TOPCOM: Triangulations of Point Configurations and Oriented Matroids - Jörg Rambau

Clemens Pohle
Basics

- \(A \subset \mathbb{R}^d \): \(d \)-dimensional configuration of \(n \) points
- \(k \)-simplex: sub-configuration of \(A \) consisting of \(k + 1 \) affinely independent points
- triangulation: collection \(T \) of \(d \)-simplices whose convex hulls cover \(\text{conv}(A) \) and intersect properly:
 \[\forall \sigma, \tau \in T : \text{conv}(\sigma \cap \tau) = \text{conv}(\sigma) \cap \text{conv}(\tau) \]
Chirotepe

- Chirotepe: function \((d+1) \choose A \rightarrow \{+, -, 0\} \) (gives the orientation of every \(d + 1 \)-subset of \(A \))

- Fact: Chirotepe contains all the information we need!
What can we do with TOPCOM?

Example:

\begin{tikzpicture}
 \coordinate (0) at (0,0);
 \coordinate (1) at (1,1);
 \coordinate (2) at (3,1);
 \coordinate (3) at (5,0);
 \coordinate (4) at (1,5);
 \coordinate (5) at (0,0);

 \draw (0) -- (1) -- (2) -- (3) -- (0);
 \draw (0) -- (4) -- (3);
 \draw (1) -- (4) -- (2);
 \draw (2) -- (4) -- (3);

 \node at (0) [above] {0};
 \node at (1) [above] {1};
 \node at (2) [above] {2};
 \node at (3) [above] {3};
 \node at (4) [above] {4};

 \node at (0) [left] {(0, 0)};
 \node at (1) [left] {(1, 1)};
 \node at (2) [left] {(3, 1)};
 \node at (3) [left] {(5, 0)};
 \node at (4) [left] {(1, 5)};
\end{tikzpicture}
Compute the chirotope

\[\chi(i_1, i_2, \ldots, i_{d+1}) = \text{sign}(\det(a_{i_1}, a_{i_2}, \ldots, a_{i_{d+1}})) \]
Construct a Placing Triangulation

- \mathcal{A}_k: set of points that is already triangulated
- T_k: placing triangulation of \mathcal{A}_k
- \mathcal{F}_k: set of all boundary facets of T_k that are interior in \mathcal{A}

Start with a d-simplex
In each step, add a point a_{k+1} and all simplices $F \cup a_{k+1}$ for which $F \in \mathcal{F}_k$ is visible from a_{k+1}
Stop when \mathcal{F}_k is empty
Remarks:

- The resulting triangulation depends on the numbering of the points.
- It's possible that not all points are used for the triangulation.
- To get a triangulation using all points (fine triangulation), the missing points are added one by one by 'flipping-in'.
Flips

Flip: exchange between the two possible triangulations in a subset of $d + 2$ points

$d = 1$:

$d = 2$:
Explore a flip-graph component

Flip graph: triangulations as vertices, two triangulations are connected if they differ by a flip
Explore a flip-graph component

The flip-graph of a regular hexagon
Check a potential triangulation

Theorem

Let A be a full-dimensional point configuration in \mathbb{R}^d. A set T of d-simplices of A is a triangulation of A if and only if

- For every pair S, S' of simplices in T, there exists no circuit (Z^+, Z^-) in A with $Z^+ \subseteq S$ and $Z^- \subseteq S'$ (Intersection Property).

- For each facet of a simplex S in T there is another simplex $S' \neq S$ having F as a facet, or F is contained in a facet of A (Union Property).

Circuit: partition of a minimal affinely dependent set into Z^+ and Z^- such that $\text{conv}(Z^+) \cap \text{conv}(Z^-) \neq \emptyset$
References

- http://www.rambau.wm.uni-bayreuth.de/TOPCOM
- Francisco Santos, Triangulations of polytopes: personales.unican.es/santosf/Talks/icm2006.pdf