-bound problem is

to find the best possible upper (or lower) bounds on µ(S) for arbitrary events S ⊆ Ω, i.e.
maximize (or minimize) µ(S) over all probability measures µ that fit to the moment data σ.

14



Definition 4.8 α is a tight upper bound on µ(S), and denoted by supµ∼σ µ(S) if,

(a) it is an upper bound, i.e., µ(S) ≤ α for all µ ∈M(Ω), µ ∼ σ;

(b) it cannot be improved, i.e., for any ε > 0 there is a µε ∼ σ for which µε(S) > α− ε.

First, we formulate the problem of finding a tight upper bound for µ(S) for µ corresponding
to a fixed truncated moment vector σ as a primal-dual pair of problems. With f the density
corresponding to a probability measure µ, we can write the (n, ω,Ω)-problem as

ZP = max
∫
S
f(z) dz

s.t.
∫

Ω
zαf(z) dz = σα, ∀ α ≤ ω,

f(z) ≥ 0, ∀ z ∈ Ω ⊆ Rn.
(4.1)

Note that if problem (4.1) is feasible, σ is a feasible moment vector, and any feasible
distribution f(z) is a σ−feasible distribution.
As a dual to problem (4.1), the following problem can be derived.

ZD = min
∑
α≤ω uασα = E [g(X)]

s.t. g(x) =
∑
α≤ω uαx

α ∈ R [x] , deg g = ω,

g(x) ≥ χS(x), ∀ x ∈ Ω ⊆ Rn,
(4.2)

where χS(x) the indicator function of S. Under some mild restrictions it can be shown
that weak and strong duality hold for this pair of optimization problems.

4.3.1 The univariate case

We will show that the best tight bounds of the upper bound problem in the univariate case
can be derived as solutions of a semidefinite program.
Given the first k moments (M1, . . . ,Mk), M0 = 1 of a measure µ ∈M(Ω) we attempt the
dual problem (4.2) in order to determine the tight bound for µ(S).

min
∑k
r=0 yrMr

s.t.
∑k
r=0 yrx

r ≥ 1, ∀ x ∈ S∑k
r=0 yrx

r ≥ 0, ∀ x ∈ Ω.
(4.3)

In case S and Ω are intervals in the real line we provide a theorem that is the basis for
expressing (4.3) as a semidefinite program.

Theorem 4.9 (a) The polynomial g(x) =
∑2k
r=0 yrx

r satisfies g(x) ≥ 0 for all x ∈ R if
and only if there exists a positive semidefinite matrix V such that

yr =
∑

i,j: i+j=r

vij , r = 0, . . . , 2k, V < 0.

(b) The polynomial g(x) =
∑k
r=0 yrx

r satisfies g(x) ≥ 0 for all x ≥ 0 if and only if there
exists a positive semidefinite matrix V , such that

0 =
∑
i,j: i+j=2l−1 vij , l = 1, . . . , k,

yl =
∑
i,j: i+j=2l vij , l = 0, . . . , k,

V < 0.
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(c) The polynomial g(x) =
∑k
r=0 yrx

r satisfies g(x) ≥ 0 for all x ∈ [0, a] if and only if
there exists a positive semidefinite matrix V , such that

0 =
∑
i,j: i+j=2l−1 vij , l = 1, . . . , k,∑l

r=0 yr

(
k − r
l − r

)
ar =

∑
i,j: i+j=2l vij , l = 0, . . . , k,

V < 0.

(d) The polynomial g(x) =
∑k
r=0 yrx

r satisfies g(x) ≥ 0 for all x ∈ [a,∞) if and only if
there exists a positive semidefinite matrix V , such that

0 =
∑
i,j: i+j=2l−1 vij , l = 1, . . . , k,∑k

r=l yr

(
r
l

)
ar =

∑
i,j: i+j=2l vij , l = 0, . . . , k,

V < 0.

(e) The polynomial g(x) =
∑k
r=0 yrx

r satisfies g(x) ≥ 0 for all x ∈ (−∞, a] if and only
if there exists a positive semidefinite matrix V , such that

0 =
∑
i,j: i+j=2l−1 vij , l = 1, . . . , k,∑k−l

r=0 yr

(
k − r
l

)
ar =

∑
i,j: i+j=2l vij , l = 0, . . . , k,

V < 0.

(f) The polynomial g(x) =
∑k
r=0 yrx

r satisfies g(x) ≥ 0 for all x ∈ [a, b] if and only if
there exists a positive semidefinite matrix V , such that

0 =
∑
i,j: i+j=2l−1 vij , l = 1, . . . , k,∑l

m=0

∑k+m−l
r=m yr

(
r
m

)(
k − r
l −m

)
ar−mbm =

∑
i,j: i+j=2l vij , l = 0, . . . , k,

V < 0.

Proof (a) follows immediately with the equivalence of nonnegativity of polynomials and
the existence of sum of squares decompositions in the univariate case and Theorem 3.4.
(b) - (f) follow from (a), c.f. [28], pp. 488. �

The following theorem is a direct consequence of Theorem 4.9. It provides a description
of problem (4.3) as semidefinite programs for specific cases of S ⊆ Ω and Ω ⊆ R.

Theorem 4.10 Given the first k moments (M1, . . . ,Mk), M0 = 1 of a probability measure
µ ∈M(Ω) we obtain the following tight upper bounds:

1. If Ω = R+, the tight upper bound on µ ([a,∞)) is given as the solution of the semidef-
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inite optimization problem

min
∑k
r=0 yrMr

s.t. 0 =
∑
i,j: i+j=2l−1 vij , l = 1, . . . , k,

(y0 − 1) +
∑k
r=1 yr

(
r
l

)
ar = v00,∑k

r=l yr

(
r
l

)
ar =

∑
i,j: i+j=2l vij , l = 1, . . . , k,

0 =
∑
i,j: i+j=2l−1 zij , l = 1, . . . , k,∑l

r=0 yr

(
k − r
l − r

)
ar =

∑
i,j: i+j=2l zij , l = 0, . . . , k,

V, Z < 0.

(4.4)

If Ω = R, the tight upper bound on µ ([a,∞)) is given as the solution of the semidef-
inite optimization problem (4.4), where the next to the last constraint is replaced by

k−l∑
r=0

yr

(
k − r
l

)
ar =

∑
i,j: i+j=2l

zij , l = 0, . . . , k.

2. If Ω = R+, the tight upper bound on µ ([a, b]) is given as the solution of the semidef-
inite optimization problem

min
∑k
r=0 yrMr

s.t. 0 =
∑
i,j: i+j=2l−1 vij , l = 1, . . . , k,∑l

m=0

∑k+m−l
r=m yr

(
r
m

)(
k − r
l −m

)
ar−mbm

=
(
k
l

)
+
∑
i,j: i+j=2l vij , l = 0, . . . , k,

0 =
∑
i,j: i+j=2l−1 zij , l = 1, . . . , k,∑l

r=0 yr

(
k − r
l − r

)
ar =

∑
i,j: i+j=2l zij , l = 0, . . . , k,

0 =
∑
i,j: i+j=2l−1 uij , l = 1, . . . , k,∑k

r=l yr

(
r
l

)
br =

∑
i,j: i+j=2l uij , l = 0, . . . , k,

V, Z, U < 0.

(4.5)

If Ω = R, the tight upper bound on µ ([a, b]) is given as the solution of the semidefinite
optimization problem (4.5) where the fourth set of constraints is replaced by

k−l∑
r=0

yr

(
k − r
l

)
ar =

∑
i,j: i+j=2l

zij , l = 0, . . . , k.

Proof Apply Theorem 4.9, (b)-(f), c.f. [28], pp. 492.

4.3.2 The multivariate case

In the multivariate case we do not have the equivalence of nonnegativity of polynomi-
als and the existence of sum of squares decompositions. In fact, most instances of the
(n, ω,Ω)-bound problem are NP-hard. For instance the (n, 2,Rn+)− and (n, k,Rn)− bound
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problems are NP-hard for k ≥ 0 [1]. Nevertheless, in case S and Ω are semialgebraic sets
and other particular cases, it is possible to construct a sequence of semidefinite programs
whose optima converge to the optimum of problem (4.2). The construction is in spirit
of the relaxations for polynomial optimization problems by Lasserre [11]. It is based on
Putinars Positivstellensatz, Theorem 3.11.

Suppose Ω and S are compact semialgebraic sets given by

Ω =
{
x ∈ Rn | ωi(x) =

∑
κ∈Λ(l) ω

i
κx

κ ≥ 0, i = 1, . . . , r
}
,

S =
{
x ∈ Rn | si(x) =

∑
κ∈Λ(t) s

i
κx

κ ≥ 0, i = 1, . . . ,m
}
,

that is Ω and S are semialgebraic sets. Let δκ,0 = 1 if κ = 0, and zero, otherwise.

Theorem 4.11 Assume M(Ω) and M(S) are archimedian, i.e. the conditions of Putinar’s
Positivstellensatz are satisfied. Then, for every ε > 0 there exists a nonnegative integer
d ∈ Z+ (representing the degree of the polynomials in Putinar’s Positivstellensatz), such
that the objective function value ZD in problem (4.2) satisfies | ZD − ZD(d) |≤ ε, where
ZD(d) is the value of the following semidefinite program:

ZD(d) = min
∑

κ∈Λ(k)

yκσκ

s.t. yκ − δκ,0 = q0
κ +

∑m
i=1

∑
η∈Λ(d),θ∈Λ(t),η+θ=κ q

i
ηs
i
θ ∀ κ ∈ Λ(k),

0 = q0
κ +

∑m
i=1

∑
η∈Λ(d),θ∈Λ(t),η+θ=κ q

i
ηs
i
θ ∀ κ ∈ Λ(t+ d) \ Λ(k),

yκ = p0
κ +

∑r
i=1

∑
η∈Λ(d),θ∈Λ(l),η+θ=κ p

i
ηω

i
θ ∀ κ ∈ Λ(k),

0 = p0
κ +

∑r
i=1

∑
η∈Λ(d),θ∈Λ(l),η+θ=κ p

i
ηω

i
θ ∀ κ ∈ Λ(l + d) \ Λ(k),

qiκ =
∑
η,θ∈Λ(d),η+θ=κ q

i
η,θ ∀ κ ∈ Λ(d), i = 0, 1, . . . ,m,

piκ =
∑
η,θ∈Λ(d),η+θ=κ p

i
η,θ ∀ κ ∈ Λ(d), i = 0, 1, . . . , r,

Qi =
[
qiη,θ

]
η,θ∈Λ(d)

< 0, i = 0, 1, . . . ,m,

P i =
[
piη,θ

]
η,θ∈Λ(d)

< 0, i = 0, 1, . . . , r.

(4.6)

Proof We follow the proof in [1]. First remark that the value of the dual problem (4.2)
equals that of the following strict inequality formulation:

ZD = inf
y∈R|Λ(k)|

∑
κ∈Λ(k)

yκσκ

s.t. g(x) =
∑
κ∈Λ(k) yκx

κ > 1 ∀ x ∈ S,
g(x) =

∑
κ∈Λ(k) yκx

κ > 0 ∀ x ∈ Ω. (4.7)

This problem may not admit an optimal solution. However, for any ε > 0 there exists a
feasible polynomial gε resulting in an objective value that is less than ZD + ε. As gε > 0
on Ω it follows with Putinar’s Theorem 3.11

gε = p0(x) +
m∑
i=1

pi(x)ωi(x),
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where pi sum of squares, i.e. there exist some P i < 0 such that pi(x) = fTP if . f denotes
the vector f monomials up to a certain degree d0. Writing

pi(x) =
∑

η∈Λ(d)

piηx
η, ωi(x) =

∑
θ∈Λ(l)

ωiθx
θ,

we have that gε(x) > 0 for x ∈ Ω if and only if

gε(x) :=
∑
κ∈I

yκx
κ =

∑
η∈Λ(d)

p0
ηx

η +
r∑
i=1

 ∑
η∈Λ(d)

piηx
η

 ∑
θ∈Λ(l)

ωiθx
θ

 .

Comparing coefficients, we obtain the third and fourth sets of linear constraints in (4.6),
corresponding to the degree d0.
Similarly, one can translate the feasibility constraint gε(x)−1 > 0 for all x ∈ S into the first
two sets of constraints in problem (4.6), corresponding to a certain degree d1. It follows
that the vector of coefficients y of the polynomial gε is feasible for problem (4.6) with degree
d = max(d0, d1), so ZD(ε)(d) ≤ ZD + ε.
On the other hand, for any d, problem (4.7) is a restriction of problem (4.6) for feasible
polynomials of degree d, so ZD(d) ≥ ZD, and the desired result follows. �
This theorem provides an asymptotically exact sequence of semidefinite programs of the
(n, ω,Ω)-bound problem. As a drawback we have to notice, the sizes of these formulations
are not bounded by a polynomial in n, even for fixed k, as they depend on the degree d
of the polynomials appearing in (4.6). This can be understood by the NP-hardness of the
general (n, ω,Ω)-bound problem. Nevertheless, we can obtain increasingly better upper
bounds on ZP by solving semdefinite problems of size polynomially bounded in n for fixed
ω. As every polynomial that can be expressed as sum of squares of polynomials of degree
d, can also be expressed as sum of squares of polynomials of degree d+ 1, it holds

ZP = ZD ≤ ZD(d) ≤ . . . ≤ ZD(2) ≤ ZD(1).

Example 4.12 Consider the (2, 1,Ω)−bound problem, where

Ω =
{
x ∈ R2 | ω1(x) := −x2

1 − x2
2 + 2 ≥ 0

}
,

S =
{
x ∈ R2 | s1(x) := −x2

1 − x2
2 + 2 ≥ 0, s2(x) := x2

1 + x2
2 − 1 ≥ 0

}
.

Thus, k = 1, l = 2, t = 2, r = 1, m = 2 and

ω1 = (2, 0, 0, −1, 0, −1)T ,
s1 = (2, 0, 0, −1, 0, −1)T ,
s2 = (−1, 0, 0, 1, 0, 1)T .

It is immediate, that M(Ω) and M(S) are archimedian. We illustrate the semidefinite
program ZD(1) (i.e. d = 1) which approximates the optimal value ZP = ZD of the
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(2, 1,Ω)−bound problem.

ZD(1) = min y(0,0) + y(1,0)σ(1,0) + y(0,1)M2σ(0,1)

y(0,0) − 1 = q0
(0,0) + 2q1

(0,0) − q
2
(0,0),

y(1,0) = q0
(1,0) + 2q(1,0) − q2

(1,0),

y(0,1) = q0
(0,1) + 2q(0,1) − q2

(0,1),

0 = q(2,0) − q1
(0,0) + q2

(0,0),

0 = q(1,1),
0 = q(0,2) − q1

(0,0) + q2
(0,0),

0 = q(3,0) − q1
(1,0) + q2

(1,0),

0 = q(2,1) − q1
(0,1) + q2

(0,1),

0 = q(1,2) − q1
(1,0) + q2

(1,0),

0 = q(0,3) − q1
(0,1) + q2

(0,1),

y(0,0) = p0
(0,0) + 2p1

(0,0),

y(1,0) = p0
(1,0) + 2p1

(1,0),

y(0,1) = p0
(0,1) + 2p1

(0,1),

0 = p0
(2,0) − p

1
(0,0),

0 = p0
(1,1),

0 = p0
(0,2) − p

1
(0,0),

0 = p0
(3,0) − p

1
(1,0),

0 = p0
(2,1) − p

1
(0,1),

0 = p0
(1,2) − p

1
(1,0),

0 = p0
(0,3) − p

1
(0,1),

qiκ =
∑
η,θ∈Λ(1),η+θ=κ q

i
η,θ ∀κ ∈ Λ(1), i = 0, 1, 2

piκ =
∑
η,θ∈Λ(1),η+θ=κ p

i
η,θ ∀κ ∈ Λ(1), i = 0, 1,

Q1, Q2, Q3 < 0,
P 1, P 2 < 0.

In addition to the semialgebraic case it is also possible to derive explicit tight bounds
in particular cases. We study two of these cases.

The first is the (n, 1,Rn+)-bound problem where S ⊆ Rn+ is a convex set. Let M > 0
be a moment vector, which represents the vector of means of a multivariate distribution.

Theorem 4.13 The tight (n, 1,Rn+)-upper bound for an arbitrary convex set S is given by:

sup
µ∼M

µ(S) = min
(

1, max
i=1,...,n

Mi

inf x ∈ Sixi

)
, (4.8)

where Si =
{
x ∈ S | xiMi

≥ xj
Mj
∀ j 6= i

}
is the convex subset of S for which the mean-rescaled

ith coordinate is largest.

Proof C.f. [1].
When we specialize the bound from Theorem 4.13 for the set
S = {x | xi ≥ (1 + δi)Mi, ∀ i = 1, . . . , n}, we obtain

sup
µ∼M

µ (X1 ≥ (1 + δ1)M1, . . . , Xn ≥ (1 + δn)Mn) = min
i=1,...,n

1
1 + δi

, (4.9)
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which represents a multidimensional generalization of Markov’s inequality. In the univariate
case it is exactly Markov’s inequality

sup
µ∼M

µ(X ≥ (1 + δ)M) =
1

1 + δ
.

The second case is the (n, 2,Rn)-bound problem . Let M denote the vector of known
first moments. Instead of assuming the matrix of second moments

∫
xxT dµ is known, we

assume the matrix of centralized second moments to be known, i.e. the covariance matrix
Γ =

∫
(x −M)(x −M)T dµ of µ is known. That implies Γ ∈ Sn+. Marshall and Olkin [15]

solved the (n, 2,Rn)−bound problem in case S is a convex set:

Theorem 4.14 The tight (n, 2,Rn)-upper bound for a convex event S is given by

sup
µ∼(M,Γ)

µ(S) =
1

1 + d2
, (4.10)

where d2 = infx∈S(x−M)TΓ−1(x−M) is the squared distance from M to the set S, under
the norm induced by the matrix Γ−1.

Proof: C.f. [15]
This bound can be understood as a multivariate generalization of Chebyshev’s inequality.
If Γ−1Mδ, the tight bound can be expressed as

sup
µ∼(M,Γ)

µ (X > (1 + δ)M) =
1

1 + (δM)TΓ−1(δM)
. (4.11)

It is interesting to note that it improves Chebyshev’s inequality in the univariate case. If
we define the coefficient of variation: C2

M = M2−M2
1

M2
1

. Chebyshev’s inequality is given by

µ (X > (1 + δ)M1) ≤ C2
M

δ2
,

where as the tight bound (4.11) is stronger:

µ (X > (1 + δ)M1) ≤ C2
M

C2
M + δ2

.

5 Polynomial optimization

The idea to apply convex optimization techniques to solve polynomial optimization prob-
lems was first proposed in the pioneering work of Shor [25]. Shor introduced lower bounds
for the global minimum of a polynomial function p. These bounds are derived by mini-
mizing a quadratic function subject to quadratic constraints. Also Nesterov discussed the
minimizaion of univariate polynomials and mentioned the problem of minimizing multi-
variate polynomials in [17]. It was Lasserre [11] who first realized the possibility to apply
Putinar’s Positivstellensatz, Theorem 3.11, to solve a broader class of polynomial optimiza-
tion problems, that goes beyond the case where p− p? can be described as sum of squares
of polynomials.
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First, we introduce Lasserre’s approach to derive semidefinite relaxations for the minimiz-
ing a polynomial over a semialgebraic set as Putinar’s theorem is applied directly there.
Second, we present the unconstrained case, which was considered by Shor for a particular
case first. Since semialgebraic sets enter through the backdoor, in order to be able to apply
Putinar’s Positivstellensatz, we present it after the constrained case.

5.1 Lasserre’s relaxation in the constrained case

After studying positivity and nonnegativity of polynomials and the related problem of
moments, we attempt the inital polynomial optimization problem (1.2) over a compact
semialgebraic set K,

minx∈Kp(x).

One of the major obstacles for finding the optimum p? is the fact that the set K and the
function p are far from being convex. It is the idea of Lasserre’ s approach [11] to convexify
problem (1.2). We outline this procedure of convexification. It has to be emphasized that
Lasserre’s approach is based on two assumptions. First we require the semi-algebraic set K
to be compact, and second we assume M(K) is archimedian. These assumptions imply,
we are able to apply Putinar’s Positivstellensatz to polynomials positive on K.

At first we note,

p? = sup {a ∈ R | p− a ≥ 0 on K} = sup {a ∈ R | p− a > 0 on K} . (5.1)

Since we assume that M(K) archimedian, we apply Theorem 3.11 to (5.1). Thus

p? ≤ sup {a ∈ R | p− a ∈M(K)} ≤ sup {a ∈ R | p− a ≥ 0 on K} = p?.

Finally we obtain
p? = sup {a ∈ R | p− a ∈M(K)} . (5.2)

As a second approach, we note for the minimum p? of (1.1) holds

p? = inf
{∫

p dµ | µ ∈MP (K)
}
, (5.3)

where MP (K) ⊆M(K) denotes the set of all Borel measures on K which are also proba-
bility measures. ′ ≤′ holds since p(x) ≥ p? on K implies

∫
p dµ ≥ p?. And ′ ≥′ follows as

each x feasible in (1.1) corresponds to a µ = δx ∈ M(K), where δx the Dirac measure at
x.
In order to get rid of the setM(K) in 5.3 we exploit the following theorem by Putinar [22].

Theorem 5.1 For any map L : R [x]→ R, the following are equivalent:

(i) L is linear, L(1) = 1 and L(M(K)) ⊆ [0,∞) .

(ii) L is integration with respect to a probability measure µ on K, i.e.,

∃ µ ∈MP (K) : ∀ p ∈ R [x] : L(p) =
∫
p dµ.
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Proof C.f. [24], pp. 10: The implication (ii) ⇒ (i) is trivial. To show the converse,
suppose that (i) holds. Consider the ring homomorphism

φ : R [x]→ C(K,R) : p 7→ p |K

from the polynomial ring into the ring C(K,R) of continuous real-valued functions on K.
Suppose p ∈ R [x] satisfies p ≥ 0 on K. Then p+ ε ∈M(K) by Theorem 3.11 and a fortiori
L(p) + ε = L(p + ε) ≥ 0 for all ε > 0. This implies L(p) ≥ 0. In particular, L vanishes
on the kernel of φ and induces therefore a linear map L̄ : φ(R [x]) → R well defined by
L̄ (φ(p)) := L(p) for all p ∈ R [x]. We equip C(K,R) with the supremum norm and thus
turn it into a normed vector space, noting that K = ∅ would imply −1 ∈ M(K), whence
−1 = −L(1) = L(−1) ≥ 0. By the Stone-Weierstrass Approximation Theorem, φ(R [x])
lies dense in C(K,R). It is easy to see that L̄ (φ(p)) = L(p) ≤|| p || for all p ∈ R [x].
Hence the linear map L̄ is (uniformly) continuous. But every map uniformly continuous
on a subspace of a metric space extends uniquely to a continuous map on the closure of
this subspace. Therefore we may consider L̄ as a continuous map on the whole of C(K,R).
Using again the Stone-Weierstrass Theorem, it is easy to see that L̄ maps C (K, [0,∞)) into
[0,∞). Since K is compact, the Risz Representation Theorem tells us that L̄ is integration
with respect to a measure on K. �
This theorem does not really characterize MP (K), but all real families (yα)α∈Nn that are
sequences of moments of probability measures on K, i.e.,

yα =
∫
xα dµ ∀ α ∈ Nn,

where xα = xα1
1 · · ·xαnn . This statement is true, as every linear map L : R [x]→ R is given

uniquely by its values L(xα) on the basis (xα)α∈Nn of R [x]. With Theorem 5.1 we obtain

p? = inf {L(f) | L : R [x]→ R is linear , L(1) = 1, L(M(K)) ⊆ [0,∞)} . (5.4)

Recall (5.2)
p? = sup {a ∈ R | f − a ∈M(K)} .

Thus (5.4) can be understood as a primal approach to the original problem (1.1) and
(5.2) as a dual approach. Due to complexity reasons it is necessary to introduce relax-
ations to these primal-dual pair of optimization problems, in order to solve the problem
(1.1). Therefore we approximate M(K) by the sets Mω(K) ⊆ R [x], where Mω(K) :={∑m

i=0 σigi | σi ∈
∑

R [x]2 ,deg(σigi) ≤ 2ω
}

for an

ω ∈ N := {s ∈ N | s ≥ ωmax := max {ω0, ω1, . . . , ωm}} ,

ωi := ddeggi
2 e (i = 1, . . . ,m), ω0 := ddegp

2 e. Replacing M(K) by Mω(K) motivates to
consider the following pair of optimization problems for a ω ∈ N .

(Pω) min L(f) subject to L : R [x]2ω → R is linear,
L(1) = 1 and
L (Mω(K)) ⊆ [0,∞)

(Dω) max a subject to a ∈ R and
p− a ∈Mω(K)

(5.5)

The optimal values of (Pω) and (Dω) are denoted by P ?ω and D?
ω, respectively. The parame-

ter ω ∈ N is called the relaxation order of (5.5). It determines the size of the relaxations
(Pω) and (Dω) to (1.2) and therefore also the numerical effort that is necessary to solve
them.
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Theorem 5.2 (Lasserre) Assume M(K) is archimedian. (P ?ω)ω∈N and (D?
ω)ω∈N are

increasing sequences that converge to p? and satisfy D?
ω ≤ P ?ω ≤ p? for all ω ∈ N . Moreover,

if p−p? ∈M(K), then D?
ω = P ?ω = p? for a sufficiently large relaxation order ω, i.e. strong

duality holds.

Proof Since the feasible set of (5.4) is a subset of the feasible set of (Pω), P ?ω ≤ p?.
Moreover, if L feasible for (Pω) and a for (Dω), L(p) ≥ a holds since p − a ∈ Mω(K)
implies L(p) − a = L(p) − aL(1) = L(p − a) ≥ 0. Thus D?

ω ≤ P ?ω . Obviously, a feasible
a for (Dω) is feasible for (Dω+1), and every feasible L of (Pω+1) is feasible for (Pω). This
implies (P ?ω)ω∈N and (D?

ω)ω∈N are increasing. Futhermore, as for any ε > 0 there exists a
sufficiently large ω ∈ N such that p− p? + ε ∈Mω(K) by Theorem 3.11, i.e. p?− ε feasible
for (Dω), the convergence follows. If p − p? ∈ M(K), p − p? ∈ Mω(K) for ω sufficiently
large. Thus p? feasible for (Dω) und therefore D?

ω = P ?ω = p?. �
If M(K) not archimedian, we are still able to exploit Schmuedgen’s Positivstellensatz to
characterize p− a in (Dω).
As a next step we follow the observation of Lasserre and translate (Dω) and (Pω) to a pair
of primal-dual semidefinite programs. We will exploit the following key lemma [24].

Lemma 5.3 Suppose L : R [x] → R is a linear map. Then L(Mω) ⊆ [0,∞) if and only if
the m+ 1 matrices

Mω−ωi (L(xgi)) < 0, ∀ i ∈ {0, . . . ,m} .

Moreover,

Mω(K) =

{
m∑
i=0

〈Mω−ωi(xgi), Gi〉 | G0, . . . , Gm ∈ Ss(ω−ωi)+

}
.

Proof C.f. [24], p. 19.
Using this Lemma, we reformulate (5.5) as

(P I
ω) min L(p)

s.t. L : R [x]2ω → R is linear , L(1) = 1 and
Mω−ωi (L(xgi)) < 0, i = 0, . . . ,m

(DI
ω) max a

s.t. a ∈ R, G0 ∈ Ss(ω)
+ , Gi ∈ Ss(ω−ωi)+ for i = 1, . . . ,m and∑m

i=0〈Mω−ωi(xgi), Gi〉 = p− a

(5.6)

Sort the monomials in the polynomials xβ+γ and define for i ∈ {1, . . . ,m} (g0 ≡ 1) and
α ∈ Λ(2ω) matrices Bα ∈ Ss(ω) and Cαi ∈ Ss(ω−ωi) such that

Mω−ω0(x) = Mω(x) =
∑

α∈Λ(2ω)

Bαx
α, Mω−ωi(xgi) =

∑
α∈Λ(2ω)

Cαi(β, γ)xα.

Also we define bα to be the coefficient of xα in f for each 0 6= α ∈ Λ(2ω), i.e.,

p =
∑

α∈Λ(2ω)\{0}

bαx
α.
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Using the Bα, Cαi and the bα we obtain

(P II
ω ) min

∑
α∈Λ(2ω)\{0} bαL(xα)

s.t. L : R [x]2ω → R is linear , L(1) = 1 and∑
α∈Λ(2ω) L(xα)Bα < 0,∑
α∈Λ(2ω) L(xα)Cαi < 0, i = 1, . . . ,m

(DII
ω ) max a

s.t. a ∈ R, G0 ∈ Ss(ω)
+ , Gi ∈ Ss(ω−ωi)+ for i = 1, . . . ,m and∑

α∈Λ(2ω) x
α (〈Bα, G0〉+

∑m
i=1〈Cαi, Gi〉) =

∑
α∈Λ(2ω)\{0} bαx

α − a

(5.7)

Exploiting the fact that a linear function L : R [x]2ω → R with L(1) = 1 can be identified
with its values yα := L(xα), 0 6= α ∈ Λ(2ω) and y0 = 1, (5.7) can be written as the following
pair of primal-dual semidefinite programs

(P SDP
ω ) min

∑
α∈Λ(2ω)\{0} bαyα

s.t. yα ∈ R, 0 6= α ∈ Λ(2ω), and
B0 +

∑
α∈Λ(2ω)\{0} yαBα < 0,

C0i +
∑
α∈Λ(2ω)\{0} yαCαi < 0, i = 1, . . . ,m

(DSDP
ω ) max −G0(1, 1)−

∑m
i=1〈C0i, Gi〉

s.t. a ∈ R, G0 ∈ Ss(ω)
+ , Gi ∈ Ss(ω−ωi)+ for i ∈ {1, . . . ,m} and

〈Bα, G0〉+
∑m
i=1〈Cαi, Gi〉 = bα, 0 6= α ∈ Λ(2ω)

(5.8)

Given (yα)α∈Λ(2ω) feasible for (DSDP
ω ), we define a linear map L : R [x]2ω → R with

L(1) = 1 and L(xα) := −yα for 0 6= α ∈ Λ(2ω). Obviously, L is feasible for (DII
ω ). Thus

the optima of (P SDP
ω ), (DSDP

ω ) and (Pmod
ω ), (Dmod

ω ) coincide and with Theorem 5.2 follows
that (P SDP

ω )?, (DSDP
ω )? converge to p? for ω →∞. It is known that semidefinite programs

can be solved in polynomial time efficiently.

5.2 Lasserre’s relaxation in the unconstrained case

The procedure to derive a sequence of convergent SDP relaxations in the case of an uncon-
strained polynomial optimization problem

min
x∈Rn

p(x), (5.9)

where p ∈ R [x] and p? := minx p(x), is similar to the constrained case that we discussed
before. Let p be of even degree 2l, otherwise inf p = −∞. Furthermore, we will exploit the
characterization of sum of squares decompositions by semidefinite matrices and Putinar’s
Positivstellensatz. In order to apply this theorem, it is necessary to construct an appropriate
semialgebraic set as will be shown later.
First, we derive the following relaxation,

p? = inf
{∫

p dµ | µ ∈MP (Rn)
}

≥ inf
{
L(p) | L : R [x]→ R, L(1) = 1, Ml (L(x)) ∈ Ss(l)+

}
.

(5.10)

We order the expression Ml (L(x)) and introduce symmetric matrices Bα ∈ Ss(l) such that
Ml (L(x)) =

∑
α∈Λ(2l)BαL(xα). Finally we identify yα = L(xα) for α ∈ Λ(2l) \ {0} and

25



y0 = 1 to obtain a relaxation for (5.9)

(Pl) min
∑
α pαyα

s.t.
∑
α 6=0 yαBα < −B0.

(5.11)

Analogous to the constrained case we can also apply another approach to (5.9),

p? = sup {a ∈ R | p(x)− a ≥ 0 ∀x ∈ Rn} ≥ sup
{
a ∈ R | p(x)− a ∈

∑
R[x]2

}
= sup

{
a | p(x)− a = 〈Ml (x) , G〉, G ∈ Ss(l)+

}
.

(5.12)

Thus, we derive another relaxation to problem (5.9),

(Dl) max −G(1, 1)
s.t. 〈Bα, G〉 = pα, α 6= 0

G < 0.
(5.13)

With the duality theory of convex optimization it can be shown easily, that the two convex
programs (5.11) and (5.13) are dual to each other. In case (5.13) has a feasible solution,
strong duality holds, that is

P ?l = D?
l .

The idea of the following theorem was proposed by Shor [25] first. The presented version
is due to Lasserre [11].

Theorem 5.4 (Shor) If the nonnegative polynomial p − p? is a sum of squares of poly-
nomials, then (5.9) is equivalent to (5.11). More precisely, p? = ZP and, if x? is a global
minimizer of (5.9), then the vector

y? :=
(
x?1, . . . , x

?
n, (x

?
1)2, x?1x

?
2, . . . , (x

?
1)2m, . . . , (x?n)2m

)
is a minimizer of (5.11).

Next, we treat the general case, that is, when p−p? is not sum of squares. As mentioned
at the beginning we have to construct a semialgebraic set in order to be able to apply
Putinar’s Positivstellensatz. Suppose we know that a global minimizer x? of p(x) has
norm less than a for some a > 0, that is, p(x?) = p? and || x? ||2≤ a. Then, with
x→ qa(x) = a2− || x ||22, we have p(x)−p? ≥ 0 on Ka := {qa(x) ≥ 0}. M(Ka) is obviously
archimedian, as the condition (iii) in Theorem 3.12 is satisfied for N = a2. Now, we can
use that every polynomial f , strictly positive on the semialgebraic set Ka is contained in
the quadratic module M(Ka).
For every ω ≥ l, consider the following semidefinite program

(P aω ) min
∑
α pαyα,
Mω(y) < 0,

Mω−1(qay) ≥ 0.
(5.14)

Writing Mω−1(qay) =
∑
α yαDα, for appropriate matrices Dα (| α |≤ 2ω), the dual of (P aω )

is the semidefinite program

(Da
ω) max−G(1, 1)− a2H(1, 1),

〈G,Bα〉+ 〈H,Dα〉 = pα, α 6= 0. (5.15)

Then, the following theorem is due to Lasserre [11].
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Theorem 5.5 (Lasserre) Given (P aω ) and (Da
ω) for some a > 0 such that || x? ||2≤ a at

some global minimizer x?. Then

(a) as ω →∞, one has
inf(P aω ) ↑ p?.

Moreover, for ω sufficiently large, there is no duality gap between (P aω ) and its dual
(Da

ω), and (Da
ω) is solvable.

(b) min(P aω ) = p? if and only if p− p? ∈Mω(Ka). In this case, the vector

y? :=
(
x?1, . . . , x

?
n, (x

?
1)2, x?1x

?
2, . . . , (x

?
1)2ω, . . . , (x?n)2ω

)
is a minimizer of (P aω ). In addition, max(P aω ) = min(Da

ω).

Proof

(a) From x? ∈ Ka and with

y? :=
(
x?1, . . . , x

?
n, (x

?
1)2, x?1x

?
2, . . . , (x

?
1)2ω, . . . , (x?n)2ω

)
it follows that Mω(y?), Mω−1(qay?) < 0 so that y? is feasible for (P aω ) and thus
inf(P aω ) ≤ p?.
Now, fix ε > 0 arbitrary. Then, p−p?+ ε > 0 and therefore, with Theorem 3.11 there
is some N0 such that

p− p? + ε =
r1∑
i=1

qi(x)2 + q(x)
r2∑
j=1

tj(x)2

for some polynomials qi(x), i = 1, . . . , r1, of degree at most N0, and some polynomials
tj(x), j = 1, . . . , r2, of degree at most N0 − 1. Let qi ∈ Rs(N0), tj ∈ Rs(N0−1) be the
corresponding vectors of coefficients, and let

G :=
r1∑
i=1

qiq
T
i , Z :=

r2∑
j=1

tjt
T
j

so that G,H < 0. It is immediate to check that (G,H) feasible for (Da
ω) with value

−G(1, 1)− a2H(1, 1) = (p? − ε). From weak duality follows convergence as

p? − ε ≤ inf(P aω ) ≤ p?.

For strong duality and for (b), c.f. [11]. �

5.3 Global minimizer

Usually one is not only interested in finding the minimum value p? of p on K, but also in
obtaining a global minimizer x? ∈ K? with p(x?) = p?. It will be shown that in Lasserre’s
procedure not only (P ?ω) converges to the infimum p?, but also a convergence to the mini-
mizer x? of (1.2) in case it is unique.

Definition 5.6 Lω solves (Pω) nearly to optimality (ω ∈ N ) if Lω is a feasible solution of
(Pω) (ω ∈ N ) such that limω→∞ Lω(p) = limω→∞ P ?ω .
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This notation is useful because (Pω) might not possess an optimal solution, and even if it
does, we might not be able to compute it exactly. For an example, c.f. [24], Example 22.
Obviously Lω solves (Pω) nearly to optimality (ω ∈ N ) if and only if limω→∞ Lω(f) = p?.
The following theorem is the basis for the convergence to a minimizer in case K? is a sin-
gleton.

Theorem 5.7 Suppose K 6= ∅ and Lω solves (Pω) nearly to optimality (ω ∈ N ). Then

∀d ∈ N : ∀ε > 0 : ∃k0 ∈ N∩[d,∞) : ∀k ≥ k0 : ∃µ ∈M(K?) :

∣∣∣∣∣
∣∣∣∣∣
(
Lω(xα)−

∫
xα dµ

)
α∈Λ(2d)

∣∣∣∣∣
∣∣∣∣∣ < ε.

Proof Schweighofer, p. 11.
In the convenient case where K? is a singleton it is possible to guarantee convergence of
the minimizer:

Corollary 5.8 K? = {x?} is a singleton and Lω solves (Pω) nearly to optimality (ω ∈ N ).
Then

lim
ω→∞

(Lω(x1), . . . , Lω(xn)) = x?.

Proof We set d = 1 in Theorem 5.7 and note thatM(K?) contains only the Dirac measure
δx? at the point x?. It is possible to apply Corollary 5.8 to certify that p? has almost been
reached after succesively solving the relaxations (Pω).

Corollary 5.9 Suppose M(K) is archimedian, p has a unique minimizer on the compact
semialgebraic set K and Lω solves (Pω) nearly to optimality for all ω ∈ N . Then holds for
all ω ∈ N ,

Lω(p) ≤ p? ≤ p(Lω(x1), . . . , Lω(xn)),

and the lower and upper bounds for p? converge to p? for ω →∞.

Proof Lω(p) ≤ p? follows from Theorem 5.2. The convergence of p(Lω(x1), . . . , Lω(xn))
is a consequence of Corollary 5.8. To see that p? is a lower bound, observe that

gi (Lω(x1), . . . , Lω(xn)) = Lω(gi) ≥ 0,

whence (Lω(x1), . . . , Lω(xn)) ∈ K for all k ∈ N . �
The case where several optimal solutions exist is more difficult to handle. In fact, as soon
as there are two or more global minimizers, it often occurs that symmetry in the problem
prevents the nearly optimal solutions of the SDP relaxations to converge to a particular
minimizer. Henrion and Lasserre developed an algorithm [8] to extract all optimal solutions
in case K? is finite and the condition

rankMω(y?) = rankMω−ωmax(y?) (5.16)

is satisfied. In the case where the feasible set can be written

K = {x ∈ Rn | hi(x) = 0, i = 1, . . . , k : gj(x) ≥ 0, j = 1, . . . ,m}

and the ideal I(h1, . . . , hk) is zero-dimensional and radical (c.f. chapter 6), condition (5.16)
is guaranteed to be satisfied. Beside that particular case it remains unclear when this suffi-
cient condition (5.16) holds. Nevertheless, it is possible to derive Karush-Kuhn-Tucker
conditions for global optimality and the global minimizers.
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Theorem 5.10 Let K be a compact semialgebraic set defined by the inequalities gi(x) ≥
0, i = 1, . . . ,m. Assume that x? ∈ K is a global minimizer of (1.1). If p−p? can be written

p(x)− p? =
r0∑
i=1

qi(x)2 +
m∑
k=1

gk(x)
rk∑
j=1

tkj(x)2, x ∈ Rn,

for some polynomials qi(x), tkj(x), i = 1, . . . , r0, k = 1, . . . ,m, j = 1, . . . , rk, i.e. p− p? ∈
M(K), then

0 = gk(x?)
[∑rk

j=1 tkj(x
?)2
]
, k = 1, . . . ,m.

∇p(x?) =
∑m
k=1∇gk(x?)

[∑rk
j=1 tkj(x

?)2
]
.

Moreover, if there exist associated Lagrange Karush-Kuhn-Tucker multipliers λ? ∈ Rm+ and
if the gradients ∇gk(x?) are linearly independent, then

rk∑
j=1

tkj(x?)2 = λ?k, k = 1, . . . , r.

Proof As x? is a global minimizer of (1.1), it follows from p(x?)− p? that

0 =
r0∑
i=1

qi(x?)2 +
m∑
k=1

gk(x?)
rk∑
j=1

tkj(x?)2

so that

0 = qi(x?), i = 1, . . . , r0, and 0 = gk(x?)
rk∑
j=1

tkj(x?)2, k = 1, . . . ,m.

Moreover,

∇p(x?) =
m∑
k=1

∇gk(x?)
rk∑
j=1

tkj(x?)2 =
m∑
k=1

λ?k∇gk(x?)

so that the claim follows from the linear independence of the ∇gk(x?). �
Therefore, the condition p− p? ∈M(K) can be viewed as a global optimality condition of
Karush-Kuhn-Tucker type, where the multipliers are now nonnegative polynomials instead
of nonnegative constants. In contrast to the usual local Karush-Kuhn-Tucker optimality
conditions, the polynomial multiplier associated to a constraint gk(x) ≥ 0, nonactive at
x?, is not identically null, but vanishes at x?. If p − p? /∈ M(K), we still have that
p−p?+ε ∈M(K) for every ε > 0. Of course, the degrees of qi and tkj in the representation
of p− p? + ε depend on ε, but we have

lim
ε→0

r0(ε)∑
i=1

qi(x?)2 = 0 and lim
ε→0

rk(ε)∑
j=1

tkj(x?)2 = 0

for every k such that gk(x?) > 0.

5.4 Sparse polynomial optimization

The SDP relaxation method by Lasserre is very appealing as a theoretical result as it allows
to approximate the solutions of polynomial optimization problems (1.1) as closely as desired
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by solving a finite sequene of SDP relaxations. However, since the size of the SDP relaxation

grows as
(
n+ ω
ω

)
, it is too difficult to solve even medium scaled problems. In many

problems of type (1.1), the involved polynomials p, g1, . . . , gm are sparse. Waki, Kojima,
Kim and Muramatsu constructed a sequence of SDP and SOS relaxations that exploits the
sparsity of polynomial optimization problems [27]. This method showed strong numerical
efforts in comparision to Lasserre’s SDP relaxations. The convergence of the sparse SDP
relaxations to the optimum of the original problem (1.1) was shown by Lasserre [12] and
Kojima and Muramatsu [10] recently. In the following, we give an outline of the sparse
SDP relaxation method.

Let the polynomial optimization problem be given as in (1.2),

minx∈K p(x),

where K is a compact semialgebraic set defined by the m inequality constraints g1 ≥
0, . . . , gm ≥ 0. We will construct a sequence of SDP relaxations to this polynomial opti-
mization problem, which exploits the sparsity of it, in case only few of the n variables occur
in some inequality constraint gj or some monomial of the objective f together. Under a
certain condition on the sparsity pattern of the problem, the optima of these SDP relax-
ations converge to the optimum of the polynomial optimization problem (1.2).
First, let {1, . . . , n} be the union ∪qk=1Ik of subsets Ik ⊂ {1, . . . , n}, such that every
gj , j ∈ {1, . . . ,m} is only concerned with variables {xi | i ∈ Ik} for some k. And it is
required the objective p can be written as p = p1 + . . . + pq where each pk uses only
variables {xi | i ∈ Ik}. In order to obtain the convergence results in the later section, we
impose the following condition:

Assumption 1: For all k = 1, . . . , q − 1, Ik+1 ∩
k⋃
j=1

Ij ⊆ Is for some s ≤ k. (5.17)

One way to construct these subsets {Ik} is the procedure via the chordal extension of the
correlative sparsity pattern graph by Waki et. al [27], which we will mention later. Consider
a graph G = (V,E), given by V = {1, . . . , n} and E = {{i, j} | {i, j} ⊆ Ik for some k}. In
context of graph theory, the property of Assumption 1 is called the running intersection
property.

Note that 5.17 is always satsfied for q = 2. Since property (5.17) depends on the
ordering, it can be satisfied possibly after some relabelling of the {Ik}. In order to tackle
the sparse SDP relaxations we introduce some further definitions.

Definition 5.11 Given a subset I of {1, . . . , n} we define the sets

AI = {α ∈ Nn : αi = 0 if i /∈ I} ,
AIω =

{
α ∈ Nn : αi = 0 if i /∈ I and

∑
i∈I αi ≤ ω

}
.

Then, we define R [x,G] := {f ∈ R [x] : supp(f) ⊆ G}. Also the restricted moment ma-
trix Mr(y, I) and localizing matrices Mr(gy, I) are defined for I ⊆ {1, . . . , n} , r ∈ N
and g ∈ R [x]. They are obtained from Mr(y) and Mr(gy) by retaining only those rows
(and columns) α ∈ Nn of Mr(y) and Mr(gy) with supp(α) ⊆ AIr. In doing so, Mr(y, I)
and Mr(gy, I) can be interpreted as moment and localizing matrices with rows and columns
indexed in the canonical basis u(x,AIr) of R

[
x,AIr

]
. Finally, we denote the set of sum of

square polynomials in R [x,G] as
∑

R [x,G]2. In analogy to Theorem 3.4,
∑

R [x,G]2 can
be written as ∑

R [x,G]2 =
{
u(x,G)TV u(x,G) : V < 0

}
.
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Before proposing the sparse SDP relaxations we add two assumptions:
Assumption 2: Let K ⊆ Rn be a closed semialgebraic set. Then, there is M > 0 such
that || x ||∞< M for all x ∈ K.
This assumption implies || x(Ik) ||2∞< nkM

2, k = 1, . . . , q, where x(Ik) := {xi | i ∈ Ik},
and therefore we add to K the q redundant quadratic constraints

gm+k(x) := nkM
2− || x(Ik) ||≥ 0, k = 1, . . . , q,

and set m′ = m+ q, so that K is now defined by:

K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m′} . (5.18)

Notice that gm+k ∈ R
[
x,AIk2

]
for every k = 1, . . . , q. With Assumption 2, K is a compact

semialgebraic set. Assumption 2 is also needed to guarantee the quadratic module M(K)
is archimedian, the condition of Putinar’s Positivstellensatz.
Assumption 3: Let K ⊆ Rn as in (5.18). The index set J = {1, . . . ,m′} is partitioned
into q disjoint sets Jk, k = 1, . . . , q, and the collections {Ik} and {Jk} satisfy:

1. For every j ∈ Jk, gj ∈ R
[
x,AIk

]
, that is, for every j ∈ Jk, the constraint gj(x) ≥ 0

is only concerned with the variables x(Ik). Equivalently, viewing gj as a polynomial
in R [x] , gjα 6= 0⇒ supp(α) ∈ AIk .

2. The objective function p ∈ R [x] can be written

p =
q∑

k=1

pk, with pk ∈ R
[
x,AIk

]
, k = 1, . . . , q.

Equivalently, fα 6= 0⇒ supp(α) ∈ ∪qk=1A
Ik .

Example 5.12 with n = 6 and m = 6, let

g1(x) = x1x2 − 1, g2(x) = x2
1 + x2x3 − 1, g3(x) = x2 + x2

3x4,

and
g4(x) = x3 + x5, g5(x) = x3x6, g6(x) = x2x3.

Then we can construct {Ik} and {Jk} for q = 4 with

I1 = {1, 2, 3} , I2 = {2, 3, 4} , I3 = {3, 5} , I4 = {3, 6} ,
J1 = {1, 2, 6} , J2 = {3} , J3 = {4} , J4 = {5} .

It is easy to check, that Assumption 1 and 3 are satisfied. In case the {Ik} satisfying
Assumption 1 are not that easy to detect, we apply the procedure by Waki et.al. [27] via
the chordal extension of the correlative sparsity pattern (csp) graph of problem (1.2).
In case we apply this procedure, the Ik are derived as the maximal cliques Ck of the chordal
extension of the csp graph G. The vertex set V of G is V = {1, . . . , n}, and (i, j) is a edge
of G if and only if xi and xj occur in some inequality constraint together or they occur in
the same monomial of the objective. The csp graph G represents the sparsity structure of
the polynomial optimization problem (1.2). We determine the maximal cliques Cl of the
chordal extension of G since it is an NP-hard problem to determine the maximal cliques of
an arbitrary graph.
Next, we will construct sparse SDP relaxations in analogy to the dense SDP relaxations
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which we studied before. For each j = 1, . . . ,m′ write ωj = ddeg gj
2 e. Then, with ω ∈ N

consider the following semidefinite program

(P spω ) infy
∑
α pαyα

s.t. Mω(y, Ik) < 0, k = 1, . . . , q,
Mω−ωj (gjy, Ik) < 0, j ∈ Jk; k = 1, . . . , q,

y0 = 1.

(5.19)

Program (5.19) is well defined under Assumption 3, and it is easy to see that it is an SDP
relaxation of problem (1.2). Setting Ik = Ck the maximal cliques of the chordal extended
csp graph, the SDP relaxations (5.19) are stronger than the original relaxations proposed
in [27] as we added the q redundant constraints gm+k ≥ 0 for k = 1, . . . , q. There are
symmetric matrices

{
Bkα
}

and
{
Cjkα

}
such that

Mω(y, Ik) =
∑
α∈Nn yαB

k
α, k = 1, . . . , q,

Mω−ωj (gjy, Ik) =
∑
α∈Nn yαC

jk
α , k = 1, . . . , q, j ∈ Jk,

(5.20)

with Bkα = 0 and Cjkα = 0 whenever supp(α) /∈ AIk . Then we can rewrite (5.19) as

(P spω ) infy
∑
α pαyα

s.t.
∑

0 6=α∈Nn
yαB

k
α < −Bk0 , k = 1, . . . , q,∑

06=α∈Nn
yαC

jk
α < −C

jk
0 , j ∈ Jk; k = 1, . . . , q,

(5.21)

and we derive the dual of this semidefinite program as

(Dsp
ω ) sup

Yk,Zjk,λ
λ∑

k:α∈AIk

[
〈Yk, Bkα〉+

∑
j∈Jk〈Zjk, C

jk
α 〉
]

+ λδα0 = pα ∀ α ∈ Γω,

Yk, Zjk < 0, j ∈ Jk, k = 1, . . . , q,
(5.22)

where Γω :=
{
α ∈ Nn : α ∈

⋃q
k=1AIk ; | α |≤ 2ω

}
. Following Lasserre [12] and applying

the characterization of sum of squares polynomials as semidefinite forms we can transform
(Dsp

ω ) to

(Dsos
ω ) suptk,tjk,λ λ

s.t. p− λ =
∑q
k=1(tk +

∑
j∈Jk tjkgj),

tk, tjk ∈
∑

R
[
x,AIkω

]2
j ∈ Jk, k = 1, . . . , q,

(5.23)

We define the generalized Lagrangian function L of (1.2) as

L(x, φ) = p(x)−
n∑
k=1

φk(x)gk(x),

where φk ∈
∑

R
[
x,AIkω−ωk

]2
, as introduced by Kim et. al. in [9]. Moreover, if we neglect

the p additional redundant contraints gm+k ≥ 0, we are able to transform (5.23) into

(Dkkw
ω ) sup λ

s.t. L(x, φ)− λ ∈
∑q
k=1

∑
R
[
x,AIkω

]2
,

φ ∈
{

(φ1, . . . , φm) : φk ∈
∑

R
[
x,AIkω−ωk

]2
, k = 1, . . . ,m

}
,

(5.24)

32



which is basically the sum of squares relaxation that was also derived by Waki, Kim, Kojima
and Muramatsu in [27].
In order to understand the improved efficiency of the sparse SDP relaxations, let us compare
the computational complexity of the dense relaxation (P SDP

ω ) and the sparse relaxation
(P sp
ω ). The number of variables in (P sp

ω ) is bounded by
∑q
k=1

(
nk+2ω
ω

)
. Supposed nk ≈ n

q

for all k, the number of variables is bounded by O(q(nq )2ω), a strong improvement compared
with O(n2ω), the number of variables in (P SDP

ω ).
Also in (P sp

ω ) there are p LMI constraints of size O((nq )ω) and m + q LMI constraints of
size O((nq )ω−ωmax), to be compared with a single LMI constraint of size O(nω) and m LMI
constraints of size O(nω−ωmax) in (P SDP

ω ).

5.4.1 Convergence

The convergence of the optima of the sparse SDP relaxations (P spω ) was shown by Lasserre
[12].

Theorem 5.13 Let p? denote the global minimum of (1.2) and let Assumption 1-3 hold.
Then:

(a) inf(P spω ) ↑ p? as ω →∞.

(b) If K has nonempty interior, then strong duality holds and (Dsp
ω ) solvable for suffi-

ciently large ω, i.e., inf(P spω ) = max(Dsp
ω ).

(c) Let yω be a nearly optimal solution of (P spω ), with e.g.∑
α

pαyα ≤ inf(P spω ) +
1
ω
, ∀ω ≥ ω0,

and let ŷω := {yωα : | α |= 1}. If (1.2) has a unique global minimizer x? ∈ K, then
ŷω → x? as ω →∞.

Proof C.f. [12].

5.4.2 Sparse version of Putinar’s Positivstellensatz

As a by product of Theorem 5.13, a sparse version of Putinar’s Positivstellensatz was
obtained by Lasserre in case K has nonempty interior [12]. A more general result, avoiding
the assumption K has nonempty interior, was given by Kojima and Muramtsu [10]:

Theorem 5.14 Let Assumption 1 hold. Furthermore, assume

Kj :=
{
x(Ij) ∈ R|Ij | | gj(x(Ij)) ≥ 0

}
are nonempty and compact for j ∈ {1, . . . ,m} and

K = {x ∈ Rn | x(Ij) ∈ Kj (j = 1, . . . ,m)} = {x ∈ Rn | gj(x(Ij)) ≥ 0 (j = 1, . . . ,m)}

is nonempty. Finally, assume

∀ j ∈ {1, . . . ,m} ∃ pj ∈M(Kj), s.t.
{
xIj | pj(x(Ij))

}
is compact

hold, i.e., M(Kj) archimedian for all j ∈ {1, . . . ,m}. Then any f ∈
∑m
j=1 R [x(Ij)] positive

on K belongs to
∑m
j=1M(Kj).

Proof C.f. [10]. Another proof of the sparse version of Putinar’s Positivstellensatz and
the convergence result of the sparse SDP relaxation was also given by Grimm, Netzer and
Schweighofer [7].
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6 Equality constrained polynomial optimization prob-
lems

The original polynomial optimization problem (1.1) contains the inequality constrained case
only. Certainly, an equality constraint h(x) = 0 can be included by adding the inequality
constraints h(x) ≥ 0 and −h(x) ≥ 0. Nevertheless, more advanced methods to deal with
semialgebraic sets containing equality constraints have been proposed.

6.1 Representation of nonnegative polynomials

As discussed in the first chapter, there is a representation of polynomials strictly positive
on a compact semialgebraic set K as elements of M(K). But an explicit representation
of polynomials nonnegative on a closed or compact semialgebraic set has not been found
yet. As mentioned before, the decision whether a general polynomial is nonnegative is an
NP-hard problem. Nonetheless, Parrilo [19] found a simple construction for sum of square
representations of polynomials nonnegative on finite sets described by polynomial equalities
and inequalities.
Let a basic semialgebraic set be of the form

S = {x ∈ Rn, gi(x) ≥ 0, i = 0, . . . ,m, hj(x) = 0, j = 1, . . . , k} ,

where gi, hj ∈ R [x1, . . . , xn].
In order to construct Parrilo’s representations the following notations are needed. The
complex variety VC of a sequence of equality constraints is defined as the set VC =
{x ∈ Cn | hi(x) = 0 ∀ i ∈ {1, . . . , k}}. Given the ideal I = I(h1, . . . , hk), we define

√
I := {f ∈ C [x] | fm ∈ I for some m ∈ N \ {0}} .

Obviously I ⊆
√
I holds for any ideal I. The ideal I is said to be radical if I =

√
I. The

result by Parrilo is stated in the following theorem.

Theorem 6.1 Let the ideal I(h1, . . . , hk) be radical and its complex variety VC(I) be finite.
If p ∈ R[x] is nonnegative over S, then there exists a representation

p(x) = s0(x) +
∑
i

si(x)gi(x) +
∑
j

λj(x)hj(x), (6.1)

where si ∈
∑

R[x]2, λi ∈ R[x].

Proof Theorem 6.1 is a consequence of the constructions resulting from two algorithms.
We will present the first algorithm, which considers the purely equality constraint case only.
The generalization to the equality and inequality constrained case, the second algorithm
can be found in [18].
Algorithm 1 Given p(x), with vi ∈ (VC ∩ Rn)⇒ p(vi) ≥ 0, compute an affine represen-
tation certifying nonnegativity.

1. Find | VC | polynomials pi(x), that satisfy pi(vj) = δij , where δij is the Kronecker
delta function. The polynomials pi are essentially the ”indicator function” of the
point vi, taking there the value one and vanishing at the remaining points. They can
be easily found using Lagrange interpolation, or given a basis for the quotient ring,
by solving a | VC | × | VC | system of linear equations.
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2. For every point vi ∈ (VC ∩ Rn), or a pair of complex conjugate solutions vi, vj ∈
Cn (vj = v?i ), define polynomials

qi := γpi or qi := γpi + γ?pj ,

respectively, where γ =
√
p(vi). Notice that qi ∈ R[x]: in the first case, because

vi is real and γ ≥ 0, and in the second, as a consequence of the complex-conjugate
symmetry. With these definitions, it holds that p(x) =

∑
i q

2
i (x) ∀x ∈ VC, where only

one term per pair of complex conjugate roots appears in the sum. Since the ideal I
is radical, it follows that

p ≡
∑
i

q2
i mod I.

Notice that p is then a sum of squares in the quotient ring.

3. To put the expression in the standard form 6.1, choose a basis for the quotient, and
reduce the qi modulo the ideal, to obtain:

p(x) =
∑
i

q̂2
i + λi(x)hi(x).

Example 6.2 Consider the polynomial and constraints:

p := x+ y2 − z2 + 1,


h1 := xy − z = 0
h2 := yz − x = 0
h3 := zx− y = 0

The ideal I(h1, h2, h3) is radical, with the corresponding variety having five isolated real
elements, namely

v1 = (0, 0, 0), v2 = (1, 1, 1), v3 = (1,−1,−1), v4 = (−1, 1,−1), v5 = (−1,−1, 1).

We construct the interpolating polynomials pi, already reduced to the basis of the quotient
R[x] mod I(h1, h2, h3) and the corresponding functional values:

p1 = 1− z2, p(v1) = 1,
p2 = (z2 + z + x+ y)/4, p(v2) = 2,
p3 = (z2 − z + x− y)/4, p(v3) = 2,
p4 = (z2 − z − x+ y)/4, p(v4) = 0,
p5 = (z2 + z − x− y)/4, p(v5) = 0.

And then the representation

p = p2
1 + 2p2

2 + 2p2
3 + h1(5z3 − 3z)/4 + h2(x− 5xz2 − 4)/4 + h3(−3y − 2z − 5zx)/4

is obtained directly.

In opposite to the approaches in [11], [18], [24] or [27], this approach does not apply any
of the convexity-based techniques, but is purely algebraic. It might occur that much more
concise represenations than the one provided by Algorithm 1 exist.
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6.2 Polynomial optimization via finite varieties

As mentioned, the equality inquality constrained case of a polynomial optimization problem
is a special case of the inequality constrained one, as the constraint h(x) = 0 is equivalent
to the constraints h(x) ≥ 0 and −h(x) ≥ 0. But also more advanced approaches which
exploit the algebraic geometry of inequality constraints have been proposed. For instance,
Laurent [14] proposed an approach to solve equality and inequality constrained polynomial
optimization problems by new semidefinite representations of finite complex varieties. We
will present her approach in the following.
Consider the problem

inf p(x)
s.t. hi(x) = 0, i ∈ {1, . . . , k} ,

gj(x) ≥ 0, j ∈ {1, . . . ,m} ,
(6.2)

where p, h1, . . . , hk, g1, . . . , gm ∈ R [x1, . . . , xn]. Recall, the complex variety VC(h1, . . . , hk)
is defined as

VC(h1, . . . , hk) := VC(I(h1, . . . , hk)) = {x ∈ Cn | h1(x) = 0, . . . , hk(x) = 0}
= {x ∈ Cn | f(x) = 0 ∀ f ∈ I(h1, . . . , hk)} ,

the real variety VR(I) as
VR(I) := VC(I) ∩ Rn

and the closed semialgebraic set K as

K := VR(I(h1, . . . , hk)) ∩ {x | g1 ≥ 0, . . . , gm ≥ 0} .

Finally let I denote the ideal generated by {h1, . . . , hk} and p? = infx∈K p(x).
Laurent derives a characterization of polynomials nonnegative on (6.2)’s feasible set K
under the two assumptions, that VC(I(h1, . . . , hk)) is finite and that I(h1, . . . , hk) is a
radical ideal, i.e.

I = I(VC(h1, . . . , hk)) := {f ∈ R [x] | f(x) = 0 ∀x ∈ V } .

Definition 6.3 A set B = {f1, . . . , fN} of polynomials forms a basis for R[x]/I, if for
every polynomial f , there exists a unique set of real numbers λ(f)

1 , . . . , λ
(f)
N such that f −∑N

i=1 λ
(f)
i fi ∈ I. When B contains only monomials, we call B a monomial basis. The

polynomial resB(f) =
∑N
i=1 λ

(f)
i fi is called the residue of f modulo I w.r.t. the basis

B and we set λ(f) := (λ(f)
i )Ni=1 ∈ R|B|. Moreover, for v ∈ VC(I), define the vector ξBv :=

(fi(v))Ni=1 ∈ R|B|; thus f(v) = (λ(f))T ξBv .

Following Lasserre’s procedure of convexifying problem (1.1) as in chapter 5, and (6.2),
respectively, it holds

p? = inf
{
pT y | y has a representing measure µ supported by K

}
. (6.3)

Under the assumption K is a finite set, every probability measure µ supported by K is
atomic, i.e., µ can be written as µ =

∑
v∈F λvδv, where λv ≥ 0,

∑
v∈K λv = 1, and δv is

the Dirac measure at v. Then the moment of order α of µ is equal to
∑
v∈K λvv

α. The
next lemma is a consequence of the moment theory discussed in chapter 4.
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Lemma 6.4 (i) If y ∈ RZn+ has a representing measure µ, then the infinite moment
matrix M(y) < 0. Moreover, if p ∈ R[x] such that M(y)p = 0, then the support of µ
is contained in the set of zeros of p(x).

(ii) Let g ∈ R[x] and F := {x ∈ Rn | g(x) ≥ 0}. If y ∈ RZn+ has a representing measure
supported by F , then the infinite localizing matrix M(gy) < 0.

Proof

(i) For p ∈ R[x],

pTM(y)p =
∑
α,β

pα, pβyα+β =
∑
α+β

pαpβ

∫
xα+βµ(dx) =

∫
p(x)2µ(dx) ≥ 0.

(ii) For p ∈ R[x], pTM(gy)p =
∫
g(x)p(x)2µ(dx) ≥ 0. �

Define the following bound for p?:

µ? := inf pT y
s.t. M(y) < 0,

M(hiy) = 0 ∀ 1 ≤ i ≤ k,
M(gjy) < 0 ∀ 1 ≤ j ≤ m,
y0 = 1.

(6.4)

By Lemma 6.4, µ? ≤ p?. In fact equality µ? = p? holds with the following proposition.

Proposition 6.5 Let K be the feasible set of (6.2) and assume VC(I(h1, . . . , hm)) is finite.
The following two assertions are equivalent for sequences y ∈ RZn+ :

(i) y has a representing measure supported by K.

(ii) M(y) < 0,M(hiy) = 0 (i = 1, . . . ,m), M(gjy) < 0 (j = 1, . . . , k).

Proof The proposition is a consequence of the general Theorem 4.7 by Schmüdgen.�

For the following assume VC(I) is finite. Thus R[x]/I is finite dimensional and B =
(f1, . . . , fN ) denotes its basis. Since h = 0 ∀h ∈ I(h1, . . . , hk) on the feasible set K of (6.2),
problem (6.2) remains unchanged if we replace the objective p by its residue

∑N
i=1 λ

(p)
i fi(x)

modulo I w.r.t. B. Thus,

p? = min (λ(p))T ξBv
s.t. v ∈ K

= min yTλ(f)

s.t. y ∈ PB(K) := conv(ξBv | v ∈ K)

(6.5)

We will derive a semidefinite representation for the polytope PB(K), which can be un-
derstood as a finite analogue of the formulation (6.4). It does not require the explicit
knowledge of the complex variety VC(I) but only the knowledge of a basis B of R[x]/I. Let
y = (y1, . . . , yN ) ∈ R|B| be a vector, its combinatorial moment matrix MB(y) is the
| B | × | B |-matrix indexed by B, whose (fi, fj)th entry is yTλ(fifj) =

∑N
k=1 λ

(fifj)
k yk for

fi fj ∈ B. Given a polynomial h ∈ R[x], define hy := MB(y)λ(h) ∈ R|B|. Let U denote the
N× | Zn+ |-matrix whose rows are indexed by B (resp. by Zn+) and whose (i, α)−entry is
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equal to λ(xα)
i , i.e., the αth column of U contains the coordinates of the residue of xα in

the basis B. For h ∈ R[x] with residue
∑N
i=1 λ

(h)
i fi obviously holds

λ(h) = Uh. (6.6)

Given a vector y ∈ R|B|, define its extension as

ỹ := UT y ∈ RZn+ (6.7)

Hence, ỹα can be interpreted as a linearization of the residue of xα modulo I w.r.t. B.

Lemma 6.6 Let y ∈ R|B| and let ỹ ∈ RZn+ be its extension.

(i) M(ỹ) = UTMB(y)U . Hence, when B is a monomial basis, MB(y) is the principal
submatrix of M(ỹ) indexed by B.

(ii) The extension of hy is equal to hỹ.

(iii) I ⊆ KerM(ỹ).

(iv) For a polynomial h holds hT ỹ = (λ(h))T y.

Proof C.f. [14]

Theorem 6.7 The following assertions are equivalent for y ∈ R|B| and its extension ỹ ∈
RZn+ .

(i) The vector y belongs to the cone generated by the vectors ξBv = (fi(v))Ni=1 (v ∈ K).

(ii) MB(y) < 0, MB(gjy) < 0 (j = 1, . . . ,m).

(iii) M(ỹ) < 0, M(hiỹ) = 0 (i = 1, . . . , k), M(gj ỹ) < 0 (j = 1, . . . ,m).

(iv) The vector ỹ belongs to the cone generated by the vectors ξv = (vα)α∈Zn+ (v ∈ K).

Proof

(i)⇒(ii): Let y := ξBv for a v ∈ K. Then, MB(y) = yyT < 0. Indeed, the (fi, fj)th entry of
yyT is fi(v)fj(v), while the (fi, fj)th entry of MB(y) is equal to

∑N
k=1 λ

(fi,fj)
k fk(v)

and thus to fi(v)fj(v), since fifj ≡
∑N
k=1 λ

(fifj)
k fk modulo I. Moreover, MB(hjy) =

gj(v)yyT < 0, for 1 ≤ j ≤ k.

(ii)⇒(iii): As M(ỹ) = UTMB(y)U , it follows that M(ỹ) < 0. For j = 1, . . . , k, hj ỹ = M(ỹ)hj =
0, since I ⊆KerM(ỹ) (by Lemma 6.6 (iii)). For j = 1, . . . ,m, M(gj ỹ) = M( ˜gjy) =
UTMB(hjy)U < 0 (by Lemma 6.6 (i),(ii)).

(iii)⇒(iv): Follows from Proposition 6.5.

(iv)⇒(i): Say, ỹ =
∑
v∈K avξv with av ≥ 0. Let i = 1, . . . , N . As ỹ = UT y, fTi ỹ = fTi (UT y) =

(Ufi)T y = yi. On the other hand, as fTi ξv = fi(v) = (ξBv )i, fTi ỹ =
∑
v∈K avfi(v) is

the ith coordinate of
∑
v∈K avξ

B
v . Hence, y =

∑
v∈K avξ

B
v . �

The proposed semidefinite representation of problem (6.2) is a direct consequence from
Theorem 6.7.
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Corollary 6.8 Assume that VC(I) is finite and let B be a monomial basis of R[x]/I con-
taining the constant monomial 1. For convenience, the same symbol B denotes the set of
exponents β for which xβ ∈ B. Then, problem (6.2) is equivalent to

min rT y
s.t. MB(y) < 0,

MB(gjy) < 0, j ∈ {1, . . . ,m}
y0 = 1,

(6.8)

where r(x) =
∑
β∈B rβx

β is the residue of the polynomial p w.r.t. B, and y0 is the coordinate
of y indexed by 1.

Proof Follows directly from Theorem 6.7 since, for y =
∑
v avξ

B
v ,:∑

v

av = 1⇔ y0 = 1. �

Although Corollary 6.8 was formulated for a monomial basis due to simplicity reasons,
the formulation can be generalized to arbitrary bases for R[x]/I. Next let us consider the
dual of the semidefinite program (6.8). Setting h0(x) = 1, MB(hiy) =

∑
β∈B C

i
βyβ for

i = 0, . . . , k and MB(gjy) =
∑
β∈B C

m+j
β yβ for j = 1, . . . ,m, the dual semidefinite program

to (6.8) reads:

ρ? := sup r0 − 〈C0
0 , Z0〉 −

∑m+k
j=k+1

〈
Cj0 , Zj

〉
s.t.

〈
C0
β , Z0

〉
+
∑m+k
j=k+1

〈
Cjβ , Zj

〉
= rβ (β ∈ B \ {0})

Z0, Zk+1, . . . , Zm+k < 0.

(6.9)

It is easy to verify that (6.9) is equivalent to

ρ? = sup ρ
s.t. r(x)− ρ = (

∑
i0
q2
0,i0

) +
∑m
j=1 gj(

∑
ij
q2
j,ij

) + q

qj,ij ∈ RB and q ∈ I
(6.10)

and thus to the program

ρ? = sup ρ s.t. f(x)− ρ ∈M(K). (6.11)

With Theorem 3.11 holds p? = ρ?, i.e. there is no duality gap between (6.8) and its dual
(6.9).
It is to emphasize that (6.8) is a semidefinite characterization of the polynomial optimiza-
tion problem (6.2) whose minimum coincides with the minimum p? of (6.2), whereas (5.8)
is only a semidefinite approximation of problem (1.1) whose solutions converge to the min-
imum of (1.1) for relaxation order ω →∞. On the other hand, from a complexity point of
view, the finite semidefinite formulation (6.8) for problem (6.2) is not very useful, since it
involves matrices of size | B | × | B |, with | B |≥| VR(I) | being at least as large as the size
of the feasible set. Therefore, it might be appropriate to consider semidefinite approxima-
tions by restricting ourselves to some principal submatrix MA(y) of MB(y) instead of the
full combinatorial moment matrix.
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6.3 Semidefinite characterization and computation of real radical
ideals

An approach to apply moment relaxation methods and semidefinite programming to com-
pute the zero-dimensional real radical ideal I(VR(I)) and the real variety VR(I) of an ideal
I ⊆ R[x] was proposed by Lasserre, Laurent and Rostalski [13]. It can be understood
as an extension to some of the concepts of the previous section 6.2. This approach is of
particular interest, as it computes the points in the real variety VR(I) without computing
the complex variety VC(I) beforehand. It is based on a semidefinite characterization of the
ideal I (VR(I)), where I ⊂ R[x] is an ideal defined by a set of generators h1, . . . , hk ∈ R[x]
satisfying | VR(I) |< ∞. As we will see, all information needed to compute I(VR(I)) and
VR(I) is contained in the (infinite) moment matrix M(y) (where y ∈ RNn), whose en-
tries depend on the generating polynomials h1, . . . , hk, and who is required to be positive
semidefinite. In the following we will outline this approach und the proposed algorithm to
compute I(VR(I)) and VR(I).
In addition to the notations in sections 6.1 and 6.2 we introduce the real radical

R
√
I :=

p ∈ R[x] | p2m +
∑
j

g2
j ∈ I for some qj ∈ R[x], m ∈ N \ {0}

 .

I := I(h1, . . . , hk) = 〈h1, . . . , hk〉 is said to be real radical if I = R
√
I. Furthermore

B ⊂ {xα | α ∈ Nn} is called an order ideal if B is stable under division, i.e., for all
a, b ∈ {xα | α ∈ Nn} , b ∈ B, a | b implies a ∈ B. With a Real Nullstellensatz [2] it holds
R
√
I = I (VR(I)) for any ideal I ⊆ R[x]. Given the ideal I ⊆ R[x], consider the quotient

space R[x]/I. With h ∈ R[x] the multiplication operator

mh : R[x]/I → R[x]/I, [f ] 7→ [hf ]

is well defined. Furthermore, the cardinality of VC(I) and the dimension of the vector space
R[x]/I are interlinked by the following theorem [26].

Theorem 6.9 For an ideal I in R[x], | VC(I) |< ∞ ⇔ dim R[x]/I < ∞. Moreover,
| VC(I) |≤ dim R[x]/I, with equality if and only if I is radical.

Now, assume | VC(I) |< ∞. Then let B be a basis of R[x]/I, N := dim R[x]/I and
h ∈ R[x], and let χh denote the matrix of the multiplication operator mh with respect to
B, i.e., writing resB(hbj) =

∑N
i=1 λ

(hbj)
i bi, the jth column of χh is the vector (λ(hbj)

i )Ni=1.
The following well known result [6] relates the points of the variety VC(I) to the eigenvalues
and eigenvectors of χh.

Theorem 6.10 Let h ∈ R[x] and v ∈ VC(I), set ζBv := (bi(v))Ni=1. The set {h(v) | v ∈ VC(I)}
is the set of eigenvalues of χh and χTh ζ

B
v = h(v)ζBv for all v ∈ VC(I).

When the matrix χh is non-derogatory (i.e. all its eigenspaces are 1-dimensional) one
can recover the points v ∈ VC(I) from the eigenvectors of χTh . Moreover, if I is radical,
then N =| VC(I) |.
In order to outline the algorithm for computing VR(I) and I(VR(I)), further notations and
results are necessary. Given an order ideal B = {b1, . . . , bN} ⊆ {xα | α ∈ Nn}, the border
of B is the set

∂B :=
{
xix

β | xβ ∈ B, i = 1, . . . , n
}
\ B = {c1, . . . , cH} .
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A set of polynomials G = {g1, . . . , gH} is called a B−border prebasis if each gj is of the
form

gj = cj −
N∑
i=1

aijbi for some aij ∈ R.

The set G ⊆ I is said to be B−border basis of I if B is linearly independent in R[x]/I, i.e.
if B is a linear basis of R[x]/I; in that case G generates the ideal I. When G is a B−border
prebasis, one can mimic the construction of the multiplication matrices that were defined
previously. Fix k ∈ {1, . . . , n}. The formal multiplication matrix χk is the N × N
matrix whose ith column is defined as follows. If xkbi ∈ B, say, xkbi = br, then the ith
column of χk is the standard unit vector er. Otherwise, xkbi ∈ ∂B, say, xkbi = cj , then the
ith column of χk is the vector (aij)Ni=1. Moreover, the exploitation of the following theorem
[6] is of central importance for the proposed algorithm.

Theorem 6.11 Let B ⊆ {xα | α ∈ Nn} be an order ideal, let G be a B−border prebasis with
associated formal multiplication matrices χ1, . . . , χn, and let 〈G〉 be the ideal generated by
G. Then, G is a border basis of 〈G〉 if and only if the matrices χ1, . . . , χn commute pairwise.
In that case, B is a linear basis of R[x]/〈G〉 and the matrix χk represents the multiplication
operator mxk of R[x]/〈G〉 with respect to the basis B.

As already mentioned, the moment matrix M(yµ) of a feasible moment vector yµ ∈ RNn

contains all information necessary to compute I(VR(I)). Given h1, . . . , hk ∈ R[x], define

dj := ddeghj
2
e, d := max

j=1,...,k
dj

and
KR
t :=

{
y ∈ RNn2t | y0 = 1, Mt(y) < 0,Mt−dj (hjy) = 0 (j = 1, . . . , k)

}
.

Then, KR
t is a convex set which contains the vectors ζ2t,v := (vα)α∈N2n

2t
for all v ∈ VR(I).

Two fundamental results of Curto and Fialkow [4] are the basis for the approach proposed
by Lasserre, Laurent and Rostalski. Their theorems state, that it is sufficient to show rank
conditions and positive semidefiniteness of the truncated moment matrices Mt(y), in order
to obtain a positive semidefinite infinite moment matrix M(ỹ), in case the rank of M(ỹ)
is finite. A further notation is required before stating these theorems. Given a Hermitian
matrix A and a principal submatrix B of A, A is said to be a flat extension of B if
rankA =rankB; then A < 0⇔ B < 0.

Theorem 6.12 If M(y) < 0 and rankM(y) <∞, then y =
∑
v∈W λvζv for some finite set

W ⊆ Rn and λv > 0, |W |= rankM(y), and KerM(y) = I(W )

Theorem 6.13 If Mt(y) < 0 and rankMt(y) = rankMt−1(y), then y can be extended in a
unique way to ỹ ∈ Rn such that M(ỹ) is a flat extension of Mt(y) (and thus M(ỹ) < 0).

Proposition 6.14 KerM(y) is an ideal in R[x], which is real radical if M(y) < 0. As-
sume M(y) < 0 and rankM(y) = rankMt−1(y) for some integer t ≥ 1. Then, KerM(y) =
〈KerMt(y)〉 and, for B ⊆ {xα | α ∈ Nn}, B indexes a (maximum) nonsingular princi-
pal submatrix of M(y) if and only if B is a (maximum) linearly independent subset of
R[x]/KerMR(y).

Proof Sketch:
Use vec(h)TM(y)vec(pq) =vec(hq)TM(y)vec(p) for p, q, h ∈ R[x] to show that KerM(y) is
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an ideal. To show that KerM(y) is real radical, it is sufficient to show that if
∑k
i=1 p

2
i ∈KerM(y)

for some pi ∈ R[x], then pi ∈KerM(y).
Assume rankM(y) = rankMt−1(y) =: r and set J := 〈KerMt(y)〉. Obviously, J ⊆
KerM(y); we show equality. For this, let B ⊆ Λ(t− 1) index an r× r nonsingular principal
submatrix of M(y). We show that, for all α ∈ Nn, xα ∈ SpanR(B) + J , using induction
on | α |. This holds for | α |≤ t by the definition of B. Assume | α |≥ t + 1 and write
xα = xix

δ. By the induction assumption, xδ =
∑
xβ∈B cβx

β+q where q ∈ J, cβ ∈ R. Thus,
xα =

∑
xβ∈B cβxix

β + xiq. Here, xiq ∈ J and xix
β ∈ SpanR(B) + J since deg(xixβ) ≤ t,

which implies xα ∈ SpanR(B) + J . Thus we have shown that R[x] = SpanR(B) + J. As
KerM(y) ∩ SpanR(B) = {0}, this implies easily that KerM(y) = 〈KerMt(y)〉.
For B ⊆ {xα | α ∈ Nn}, it is obvious that B indexes a nonsingular submatrix of M(y) if
and only if B is linearly independent in R[x]/KerM(y). The last statement of the lemma
now follows since dim R[x]/KerM(y) = r (as KerM(y) is radical and using the identity
| VC(KerM(y)) |= rankM(y) from Theorem 6.12). �
Proposition 6.14 is the basis for the following key proposition.

Proposition 6.15 Assume that VR(I) is finite. If

M(y) < 0, M(hjy) = 0 (j = 1, . . . , k)

then the kernel of M(y) is a real radical ideal, rankM(y) ≤| VR(I) | and I(VR(I)) ⊆
KerM(y), with equality if and only if M(y) has maximum rank, equal to | VR(I) |.

Proof By Proposition 6.14, J := KerM(y) is a real radical ideal, since M(y) < 0. As 0 =
M(hjy) = M(y)vec(hj) for all j, we have I ⊆ J , which implies that VR(J) ⊆ VR(I) is finite.
As J is real radical, we deduce that VC(J) = VR(J) ⊆ Rn. Hence J is zero-dimensional
and I(VR(I)) ⊆ J since VC(J) ⊆ VR(I). Set r := dimR[x]/J =| VC(J) |≤| VR(I) |. Let
B ⊂ {xα | α ∈ Nn} be a linear basis of R[x]/J , | B |= r. Then the columns of M(y)
indexed by B form a basis of the column space of M(y) and thus rankM(y) = r. Moreover,
r =| VR(I) | if and only if VC(J) = VR(I) which in turn is equivalent to J = I(VR(I)).
Now, this maximum rank | VR(I) | is reached by the sequence y := yµ =

∑
v∈VR(I) λvζv > 0

which indeed satisfies M(y) < 0 and M(hjy) = 0 (j = 1, . . . ,m). �
Note that the cardinality of VR(I) and VC(I) may differ significantly as can be seen in the
following two examples.

Example 6.16 Let I ⊆ R[x] be generated by hi = xi(x2
i +1) (i = 1, . . . , n). Then, VR(I) =

{0} , | VC(I) |= 3n, di = 2 for all i. Assume y satisfies M3(y) < 0 and M1(hiy) = 0 (i =
1, . . . , n). Then M1(hiy) = 0 implies y4ei = −y2ei and M3(y) < 0 implies y2ei , y4ei ≥ 0
which in turn implies yα = 0 for all α 6= 0 with | α |≤ 5 (e1, . . . , en denote the standard
vectors in Rn). Hence rankM0(y) = rankM2(y) = 1. In fact, KerM1(y) is spanned by
x1, . . . , xn, the generators of VR(I).

Example 6.17 Let I ⊆ R[x1, x2] be generated by h = x2
1 + x2

2. Then VR(I) = {0} and
VC(I) = {(x1, x2) | x1 = ±ix2} is infinite. Then M0(hy) = 0 gives y2e1 + y2e2 = 0 which,
together with M1(y) < 0, implies yα = 0 for α 6= 0. Hence the maximum rank of M1(y) is
equal to 1 and KerM1(y) is spanned by x1, x2, the generators of VR(I).

Proposition 6.15 guarantees that I(VR(I)) = KerM(y) in case positive semidefiniteness con-
ditions for M(y) hold and M(y) has maximum rank among all feasible moment matrices
M(z). Also, this proposition provides a basis for the real radical ideal I(VR(I)). Never-
theless, for computational issues it is not possible to handle an infinite matrix as M(y) is.
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Therefore, truncated moment matrices Mt(y) are considered. The following proposition
states, that it is sufficient to show rank conditions for those truncated moment matrices,
in order to characterize the real radical I(VR(I)).

Proposition 6.18 Let t ≥ d and y ∈ KR
t for which rankMt(y) is maximum. Assume that

either
rankMs(y) = rankMs−1(y) for some 2d ≤ s ≤ t

or
rankMs(y) = rankMs−d(y) for some d ≤ s ≤ t

holds. Then I(VR(I)) = KerM(y) = 〈KerMs(y)〉 (and one can find VR(I)). Moreover,
rankMs(y) = rankM(y) =| VR(I) |.

Proof C.f. [13].
In feasible sets of polynomial optimization problems, as for instance 6.2, occur constraints
of both types h(x) = 0 and g(x) ≥ 0. Therefore, consider the closed semialgebraic set
L := {x ∈ Rn | g1(x) ≥ 0, . . . , gm ≥ 0} and define the set

KR
t,L := KR

t ∩
{
y |Mt−dk+j (gjy) < 0 (j = 1, . . . ,m)

}
for t ≥ d. In analogy to Proposition 6.18, a characterization for I(VR(I)∩L) can be derived
as well.

Proposition 6.19 Let t ≥ d and y ∈ KR
t,L for which rankMt(y) is maximum. Assume for

some d ≤ s ≤ t holds
rankMs(y) = rankMs−d(y).

Then I(VR(I) ∩ L) = 〈KerMs(y)〉.

To conclude the results that are necessary to derive the proposed algorithm, we show that
one of the rank conditions in Proposition 6.18 and Proposition 6.19 is satisfied for t large
enough, in case VR(I) is finite.

Proposition 6.20 Assume | VR(I) |<∞.

(i) If VR(I) = ∅ then KR
t,L = ∅ for t large enough.

(ii) If VR(I) 6= ∅ then, for t large enough, there exists d ≤ s ≤ t such that rankMs(y) =
rankMs−d(y) for all y ∈ KR

t,L.

Proof C.f. [13].
Hence, it is possible to detect the existence of real solutions via the following criterion:

VR(I) = ∅ ⇔ KR
t = ∅ for some t.

Proposition 6.20 remains valid under the weaker assumption | VR(I) ∩ L |< ∞, if in the
definition of the set KR

t,L, we add the constraints Mt−de(pey) < 0 for e ∈ {0, 1}k, after
setting pe :=

∏m
i=1 g

ei
i .

Given the theorems and propositions 6.9 - 6.20 we are now able to outline the algorithm
that computes I(VR(I)) and VR(I). The algorithm consists of five main parts: For a given
order t ≥ d,

(i) Find an element y ∈ KR
t maximizing the rank of Mt(y).
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(ii) Check the ranks of the principal submatrices of Mt(y) and search for a submatrix
Ms(y) of Mt(y) satisfying the rank conditions of Proposition 6.18 and 6.19, respec-
tively.

(iii) Compute a basis for the column space ofMs(y) and the quotient space R[x]/〈KerMs(y)〉,
for a suitable 1 ≤ s ≤ t.

(iv) Compute the formal multiplication matrices χxi .

(v) Construct a basis for the ideal 〈KerMs(y)〉.

The first task (i) can be cast as a problem of finding a feasible solution of a semidefinite
program, that has maximum rank. We consider the semidefinite program

p? = min 1 s.t. Mt(y) < 0, Mt−dj (hjy) = 0 (j = 1, . . . ,m), y0 = 1. (6.12)

If we assume that 6.12 is strictly feasible, interior point algorithms construct sequences of
points on the central path, which have the property of converging to the optimum solution
of maximum rank.
For checking the rank condition (ii) and computing a basis for the column space of Ms(y)
and the quotient space R[x]/〈KerMs(y)〉 (iii) a singular value decomposition of the subma-
trices Ms(y) of Mt(y) may be used. Ms(y) can be decomposed as Ms(y) = UΣV T , where
U and V are orthogonal matrices. The rank of Ms(y) equals the number of positive entries
of the diagonal matrix Σ. The columns of U form a basis B = {b1, . . . , br} of the column
space of Ms(y).
In order to compute the formal multiplication matrices χxi , we exploit that

xibj −
r∑

k=1

λ
(xibj)
k bk ∈ KerMs(y),

for all i = 1, . . . , n, j = 1, . . . , r, as the rankMs(y) =rankMs−1(y). Then the vector
(λ(xibj)
k )rk=1 is the jth column of the (formal) multiplication matrix χxi . As shown in [13],

χxi can be computed as
χxi = M−1

B Pxi ,

where MB the principal submatrix of Ms(y) indexed by B and Pxi the submatrix of
Ms(y) whose rows are indexed by B and whose columns are indexed by the set xiB :=
{xibj | j = 1, . . . , r}. Theorem 6.10 implies the sets {vi | v ∈ VR(I)} are the sets of eigen-
values of the matrices χxi . Thus, we are able to extract the real variety VR(I).
To construct a linear basis for the ideal 〈KerMs(y)〉 (iv) it is again possible to exploit the
singular value decomposition of the truncated moment matrix Ms(y) = UΣV T . Indeed,
the columns of the matrix V form an orthonormal basis of 〈KerMs(y)〉. However, a draw-
back of this basis is that it is usually highly overdetermined and has a large cardinality,
equal to | Λ(s) | −rankMs(y). Other methods to construct a border or a Gröbner basis for
〈KerMs(y)〉 are described in [13].
From the computational point of view solving the semidefinite program 6.12 is the most
expensive part of this algorithm. As potential sparsity in the underlying generating poly-
nomials h1, . . . , hm is not considered, the size of the resulting SDP (6.12) restricts the
applicability of the algorithm to middle-scaled cases at the moment.
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7 Open questions

Characterization of nonnegative and positive polynomials The formulation of
the relaxation (5.8) for problem (1.2) by Lasserre and also Theorem 4.11 by Bertsimas and
Popescu rely heavily on Putinar’s Positivstellensatz, Theorem 3.11. Nonetheless, Theorem
3.11 does neither fully characterize the polynomials positive on the compact semialgebraic
set K, since the polynomials in M(K) are not necessarily positive on K, nor does it
characterize the polynomials nonnegative on K, since they are not always contained in
M(K). In fact, Theorem 3.11 is the most recent in a series of partial characterizations
of polynomials positive on a compact semialgebraic set; another partial characterization
was presented in Theorem 3.9 by Schmüdgen. It is an open question, whether it will
be possible to derive further (partial) characterizations of the polynomials positive and
nonnegative on compact semialgebraic or closed semialgebraic sets. The complexity of those
potential characterizations will determine whether it is useful to apply them to attempt the
polynomial optimization problem (1.2). However, we are facing the fact that the decision
whether a given polynomial is positive or nonnegative on Rn is NP-hard.

Convergence analysis of dense and sparse SDP relaxations As introduced Lasserre
constructed a sequence of dense semidefinite relaxations (5.8) whose optima converge to
the optimum of the original polynomial optimization problem (1.2) as the relaxation order
ω tends to infinity. Although this result is appealing in theory, it was observed that this
approach yields numerical difficulties for middle scaled problems already. This problem
was partially relieved by constructing sequences of sparse SDP relaxations that exploit
potential correlative sparsity in the polynomial optimization problem (1.2). Compared to
the dense relaxations, the sparse SDP relaxations improved the efficiency drastically, in case
of correlative sparsity in (1.2). Nevertheless, also the size of the sparse SDP relaxations
increases rapidly in the relaxation order ω. Due to the limited capacity of present SDP
solvers we are only able to process the SDP relaxations for small values of ω. Although in
many examples the minimum of (1.2) is attained by the SDP relaxation for small choices
of ω already, say ω ∈ {ωmax, . . . , ωmax + 3}, it is not possible to predict which optimization
problem can be approximated suffciently close with a small relaxation order ω. The question
remains if it is possible to characterize a class of polynomial optimization problems that
can be solved approximated sufficiently close within a fixed number ω of SDP relaxations.

Extracting global minimizers Usually we are not only interested in the minimum
of (1.2) but also its global minimizer. As mentioned in chapter 5.3, the convergence of
the optimal solutions of Lasserre’s relaxations (1.2) to a global optimizer of (1.2) can be
guaranteed in case (1.2) has a unique solution. The case, where (1.2) has more than
one optimal solution, is more difficult. Henrion and Lasserre established a procedure to
detect all optimal solutions of (1.2), in case its optimal set K? is finite. For the reason
the computational effort of this procedure is very high, its applicability is restricted to
small-scale problems only. In fact, the sparse SDP relaxation by Waki, Kim, Kojima
and Muramatsu forces the polynomial optimization problem to have a unique solution, in
order to preserve the improved computational effort. Techniques to determine all global
minimizers of (1.2) efficiently remain in high demand.
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