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Order Polytope

Let G = (V,E) be an acyclic digraph with V = [n] := {1, 2, . . . , n}. One might want to
consider G as a representation of the partially ordered set (poset) V : i > j if and only if
there is a directed path from node i to node j.

A permutation π of [n] is called a linear extension of G (or the associated poset V ) if

π−1(i) > π−1(j) for every edge
−→
ij ∈ E.

There are several fundamental problems associated with linear extensions of a partially
ordered set. Computing the number #LE(G) of linear extensions is known to be hard, #P-
complete by Brightwell and Winkler [3], that was conjectured by Linial [10].

There are polynomial algorithms to list all linear extensions, see e.g. [9, 2, 11]. Here
“polynomial” means the computational time is bounded by a polynomial function of input
and output sizes.

Khachiyan [8] showed that the hardness of the counting problem implies computing the
volume of an H-polytope is #P-hard. This reduction uses the following polytope associated
with a poset.

Let PLE(G) be the polytope in Rn defined by

PLE(G) = {x ∈ Rn | 1 ≥ xi ≥ 0 for all i=1,2,. . . ,n, and

xi ≥ xj for all directed edges
−→
ij ∈ E}.

The polytope PLE(G) is known as the order polytope of G (of the associated partial order).
The following properties are known [12, 10].

(a) PLE(G) is a 0/1-polytope, i.e. all extreme points are in {0, 1}n.

(b) There is a one-to-one correspondence between the extreme points and the ideals of the
poset. Here, an ideal (sometimes called “upper ideal” or “up-set”) of a poset V is a
subset S of V such that if i, j ∈ V , j > i and i ∈ S then j ∈ S.

(c) The volume of PLE(G) is equal to #LE(G)/n!.

There are several combinatorial optimization problems related to linear extensions of
acyclic graphs. For example, the minimum feedback arcset problem [7] and the strongly
connected reorientation problem [4] can be stated as geometric problems on closely related
polyhedra and arrangements, see [6].
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Input Listing Counting
G λLE(G) #LE(G)

1

2

3

45

1 2 3 4 5
π0= 12345 9

acyclic digraph 12 34 5
π1= 21435

π2 = 21345
π3 = 12435
π4 = 24135
π5 = 12453
π6 = 21453
π7 = 24153
π8 = 24513

Results of computation with polyhedral computation codes

Polyhedra format , defined by Avis and Fukuda, provides a simple standard way to write both
H- and V-representation of a general polyhedron. An inequality system of form b+ Ax ≥ 0
defines an H-polyhedron and its Polyhedra format is

H-representation

begin

m d+1 <number type>

b A

end

where A is an m× d matrix and <number type> must be one of integer, rational or real.
If all generators of a polyhedron is known, then it is a V-polyhedron. For example,

if P is a V-polyhedron given by n generating points and s generating directions (rays) as
P = conv(v1, . . . , vn) + nonneg(r1, . . . , rs). Then its Polyhedra V-format for P is
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V-representation

begin

n+s d+1 <numbertype>

1 v1

.

1 vn

0 r1

.

0 rs

end

The linear extension polytope in the example above is an H-polytope and it can be
written in polyhedra format as

H-representation

begin

14 6 integer

0 -1 0 1 0 0

0 0 -1 1 0 0

0 0 -1 0 1 0

0 0 0 0 -1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 -1 0 0 0 0

1 0 -1 0 0 0

1 0 0 -1 0 0

1 0 0 0 -1 0

1 0 0 0 0 -1

end

For example, cdd, cdd+ and scdd (sample program in cddlib, Version 0.94h) [5] takes
the above file as input and outputs a V-representation of the polytope.

V-representation

begin

11 6 rational

1 0 0 0 0 0

1 0 0 1 0 0

1 1 0 1 0 0

1 0 0 0 0 1

1 0 0 1 0 1

1 1 0 1 0 1

1 0 0 0 1 1

1 0 0 1 1 1

1 1 0 1 1 1
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1 0 1 1 1 1

1 1 1 1 1 1

end

The polytope has eleven extreme points all of which are 0/1, as these polytopes are 0/1
in general. (The first 1 in each row indicates that the rest is an extreme point. For an
unbounded polyhedron, each extreme ray generator is represented by a row starting with
0.)

Avis’ lrs [1] does the same transformation by a completely different algorithm. Futher-
more, lrs computes the volume of the polytope if it is given by V-representation. For example,
it outputs the value 3/40 for the order polytope above, which is 9/5!.
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