Order Polytope

Let $G=(V, E)$ be an acyclic digraph with $V=[n]:=\{1,2, \ldots, n\}$. One might want to consider G as a representation of the partially ordered set (poset) $V: i>j$ if and only if there is a directed path from node i to node j.

A permutation π of $[n]$ is called a linear extension of G (or the associated poset V) if $\pi^{-1}(i)>\pi^{-1}(j)$ for every edge $\overrightarrow{i j} \in E$.

There are several fundamental problems associated with linear extensions of a partially ordered set. Computing the number $\#_{\mathrm{LE}}(G)$ of linear extensions is known to be hard, \#Pcomplete by Brightwell and Winkler [3], that was conjectured by Linial [10].

There are polynomial algorithms to list all linear extensions, see e.g. [9, 2, 11]. Here "polynomial" means the computational time is bounded by a polynomial function of input and output sizes.

Khachiyan [8] showed that the hardness of the counting problem implies computing the volume of an H-polytope is \#P-hard. This reduction uses the following polytope associated with a poset.

Let $P_{\text {LE }}(G)$ be the polytope in R^{n} defined by

$$
\begin{aligned}
& P_{\mathrm{LE}}(G)=\left\{x \in R^{n} \mid 1 \geq x_{i} \geq 0 \text { for all } \mathrm{i}=1,2, \ldots, \mathrm{n},\right. \text { and } \\
& \left.\qquad x_{i} \geq x_{j} \text { for all directed edges } \overrightarrow{i j} \in E\right\} .
\end{aligned}
$$

The polytope $P_{\mathrm{LE}}(G)$ is known as the order polytope of G (of the associated partial order). The following properties are known [12, 10].
(a) $P_{\mathrm{LE}}(G)$ is a $0 / 1$-polytope, i.e. all extreme points are in $\{0,1\}^{n}$.
(b) There is a one-to-one correspondence between the extreme points and the ideals of the poset. Here, an ideal (sometimes called "upper ideal" or "up-set") of a poset V is a subset S of V such that if $i, j \in V, j>i$ and $i \in S$ then $j \in S$.
(c) The volume of $P_{\mathrm{LE}}(G)$ is equal to $\#_{\mathrm{LE}}(G) / n$!.

There are several combinatorial optimization problems related to linear extensions of acyclic graphs. For example, the minimum feedback arcset problem [7] and the strongly connected reorientation problem [4] can be stated as geometric problems on closely related polyhedra and arrangements, see [6].

$\begin{gathered} \text { Input } \\ G \\ \hline \end{gathered}$	Listing $\lambda_{\text {LE }}(G)$	Counting $\#_{\mathrm{LE}}(G)$
acyclic digraph	$\begin{aligned} & \pi_{2}=21345 \\ & \pi_{3}=12435 \\ & \pi_{4}=24135 \\ & \pi_{5}=12453 \\ & \pi_{6}=21453 \\ & \pi_{7}=24153 \\ & \pi_{8}=24513 \end{aligned}$	9

Results of computation with polyhedral computation codes

Polyhedra format, defined by Avis and Fukuda, provides a simple standard way to write both H - and V-representation of a general polyhedron. An inequality system of form $b+A x \geq 0$ defines an H-polyhedron and its Polyhedra format is

H-representation
begin
m d+1 <number type>
b A
end
where A is an $m \times d$ matrix and <number type $>$ must be one of integer, rational or real.
If all generators of a polyhedron is known, then it is a V-polyhedron. For example, if P is a V-polyhedron given by n generating points and s generating directions (rays) as $P=\operatorname{conv}\left(v_{1}, \ldots, v_{n}\right)+\operatorname{nonneg}\left(r_{1}, \ldots, r_{s}\right)$. Then its Polyhedra V-format for P is

```
V-representation
begin
    n+s d+1 <numbertype>
    v v1
    1 vn
    0 r1
    0 rs
end
```

The linear extension polytope in the example above is an H-polytope and it can be written in polyhedra format as

H-representation
begin
146 integer
$\begin{array}{llllll}0 & -1 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & -1 & 1 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & -1 & 0 & 1 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & -1 & 1\end{array}$
$\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{llllll}1 & -1 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}1 & 0 & -1 & 0 & 0 & 0\end{array}$
$1 \begin{array}{llllll}1 & 0 & 0 & -1 & 0 & 0\end{array}$
$1 \begin{array}{llllll}1 & 0 & 0 & 0 & -1 & 0\end{array}$
$\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & -1\end{array}$
end

For example, cdd, cdd+ and scdd (sample program in cddlib, Version 0.94h) [5] takes the above file as input and outputs a V-representation of the polytope.

```
V-representation
begin
    1 1 6 \text { rational}
    100000
    100100
    110100
    1 0 0 0 0 1
    10010 1
    1 1 0 1 0 1
    100011
    100 1 1 1
    110111
```

```
    1
    1}1111141114
end
```

The polytope has eleven extreme points all of which are $0 / 1$, as these polytopes are $0 / 1$ in general. (The first 1 in each row indicates that the rest is an extreme point. For an unbounded polyhedron, each extreme ray generator is represented by a row starting with 0.$)$

Avis' lrs [1] does the same transformation by a completely different algorithm. Futhermore, lrs computes the volume of the polytope if it is given by V-representation. For example, it outputs the value $3 / 40$ for the order polytope above, which is $9 / 5$!.

References

[1] D. Avis. lrs homepage. http://cgm.cs.mcgill.ca/~ avis/C/lrs.html.
[2] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65:21-46, 1996.
[3] G. Brightwell and P. Winkler. Counting linear extensions is \#P-complete. Order, 8:225-242, 1991.
[4] A. Frank. How to make a digraph strongly connected. Combinatorica, 1(2):145-153, 1981.
[5] K. Fukuda. cdd, cddplus and cddlib homepage. Swiss Federal Institute of Technology, Zurich. http://www.inf.ethz.ch/personal/fukudak/cdd_home/index.html.
[6] K. Fukuda, A. Prodon, and T. Sakuma. Notes on acyclic orientations and the shelling lemma. Theoretical Computer Science, 263:9-16, 2001. ps file available from ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/acyclic980112.ps.gz.
[7] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.
[8] L.G. Khachiyan. Complexity of polytope volume computation. In J. Pach, editor, New Trends in Discrete and Computational Geometry, pages 91-101. Springer Verlag, Berlin, 1993.
[9] D.E. Knuth and J.L. Szwarcfiter. A structured program to generate all topological sorting arrangements. Information Processing Letters, 2:153-157, 1974.
[10] N. Linial. Hard enumeration problems in geomety and combinatorics. SIAM J. Alg. Disc. Meth., 7:331-335, 1986.
[11] G. Pruesse and F. Ruskey. Generating linear extensions fast. preprint, 1993. to appear in SIAM J. Computing.
[12] R. P. Stanley. Two poset polytopes. Discrete Comput. Geom., 1(1):9-23, 1986.

