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Abstract
We show that a set of n points in the plane has at most
O(10.05n) perfect matchings with crossing-free straight-line
embedding. The expected number of perfect crossing-free
matchings of a set of n points drawn i.i.d. from an arbitrary
distribution in the plane is at most O(9.24n).

Several related bounds are derived: (a) The number
of all (not necessarily perfect) crossing-free matchings is
at most O(10.43n). (b) The number of left-right perfect
crossing-free matchings (where the points are designated as
left or as right endpoints of the matching edges) is at most
O(5.38n). (c) The number of perfect crossing-free matchings
across a line (where all the matching edges must cross a fixed
halving line of the set) is at most 4n.

These bounds are employed to infer that a set of n points
in the plane has at most O(86.81n) crossing-free spanning
cycles (simple polygonizations), and at most O(12.24n)
crossing-free partitions (partitions of the point set, so that
the convex hulls of the individual parts are pairwise disjoint).

1 Introduction

Let P be a set of n points in the plane. A geometric
graph on P is a graph that has P as its vertex set and
its edges are drawn as straight segments connecting the
corresponding pairs of points. The graph is crossing-
free if no pair of its edges cross each other, i.e., any two
edges are not allowed to share any points other than
common endpoints. Therefore, these are planar graphs
with a plane embedding given by this specific drawing.
We are interested in the number of crossing-free geo-
metric graphs on P of several special types. Specifically,
we consider the numbers tr(P ), of triangulations (i.e.,
maximal crossing-free graphs), pm(P ), of crossing-free
perfect matchings, sc(P ), of crossing-free spanning cy-
cles, and, cfp(P ), of crossing-free partitions1 (partitions
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1Our research was triggered by M. van Kreveld asking about
the number of crossing-free partitions, and, in the same week,
by M. Hoffmann and Y. Okamoto asking about the number

of P , so that the convex hulls of the parts are pairwise
disjoint). We are concerned with upper bounds for the
numbers listed above in terms of n.

History. This problem goes back to Newborn and
Moser [25] in 1980 who ask for the maximal possible
number of crossing-free spanning cycles in a set of n
points2; they give an upper bound of 2 · 6n−2

⌊
n
2

⌋
! but

conjecture that the bound should be of the form cn,
c a constant. This was established in 1982 by Ajtai,
Chvátal, Newborn, and Szemerédi [4], who show3 that
there are at most 1013n crossing-free graphs.4

Further developments were mainly concerned with
deriving progressively better upper bounds for the num-
ber of triangulations5 [29, 13, 28], so far culminating in
a 59n upper bound by Santos and Seidel [27] in 2003.
It compares to Ω(8.48n), the largest known number of
triangulations for a set of n points, recently derived
by Aichholzer et al. [1]; this improves an earlier lower
bound of 8n/poly(n) given by Garćıa et al. [17]. (We
let “poly(n)” denote a polynomial factor in n.)

Every crossing-free graph is contained in some
triangulation (with at most 3n − 6 edges). Hence, a cn

bound for the number of triangulations yields a bound of
23n−6cn < (8c)n for the number of crossing-free graphs
on a set of n points; with c ≤ 59, this is at most 472n.
To the best of our knowledge, all upper bounds so far on
the number of crossing-free graphs of various types are
derived via a bound on the number of triangulations,

of crossing-free spanning paths of a point set (motivated by
their quest for good fixed parameter algorithms for the planar
Euclidean Traveling Salesman Problem in the presence of a fixed
number of inner points [10]); see also [19].

2Akl’s work [5] appeared earlier, but it refers to the manuscript
by Newborn and Moser, and improves a lower bound (on the
maximal number of crossing-free spanning cycles) of theirs.

3This paper is famous for its Crossing Lemma, proved in
preparation of the singly exponential bound. The lemma gives
an upper bound on the number of edges a geometric graph with
a given number of crossings can have.

4For motivation they mention also a question of D. Avis about
the maximum number of triangulations a set of n points can have.

5Interest was also motivated by the related question (from
geometric modeling [29]) of how many bits it takes to encode
a triangulation.



Figure 1: 6 points with 12 crossing-free perfect matchings, the maximum possible number; see [3] for the maximum
numbers for up to ten points: 3 for 4 points, 12 for 6, 56 for 8, and 311 for 10.

albeit in more refined ways. One idea is to exploit the
fact that graphs of certain types have a fixed number
of edges; e.g., since a perfect matching has n

2 edges, we

readily obtain pm(P ) ≤
(
3n−6
n/2

)
tr(P ) < 227.98n [14].

A short historical account of bounds on sc(P ), with
references including [5, 12, 17, 18, 20, 25, 26], can be
found at the web site [11] (see also [8]). The best bound
published is 3.37n tr(P ) ≤ 198.83n. It relies on a 3.37n

bound on the number of cycles in a planar graph [6]. In
the course of our investigations, we showed that a graph
with m edges and n vertices has at most

(
m
n

)n
cycles;

hence, a planar graph has at most 3n cycles. Then R.
Seidel provided us with an argument, based on linear
algebra, that a planar graph has at most

√
6

n
< 2.45n

spanning cycles.
Crossing-free partitions fit into

Figure 2: Graph
of a crossing-free
partition.

the picture, since every such parti-
tion can be uniquely identified with
the graph of edges of the convex hulls
of the individual parts—these edges
form a crossing-free geometric graph
of at most n edges; see Fig. 2.

The situation is better under-
stood for special configurations, for

example for P a set of n points in convex position (the
vertex set of a convex n-gon), where the Catalan num-
bers Cm := 1

m+1

(
2m
m

)
= Θ(m−3/24m), m ∈ N0, play a

prominent role. In convex position tr(P ) = Cn−2 (the
Euler-Segner problem, cf. [30, pg. 212] for its history),
pm(P ) = Cn/2 for n even ([16], cf. [30]), sc(P ) = 1, and
cfp(P ) = Cn ([7]).

Crossing-free partitions for point sets in convex
position constitute a well-established notion because
of its many connections to other problems, probably
starting with “planar rhyme schemes” in Becker’s note
[7], cf. [30, Solution to 6.19pp]. The general case was
considered by [9] (under the name of pairwise linearly
separable partitions) for clustering algorithms. They
show that that the number of partitions into k parts is
O(n6k−12) for k constant.

Under the assumption of general position (no three
points on a common line) it is known [17] that the
number of crossing-free perfect matchings on a set
of fixed size is minimized when the set is in convex
position. (Recently, Aichholzer et al. [1] showed that
any family of acyclic graphs has the minimal number
of crossing-free embeddings on a point set in convex

position.) With little surprise, the same holds for
spanning cycles, but it does not hold for triangulations
[21, 2, 23]. For crossing-free partitions, this is open.

Results. We show the following bounds, for a set
P of n points in the plane: pm(P ) = O(10.05n),
sc(P ) = O(86.81n), and cfp(P ) = O(12.24n). Also,
the expected number of perfect crossing-free matchings
of a set of n points drawn i.i.d. from any distribution
in the plane (where two random points coincide with
probability 0) is O(9.24n).

The bound on the number of crossing-free perfect
matchings is derived by an inductive technique that we
have adapted from the method that Santos and Sei-
del [27] used for triangulations (the adaption however
is far from obvious). We then go on to derive im-
proved bounds on the number of crossing-free match-
ings of various special types: (a) The number of all
(not necessarily perfect) crossing-free matchings is at
most O(10.43n). (b) The number of left-right perfect
crossing-free matchings (where the points are designated
as left or as right endpoints of the matching edges) is at
most O(5.38n). (c) The number of perfect crossing-free
matchings across a line (where all the matching edges
must cross a fixed halving line of the set) is at most 4n.

Finally, we derive upper bounds for the numbers
of crossing-free spanning cycles and crossing-free parti-
tions of P in terms of the number of certain types of
matchings of certain point sets P ′ that are constructed
from P . This yields the bounds as stated above.

We summarize the state of affairs in Table 1,
(including lower bounds—proofs are omitted here). In
work in progress, we are currently refining a tailored
analysis for spanning cycles and trees, where the bounds
now stand at O(79n) and O(296n), respectively.

tr pm sc cfp

∀P :≤ 59 [27] 10.05 86.81 12.24

∃P :≥ 8.48 [1] 3 [17] 4.64 [17] 5.23

ma lrpm alpm rdpm

∀P :≤ 10.43 5.38 4 9.24

∃P :≥ 4 2 2 3

Table 1: Entries c in the upper bound rows stand for O(cn),
and entries c in the lower bound rows for Ω(cn/poly(n)),
where n := |P |. “ma” stands for all crossing-free matchings,
“lrpm” for perfect left-right crossing-free matchings, “alpm”
for perfect crossing-free matchings across a line, and “rdpm”
for the expected number of perfect crossing-free matchings
of a set of i.i.d. points.



2 Matchings: The Setup and a Recurrence

Let P be a set of n points in the plane in general
position, no three on a line, no two on a vertical line.
This is no constraint when it comes to upper bounds on
pm(P ). A crossing-free matching M is a collection of
pairwise disjoint segments whose endpoints belong to P .
Each point of P is either matched, if it is an endpoint of
a segment of M , or isolated, otherwise. The number of
matched points is always even. If 2m points are matched
and s points are isolated, we call M a crossing-free m-
matching or (m, s)-matching. We have n = 2m + s.

For m ∈ R we denote by mam(P ) the number
of crossing-free matchings of P with m segments (this
number is 0 unless m ∈ {0, 1, . . . ,

⌊
n
2

⌋
}), and by ma(P )

the number of all crossing-free matchings of P (i.e.
ma(P ) =

∑

m mam(P )). Recall pm(P ) = man/2(P ).
Let M be a crossing-free (m, s)-matching on a set

P of n = 2m + s points, as above. The degree d(p)
of a point p ∈ P in M is defined as follows. It
is 0 if p is isolated in M . Otherwise, if p is a left
(resp., right) endpoint of a segment of M , d(p) is equal
to the number of visible left (resp., right) endpoints
of other segments of M , plus the number of visible
isolated points; “visible” means vertically visible from
the relative interior of the segment of M that has p
as an endpoint. Thus p and the other endpoint of the
segment are not counted in d(p). See Fig. 3.

Each left (resp., right) end-
PSfrag replacements u

v

wz

Figure 3: Degrees in
a matching: d(u) = 2,
d(v) = 5, d(w) = 1,
d(z) = 2.

point u in M can contribute at
most 2 to the degrees of other
points: 1 to each of the left
(resp., right) endpoints of the
segments lying vertically above
and below u, if there exist such
segments. Similarly, each iso-
lated point u can contribute at
most 4 to the degrees of other
points: 1 to each of the endpoints of the segments
lying vertically above and below u. It follows that
∑

p∈P d(p) ≤ 4m + 4s.
There are many segments ready for removal.

The idea is to remove segments incident to points of low
degree in an (m, s)-matching (points of degree at most
3 or at most 4, to be specific). We will show that there
are many such points at our disposal. Then, in the next
step, we show that segments with an endpoint of low
degree can be reinserted in not too many ways. These
two facts will be combined to derive a recurrence for the
matching count.

For i ∈ N0, let vi = vi(M) denote the number
of matched points of P with degree i in M . Hence,
∑

i≥0 vi = 2m.

Lemma 2.1. Let n, m, s ∈ N0, with n = 2m + s. In
every (m, s)-matching of any set of n points, we have

2n ≤ 4v0 + 3v1 + 2v2 + v3 + 6s ,(2.1)

3n ≤ 5v0 + 4v1 + 3v2 + 2v3 + v4 + 7s .(2.2)

Proof. Let P be the underlying point set. We have
∑

i≥0 i vi =
∑

p∈P d(p) ≤ 4s + 4m = 4s +
∑

i≥0 2vi .

Therefore, 0 ≤ 4s +
∑

i≥0(2 − i)vi. For κ ∈ R
+

, we add
κ times n = s +

∑

i≥0 vi to both sides to get

κn ≤ (4 + κ)s +
∑

i≥0(2 + κ − i)vi

≤ (4 + κ)s +
∑

0≤i<2+κ(2 + κ − i)vi .

We set κ = 2 for (2.1) and κ = 3 for (2.2).
There are not too many ways of inserting a

segment. Fix some p ∈ P and let M be a crossing-
free matching which leaves p isolated. Now we match
p with some other isolated point such that the overall
matching continues to be crossing-free. For i ∈ N0, let
hi = hi(p, P, M) be the number of ways that can be
done so that p has degree i after its insertion.

Lemma 2.2.

4h0 + 3h1 + 2h2 + h3 ≤ 24 ,(2.3)

5h0 + 4h1 + 3h2 + 2h3 + h4 ≤ 48 .(2.4)

Proof. Let `i = `i(p, P, M) be the number of ways
we can match the point p as a left endpoint of degree i.
First, we claim that `0 ∈ {0, 1}.

To show this, form the vertical decomposition of M
by drawing a vertical segment up and down from each
(matched or isolated) point of P \{p}, and extend these
segments until they meet an edge of M , or else, all
the way to infinity; see Fig. 4. We call these vertical
segments walls in order to distinguish them from the
segments in the matching.

We obtain a decomposition
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Figure 4: Inserting a
segment at p; d(p) = 1
after insertion.

of the plane into vertical trape-
zoids. Let τ be the trapezoid
containing p (assuming general
position, p lies in the interior of
τ). See Fig. 4.

We move from τ to the right
through vertical walls to adja-
cent trapezoids until we reach a
vertical wall that is determined
by a point v that is either a left endpoint or an isolated
point (if at all—we may make our way to infinity when
p cannot be matched as a left endpoint to any point, in
which case `i = 0 for all i).

Note that up to that point there was always a
unique choice for the next trapezoid to enter. Every
crossing-free segment with p as its left endpoint will
have to go through all of these trapezoids. It connects
either to v (which can happen only if v is isolated),



or crosses the vertical wall up or down from v. The
former case yields a segment that gives p degree 0. In
the latter case, v will contribute 1 to the degree of p.
So pv, if an option, is the only possible segment that
lets p have degree 0 as a left endpoint. (pv will not be
an option when it crosses some segment, or when v is
a left endpoint.) We will return to this set-up when
we consider degrees ≥ 1, in which case v acts as a
bifurcation point. Before doing so, we first introduce
a function f . It maps every nonnegative real vector
(λ0, λ1, . . . , λk) of arbitrary length k + 1 ∈ N to the
maximum possible value the expression
(2.5) λ0`0 + λ1`1 + · · · + λk`k

can attain (for any isolated point in any matching of any
finite point set of any size). We have already shown

that f(λ) ≤ λ for λ ∈ R
+

0 . We claim that for all

(λ0, λ1, . . . , λk) ∈ (R
+

0 )k+1, with k ≥ 1, we have

(2.6) f(λ0, λ1, . . . , λk) ≤ max

{
λ0 + f(λ1, . . . , λk),
2f(λ1, . . . , λk).

Assuming (2.6) has been established, we can conclude
that f(1) ≤ 1, f(2, 1) ≤ 3, f(3, 2, 1) ≤ 6, and
f(4, 3, 2, 1) ≤ 12; that is, 4`0 + 3`1 + 2`2 + `3 ≤ 12
and the first inequality of the lemma follows, since the
same bound clearly holds for the case when p is a right
endpoint. The second inequality follows similarly from
f(5, 4, 3, 2, 1) ≤ 24.

It remains to prove (2.6). Consider a constel-
lation with a point p that realizes the value of
f(λ0, λ1, . . . , λk). We return to the set-up from above,
where we have traced a unique sequence of trapezoids
from p to the right, till we encountered the first bifur-
cation point v (if v does not exist then all `i vanish).
Case 1: v is isolated. We know that λ0`0 ≤ λ0. If
we remove v from the point set, then every possible
crossing-free segment emanating from p to its right has
its degree decreased by 1. Therefore, λ1`1 + · · · +
λk`k ≤ f(λ1, . . . , λk), so the expression (2.5) cannot
exceed λ0 + f(λ1, . . . , λk) in this case.
Case 2: v is a matched left endpoint. Then λ0`0 = 0
(that is, we cannot connect p to v). Possible crossing-
free segments with p as a left endpoint are discriminated
according to whether they pass above or below v. We
first concentrate on the segments that pass above v;
we call them relevant segments (emanating from p).
Let `′i be the number of relevant segments that give
p degree i. We carefully remove isolated points from
P \ {p} and segments with their endpoints from the
matching M (eventually also the segment of which v
is a left endpoint), so that in the end all relevant
segments are still available and each one, if inserted,
makes the degree of p exactly 1 unit smaller than its
original value (this deletion process may create new
possibilities for segments from p). That will show

λ1`
′
1 + · · · + λk`′k ≤ f(λ1, . . . , λk). The same will

apply to segments that pass below v, using a symmetric
argument, which gives the bound of 2f(λ1, . . . , λk) for
(2.5) in this second case.

The removal process is performed as follows. We
define a relation ≺ on the set whose elements are the
edges of M and the singleton sets formed by the isolated
points of P \ {p}: a ≺ b if a point a′ ∈ a is vertically
visible from a point b′ ∈ b, with a′ below b′. As is well
known (cf. [15, Lemma 11.4]), ≺ is acyclic. Let ≺+

denote the transitive closure of ≺, and let ≺∗ denote
the transitive reflexive closure of ≺.

Let e be the segment with v as its left endpoint,
and consider a minimal element a with a ≺+ e. Such
an element exists, unless e itself is a minimal element
with respect to ≺.

a is a singleton: So it consists of an isolated point; with
abuse of notation we also denote by a the isolated point
itself. a cannot be a point to which p can connect with
a relevant edge. Indeed, if this were the case, we add
that edge e′ = pa and modify ≺ to include e′ too; more
precisely, any pair in ≺ that involves a is replaced by a
corresponding pair involving e′, and new pairs involving
e′ are added (clearly, the relation remains acyclic and all
pairs related under ≺+ continue to be so related after
e′ is included and replaces a). See Fig. 5(a). We have
e ≺ e′ (since, by assumption, the left endpoint v of
e is vertically visible below e′), and e′ ≺+ e (since the
right endpoint a of e′ satisfies a ≺+ e)—a contradiction.
With a similar reasoning we can rule out the possibility
that a contributes to the degree of p when matched via
a relevant edge pq. Indeed, if this were the case, let
e′′ be the segment directly above a, which is the first
link in the chain that gives a ≺+ e, i.e., a ≺ e′′ ≺∗ e
(e′′ must exist since a ≺+ e). After adding pq with
a contributing to its degree, we have either a ≺ pq and
pq ≺ e′′ (see Fig. 5(b)), or we have pq ≺ a (see Fig. 5(c)).
In the former case, we have a ≺ pq ≺ e′′ ≺∗ e ≺ pq—
contradicting the acyclicity of ≺. In the latter case, we
have pq ≺ a ≺+ e ≺ pq, again a contradiction. So if we
remove a, then all relevant edges from p remain in the
game and the degree of each of them (i.e., the degree of
p that the edge induces when inserted) does not change.

(a)

ap

v

e

e′
p

v

e

(b)

q

a

e′′

p

q
a

v
e

e′′

(c)

Figure 5: (a) The point a cannot be connected to p via a
relevant edge. (b,c) a cannot contribute from below (in (b))
or from above (in (c)) to the degree of p when a relevant
edge pq is inserted.



a is an edge: It cannot obstruct any isolated point or
left endpoint below it from contributing to the degree of
a relevant edge pq above v (because a is minimal with
respect to ≺). If a obstructs a contribution to a relevant
edge pq from above, then we add pq, thus pq ≺ a
which, together with a ≺+ e and e ≺ pq, contradicts
the acyclicity of ≺ (Fig. 6). Again, we can remove a
without any changes to relevant possible edges from p.

We keep successively re-

PSfrag replacements
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Figure 6: Edge a can-
not obstruct a point
from contributing from
above to the degree of
p when a relevant edge
pq is inserted.

moving elements until e is min-
imal with respect to ≺. Note
that so far all the relevant edges
from p are still possible, and the
degree of p that any of them
induces when inserted has not
changed. Now we remove e
with its endpoints. This can-
not clear the way for any new
contribution to the degree of a relevant edge. In fact,
any such degree decreases by exactly 1 because v disap-
pears. The claim is shown, and the proof of the lemma
is completed.

Deriving a recurrence.

Lemma 2.3. Let n, m ∈ N0, such that m ≤ n
2 and

s := n − 2m. For every set P of n points, we have

mam(P ) ≤







12(s+2)
n−3s mam−1(P ) if s < n

3 , and

16(s+2)
n−7s/3 mam−1(P ) if s < 3n

7 .

Let us note right away that the first inequality super-
sedes the second for s < n

5 (i.e. m > 2n
5 ), while the

second one is superior for s > n
5 .

Proof. Fix the set P , and let X and Y be the sets
of all crossing-free m-matchings and (m−1)-matchings,
respectively, in P .

Let us concentrate on the first inequality. We define
an edge-labeled bipartite graph G on X

.
∪ Y as follows:

Given an m-matching M , if p is an endpoint of a
segment e ∈ M and d(p) ≤ 3, then we connect M ∈ X
to the (m − 1)-matching M \ {e} ∈ Y with an edge
labeled (p, d(p)); d(p) is the degree label of the edge.
Note that M and M \ {e} can be connected by two
(differently labeled) edges, if both endpoints of e have
degree at most 3.

For 0 ≤ i ≤ 3, let xi denote the number of edges in
G with degree label i. We have

(2n− 6s) |X |
︸︷︷︸

mam(P )

≤4x0 + 3x1 + 2x2 + x3≤24(s + 2) |Y|
︸︷︷︸

mam−1(P )

.

The first inequality is a consequence of inequality (2.1)
of Lemma 2.1. The second inequality is implied by
inequality (2.3) in Lemma 2.2, as follows. For a fixed

(m−1)-matching M ′ in P , consider an edge of G that is
incident to M ′ and is labeled by (p, i) (if there is such an
edge). Then p must be one of the s+2 isolated points of
P (with respect to M ′), and there is a way to connect
p to another isolated point in a crossing-free manner,
so that p has degree i in the new matching. Hence, the
contribution by p and M ′ to the sum 4x0+3x1+2x2+x3

is at most 24, by inequality (2.3) in Lemma 2.2, and
the right inequality follows. The combination of both
inequalities yields the first inequality the lemma.

By considering endpoints up to degree 4 (instead of
3), we get the second inequality.

For m, n ∈ N0, let mam(n) be the maximum number
of crossing-free m-matchings a set of n points can have.

Lemma 2.4. For s, m, n ∈ N0, with n = 2m + s,
ma0(0) = 1,

mam(n) ≤







n
s mam(n − 1), for s ≥ 1,
12(s+2)
n−3s mam−1(n), for s < n

3 ,
16(s+2)
n−7s/3 mam−1(n), for s < 3n

7 .

Proof. ma0(0) = 1 is trivial.
The first of the three inequalities is implied by

s · mam(P ) =
∑

p∈P mam(P \ {p}) ≤ n · mam(n − 1) ,
for any set P of n points. The second and third
inequalities follow from Lemma 2.3.

3 Solving a Recurrence

We derive an upper bound for a function G ≡
Gλ,µ : N

2
0 → R

+

, for a pair of parameters λ, µ ∈ R
+

,
µ ≥ 1, which satisfies (with s := n − 2m)

G(0, 0) = 1,

G(m, n) ≤
{ n

s G(m, n − 1), for s ≥ 1,

λ(s+2)
n−µs G(m − 1, n), for s < n

µ .
(3.7)

The recurrence in Lemma 2.4 implies that an upper
bound on G12,3(m, n) serves also as an upper bound
for mam(n), and the same holds for G16,7/3(m, n). We
will see how to best combine the two parameter pairs,
to obtain even better bounds for mam(n). Later, we will
encounter other instances of this recurrence, with other
values of λ and µ.

We divide by λmµn−m. Then (3.7) becomes

G(m, n)

λmµn−m
≤







n
µs

G(m,n−1)
λmµn−1−m , for s ≥ 1,

µ(s+2)
n−µs

G(m−1,n)
λm−1µn−m+1 , for s < n

µ .

We set H(m, n) = Hµ(m, n) := G(m,n)
λmµn−m . Therefore,

still with the convention s := n−2m and the assumption
µ ≥ 1, we have (note independence of λ)

H(0, 0) = 1,

H(m, n) ≤
{ n

µs H(m, n − 1), for s ≥ 1,

µ(s+2)
n−µs H(m − 1, n), for s < n

µ .
(3.8)



Lemma 3.1. Let m, n ∈ N0, with m ≤ n
2 . Then

H(m, n) ≤
(

n
m

)
.

Proof . H(0, 0) = 1 ≤
(
0
0

)
forms the basis of a

proof by induction on n and m. For all n ∈ N0,
H(0, n) ≤ µ−n ≤ 1 =

(
n
0

)
follows, since µ ≥ 1.

Let 1 ≤ m ≤ n
2 . If m ≤ n − µs then s ≤ n−m

µ < n
µ .

Hence, the second inequality in (3.8) can be applied,
after which the first inequality can be applied. Hence,

H(m, n) ≤ µ(s+2)
n−µs H(m − 1, n)

≤ µ(s+2)
n−µs

n
µ(s+2) H(m − 1, n − 1)

≤ n
m

(
n−1
m−1

)
=

(
n
m

)
.

Otherwise, m > n − µs holds, which ensures µs >
n − m ≥ 0, i.e., s ≥ 1. We can therefore employ the
first inequality of (3.8), and obtain
H(m, n) ≤ n

µs H(m, n − 1) < n
n−m

(
n−1
m

)
=

(
n
m

)
.

By expanding along the first inequality for a while
before employing Lemma 3.1, we get

H(m, n) ≤ n
µs · · · n−k+1

µ(s−k+1) H(m, n − k)

≤ 1
µk

(
∏k−1

i=0
n−i
s−i

) (
n−k
m

)

= 1
µk

(n
k)

(s
k)

(
n−k
m

)
(3.9)

= 1
µk

(2m
m )

(n−m−k
m )

(
n

2m

)
, for N0 3 k ≤ s.(3.10)

When we stop this unwinding of the recurrence, we
could have alternatively proceeded one more step, and
upper bound H(m, n − k) by n−k

µ(s−k)

(
n−k−1

m

)
, provided

k < s. As long as this expression is smaller than
(
n−k
m

)
,

we should indeed have expanded further. That is, we
expand as long as

n−k
µ(s−k)

(
n−k−1

m

)
<

(
n−k
m

)

⇔ k < µs+m−n
µ−1 = n − m

(
2µ−1
µ−1

)

= n − m
ρ ,

for ρ := µ−1
2µ−1 . That is, the best choice of k in (3.9) is

(3.11) k =
⌈

n − m
ρ

⌉

= n −
⌊

m
ρ

⌋

.

In fact, if this suggested value of k is negative (or if
ρ = 0), we should not expand at all. Instead, we try to
expand along the second inequality of (3.8), to get

H(m, n) ≤
( s

2 +k
k

)

( n
2µ− s

2

k

)

(
n

m − k

)

,(3.12)

for N0 3 k < n
2µ − s

2 + 1 = m − µ−1
2µ n + 1; we employ

here the usual generalization of binomial coefficients
(
a
k

)

to a ∈ R, namely,
(
a
k

)
:= a(a−1)···(a−k+1)

k! .

Rather than optimizing the value of k at which we
stop the unwinding of the second recurrence inequality
of (3.8), we approximate it by

(3.13) k =
⌈

m − µ−1
2µ−1 n

⌉

= m − bρnc ,

and note that it lies in the allowed range, provided it is
positive.

When m
n = ρ, both values suggested for k in

(3.11) and (3.13) are 0, which indicates that we have to
content ourselves with the bound

(
n
m

)
from Lemma 3.1.

Otherwise, it is clear which way to expand, since
m
n < ρ ⇒ n −

⌊
m
ρ

⌋

≥ 0 and m
n > ρ ⇒ m − bρnc ≥ 0.

We are now ready for an improved bound. For that we
substitute k in (3.9) according to (3.11), and in (3.12)
according to (3.13).

Lemma 3.2. Let m, n ∈ N0, where 2m ≤ n, and set
ρ := µ−1

2µ−1 . If m
n ≤ ρ, then

Hµ(m, n) ≤ 1
µn−bm/ρc

( n
n−bm/ρc)

( n−2m
n−bm/ρc)

(
bm/ρc

m

)

and for m
n > ρ, we have

Hµ(m, n) ≤ (
n
2

−bρnc

m−bρnc
)

(
m− n

2
(1− 1

µ
)

m−bρnc
)

(
n

bρnc

)
.

Thus, Gλ,µ(m, n) ≤ Gλ,µ(m, n) with

Gλ,µ(m, n) :=







λmµbm/ρc−m

(
n

n−bm/ρc

)

(
n−2m

n−bm/ρc

)

(bm/ρc
m

)

,

for m
n ≤ ρ, and

λmµn−m

( n
2 −bρnc

m−bρnc

)

(m−n
2 (1− 1

µ )

m−bρnc

)

(
n

bρnc

)

,

for m
n > ρ.

Next we work out a number of properties of the upper
bound Gλ,µ.

Estimates up to a polynomial factor. In the
following derivations, we sometimes use “≈n” to denote
equality up to a polynomial factor in n.

We will frequently use the following estimate (im-
plied by Stirling’s formula, cf. [22, Chapter 10, Corollary

9])
(

αn
dβne

)
≈n

(
αn

bβnc

)
≈n

(
αα

ββ(α−β)α−β

)n

, for α, β ∈ R,

α ≥ β ≥ 0.
Big m. We note that for m−1

n ≥ ρ

Gλ,µ(m, n) = λ(s+2)
n−µs Gλ,µ(m − 1, n).

(with s := n − 2m). Since λ(s+2)
n−µs < 1 ⇔ s < n−2λ

λ+µ ⇔
m > (λ+µ−1)n+2λ

2(λ+µ) , the function Gλ,µ(m, n) maximizes

for integers m in the range ρn ≤ m ≤ n
2 at

(3.14) m∗ :=
⌊

(λ+µ−1)n+2λ
2(λ+µ)

⌋

=
⌊

n
2 − n−2λ

2(λ+µ)

⌋

,

unless this value is not in the provided range.
However, m∗ ≤ n

2 unless n is very small (n < 2λ). And
m∗ ≥ ρn unless λ < µ − 1.



Small m. With the identity indicated in (3.10) we
have, for m

n ≤ ρ, that G can also be written as

(3.15) Gλ,µ(m, n) = λmµbm/ρc−m (2m
m )

(bm/ρc−m
m )

(
n

2m

)

≈m (4λ(µ − 1))m
(

n
2m

)
.

This bound peaks (up to an additive constant) at m∗∗ :=
⌊ √

λ(µ−1)

1+2
√

λ(µ−1)
n

⌋

. Note that m∗∗≤ρn for λ ≤ µ − 1.

We summarize, that Gλ,µ(m, n) attains its
maximum—up to a poly(n)-factor—over m at

m =

{
m∗∗ if λ ≤ µ − 1, and
m∗ otherwise.

(3.16)

In all applications in this paper we have λ > µ − 1, so
the peak occurs at m∗.

4 Matching Bounds

4.1 Perfect Matchings For perfect matchings we
consider the case where n is even, m = n

2 , and s = 0.
We note that in this case m/n = 1/2 > ρ, for any
value of µ. Hence, the second bound of Lemma 3.2
applies. We first calculate n

2 − n
2 (1 − 1

µ ) = 1
2µ n, and

n
2 − bρnc =

⌈
n
2 − µ−1

2µ−1 n
⌉

=
⌈

1
2(2µ−1) n

⌉

. Hence,

Gλ,µ

(n

2
, n

)

= (λµ)n/2

( 1
2µ n

⌈
1

2(2µ−1) n
⌉

)−1(
n⌊

µ−1
2µ−1 n

⌋

)

≈n (λµ)n/2







(
1

2(2µ−1)

) 1
2(2µ−1)

(
µ−1

2µ(2µ−1)

) µ−1
2µ(2µ−1)

(
1
2µ

) 1
2µ

(
µ−1
2µ−1

) µ−1
2µ−1

(
µ

2µ−1

) µ
2µ−1







n

=
(

λ
1
2 (µ − 1)−

µ−1
2µ (2µ − 1)

2µ−1
2µ

)n

.

Substituting (λ, µ) = (12, 3) and (16, 7
3 ), as suggested

by Lemma 2.4, we obtain the following upper bounds
for the number of crossing-free perfect matchings:

G12,3

(
n
2 , n

)
≈n

(

2
2
3 · 3 1

2 · 5 5
6

)n

= O(10.5129n) ,

G16, 7
3

(
n
2 , n

)
≈n

(

2
10
7 · 3− 1

2 · 11
11
14

)n

= O(10.2264n) .

While the second bound is obviously superior, we re-
member that the recurrence with (λ, µ) = (12, 3) is bet-
ter for m > 2n

5 (or s < n
5 ). This observation leads to

the following better bound for P a set of n points and
for k = bn

2 − 2n
5 c = b n

10c, where we expand as in the
first inequality of Lemma 2.3.

pm(P ) ≤
(
∏k−1

i=0
12(2i+2)

n−6i

)

man/2−k(P )

≤ 4k
(
n/6
k

)−1
G16,7/3(n/2 − k, n)

≈n

(

220/21 3−2/7 51/21 1111/14
)n

= O(10.0438n).

Perfect versus all matchings. Recall from

Lemma 2.3 that mam(P ) ≤ 12(s+2)
n−3s mam−1(P ). Note

that 12(s+2)
n−3s < 1 for m > 7n

15 + 4
5 (and in this range

the factor 12(s+2)
n−3s is smaller than the alternative of-

fered in Lemma 2.3). That is, there are always fewer
perfect matchings than there are

⌊
7n
15 + 4

5

⌋
-matchings.

More specifically, for sets P with n := |P | even, and for
k = n

2 −
⌊

7n
15 + 4

5

⌋
=

⌈
n
30 − 4

5

⌉
, we have

pm(P ) = man/2(P ) ≤
k−1∏

i=0

12(2i + 2)

n − 6i
man/2−k(P )

=
(

12·2
6

)k (
n/6
k

)−1
man/2−k(P )

≈n 4n/30
((

1
5

)1/5 (
4
5

)4/5
)n/6

mab 7n
15 + 4

5 c
(P )

=
(

21/3 5−1/6
)n

mab 7n
15 + 4

5 c
(P ) .

Therefore, pm(P ) ≤
(
21/3 5−1/6

)n
ma(P )poly(n) =

O(0.9635n) ma(P ), i.e. in every point set there are
exponentially (in n) more crossing-free matchings than
there are crossing-free perfect matchings.

4.2 All Matchings Our considerations in the deriva-
tion of the bound for perfect matchings imply the fol-
lowing upper bound for matchings with m segments.

mam(P ) ≤







G16,7/3(m, n) , m ≤ 2n
5 ,

G12,3(m, n)
G16,7/3( 2n

5 ,n)

G12,3( 2n
5 ,n)

, otherwise.

To determine where this expression maximizes, we note
that G16,7/3 does not peak in its “small m”-range

(m ≤ 4
11 ) since 16 > 7

3 − 1 (recall (3.16)). In the
“big m”-range, it peaks at roughly 26n

55 (see (3.14)),
which exceeds 2

5 . Therefore, the maximum occurs

when G12,3 comes into play, which peaks at roughly
7n
15 . For that value the upper bound evaluates to ≈n

(213/21 3−2/7 53/14 1111/14)n=O(10.4244n). Summing up

Theorem 4.1. For P a set of n points in the plane
(1) pm(P ) ≤

(
220/21 3−2/7 51/21 1111/14

)n
poly(n) =

O(10.0438n).
(2) pm(P ) ≤

(
21/3 5−1/6

)n
ma(P )poly(n) =

O(0.9635n) ma(P ).
(3) ma(P ) ≤

(
213/21 3−2/7 53/14 1111/14

)n
poly(n) =

O(10.4244n).

4.3 Random Point Sets Let P be any set of N ∈ N

points in the plane, no three on a line, and let r ∈ N

with r ≤ N . If R is a subset of P chosen uniformly at
random from

(
P
r

)
, then, for λ = 16, µ = 7

3 , and provided

m ≤ µ−1
2µ−1N = 4

11N , and r ≥ 2m, we have, using (3.15),

E[mam(R)] =
1

(
N
r

)

∑

R∈(P
r)

mam(R) =

(
N−2m
r−2m

)

(
N
r

) mam(P )



≤ (4λ(µ − 1))m

(
N
2m

)(
N−2m
r−2m

)

(
N
r

) poly(m)

≈m (4λ(µ − 1))m
(

r
2m

)
=

(
28 3−1

)m (
r

2m

)
.

We see that if we sample r points from a large enough
set, then the expected number of crossing-free match-
ings observes for all m the upper bound derived for the
range of small m.

Suppose now that, for n even, we sample n i.i.d.
points from an arbitrary distribution, for which we
only require that two sampled points coincide with
probability 0. Then we can first sample a set P of
N > 11

8 n points, and then choose a subset of size n
uniformly at random from the family of all subsets of
this size. We obtain a set R of n i.i.d. points from
the given distribution. If P is in general position, by
the argument above the expected number of perfect
crossing-free matchings is at most ≈n (28 3−1)n/2. If P
exhibits collinearities, we perform a small perturbation
yielding a set P̃ and the subset R̃. Now the bound
applies to R̃, and also to R since a sufficiently small
perturbation cannot decrease the number of crossing-
free perfect matchings.

Theorem 4.2. For any distribution in the plane for
which two sampled points coincide with probability 0,
the expected number of crossing-free perfect matchings
of n i.i.d. points is at most

(
24 3−1/2

)n
poly(n) =

O(9.2377n).

4.4 Left-Right Perfect Matchings Here we as-
sume that P is partitioned into two disjoint subsets L, R
and consider bipartite matchings in L×R such that, for
each edge of the matching, its left endpoint belongs to
L and its right endpoint to R.

We modify the definition of the degrees of the
points: If p ∈ L is a matched to a point in R, then
d(p) is equal to the number of left endpoints plus the
number of right-labeled isolated points that are vertically
visible from (the relative interior of) e. A symmetric
definition holds for right endpoints. (Intuitively, a right-
labeled isolated point q has to contribute only to the
degrees of left-labeled points, because, when we insert
a right endpoint, it cannot connect to q, and it does
not matter whether its incident edge passes above or
below q; that is, q does not cause any bifurcation in
the ways in which p can be connected.) Since isolated
points contribute now only 2 to degrees of endpoints,
we have

∑

p∈P d(p) ≤ 4m + 2s. The analysis further
improves, because when we reinsert a point p ∈ L,
say, the corresponding numbers hi must be equal to
`i, since p can only be the left endpoint of a matching
edge. A similar improvement holds for points q ∈ R.

Hence, we can bound the sum 4h0 + 3h1 + 2h2 + h3

by 12, rather than 24; similarly, we have 5h0 + 4h1 +
3h2 + 2h3 + h4 ≤ 24. That is, we have for (λ, µ) the
pairs (6, 2) and (8, 5

3 ) available. We infer a bound of
(
∏k−1

i=0
6(2i+2)
n−4i

)

G8,5/3(
n
2 − k, n), for k = bn

6 c, implying

Theorem 4.3. Let P be a set of n points in the
plane and assume that the points are classified as left
endpoints or right endpoints. The number of left-
right perfect crossing-free matchings in P is at most
(
27/10 3−3/20 77/10

)n
poly(n) = O(5.3793n).

4.5 Matchings Across a Line Consider next the
special case of crossing-free bipartite perfect matchings
between two sets of n

2 points each that are separated
by a line. Here we can obtain an upper bound that is
smaller than the one in Theorem 4.3.

Theorem 4.4. Let n be an even integer. The number
of crossing-free perfect bipartite matchings between two
separated sets of n

2 points each in the plane is at most

Cn/2
2 < 4n; (Cm is the mth Catalan number).

Proof . Let L and R be the given separated sets.
Without loss of generality, take the separating line λ
to be the y-axis, and assume that the points of L lie
to the left of λ and the points of R lie to its right.
Let M be a crossing-free perfect bipartite matching in
L × R. For each edge e of M , let eL (resp., eR) denote
the portion of e to the left (resp., right) of λ, and refer
to them as the left half-edge and the right half-edge of
e, respectively. We will obtain an upper bound for
the number of combinatorially different ways to draw
the left half-edges of a crossing-free perfect matching in
L×R. The same bound will apply symmetrically to the
right half-edges, and the final bound will be the square
of this bound.

In more detail, we ignore R, and consider collections
S of n

2 pairwise disjoint segments, each connecting a
point of L to some point on λ, so that each point of L is
incident to exactly one segment. For each segment in S,
we label its λ-endpoint by the point of L to which it is
connected. The increasing y-order of the λ-endpoints of
the segments thus defines a permutation of L, and our
goal is to bound the number of different permutations
that can be generated in this way. (In general, this is a
strict upper bound on the quantity we seek.)

We obtain this bound in the following recursive
manner. Write m := |L| = n

2 . Sort the points of L
from left to right (we may assume that there are no
ties—they can be eliminated by a slight rotation of λ),
and let p1, p2, . . . , pm denote the points in this order.
Consider the half-edge e1 emanating from the leftmost
point p1. Any other point pj lies either above or below



e1. By rotating e1 about p1, we see that there are at
most m (exactly m, if we assume general position) ways
to split {p2, . . . , pm} into a subset L+

1 of points that
lie above e1 and a complementary subset L−

1 of points
that lie below e1, where in the i-th split, |L+

1 | = i − 1
and |L−

1 | = m − i. Note that, in any crossing-free
perfect bipartite matching that has e1 as a left half-
edge incident to p1, all the points of L+

1 (resp., of L−
1 )

must be incident to half-edges that terminate on λ above
(resp., below) the λ-endpoint of e1.

Hence, after having fixed i, we can proceed to bound
recursively and separately the number of permutations
induced by L+

1 , and the number of those induced by
L−

1 . In other words, denoting by Π(m) the maximum
possible number of different permutations induced in
this way by a set L of m points (in general position), we
get the recurrence Π(m) ≤

∑m
i=1 Π(i − 1)Π(m − i), for

m ≥ 1, where Π(0) = 1. However, this is the recurrence
that (with equality) defines the Catalan numbers, so we
conclude that Π(m) ≤ Cm.

A (probably weak) upper bound for the number of
crossing-free perfect bipartite matchings in L×R is thus
Cm

2. Indeed, for any permutation πL of L and any
permutation πR of R, there is at most one crossing-free
perfect bipartite matching in L × R that induces both
permutations. Namely, it is the matching that connects
the j-th point in πL to the j-th point in πR, for each
j = 1, . . . , m.
The asserted bound of Cm

2 =Cn/2
2 <4n follows.

5 Two Implications

Spanning Cycles

Theorem 5.1. Let P be a set of n points in the plane.
Then the number of crossing-free spanning cycles satis-
fies sc(P ) ≤ (27/5 37/10 77/5)npoly(n) = O(86.8089n).

Proof . We construct (from P ) a new set P ′ of 2n
points by creating two copies p+, p− of each p ∈ P , and
by placing these copies co-vertically close to the original
location of p, with p+ above p−. Let π be a cycle in P .
We map π to a perfect matching in P ′: For each p ∈ P ,
let q, r be its neighbors in π. (i) If both q, r lie to the
left of p, with the edge qp lying above rp, we connect
p+ to either q+ or q−, and connect p− to either r+ or
r− (the actual choices will be determined at q and r by
similar rules). (ii) The same rule applies when both q, r
lie to the right of p. (iii) If q lies to the left of p and
r lie to the right of p, then we connect p+ to either q+

or q−, and connect p− to either r+ or r−. Clearly, the
resulting graph π∗ is a crossing-free perfect matching in
P ′, assuming general position of the points of P , if we
draw each pair p+, p− sufficiently close to each other.

We assign to each point p ∈ P a label that depends
on π. A point whose two neighbors in π lie to its left is
labeled as a right point, a point whose two neighbors in
π lie to its right is labeled as a left point, and a point
having one neighbor in π to its right and one to its left is
labeled as a middle point. We assign the cycle π to the
pair (π∗, λ), where π∗ is the resulting perfect matching
on P ′ and λ is the labeling of P , as just defined.

Each pair (π∗, λ) can be realized by at most one
cycle π in P , by merging each pair p+, p− back into
the original point p. (in general, the resulting graph
is a collection of pairwise disjoint cycles.) It therefore
suffices to bound the number of such pairs (π∗, λ).

A given labeling λ of P uniquely classifies each
point of P ′ as being either a left point of an edge
of the matching or a right endpoint of such an edge.
Hence, the number of crossing-free perfect matchings π′

on P ′ that respect this left-right assignment is at most
(27/10 3−3/20 77/10)2npoly(n). The number of labelings
of P is 3n. Hence, the number of crossing-free cycles in
P is at most (27/5 37/10 77/5)npoly(n), as asserted.

Clearly, it follows from the proof that the bound
holds for the number of crossing-free spanning paths as
well, and also for the number of cycle covers (or path
covers) of P .

Crossing-free Partitions For a bound on cfp(P ),
we relate crossing-free partitions of a point set P to
matchings. To this end, every crossing-free partition
is mapped to a tuple (M, S, I+, I−) where (see Fig. 7)
(i) M is the matching in P , whose edges connect the
leftmost to the rightmost point of each set with at least
two elements (such a segment is called the spine of its
set), (ii) S is the set of all points that form singleton
sets in the partition, and (iii) I+ (resp., I−) is the
set of points in P \ S that are neither leftmost nor
the rightmost in their set, and which lie above (resp.,
below) the spine of their set. M is crossing-free, and
the partition is uniquely determined by (M, S, I+, I−).
Therefore, any bound on the number of such tuples
will establish an bound on the number of crossing-free
partitions. For every crossing-free matching M on P
there are 3n−2|M | triples (S, I+, I−) which form a 4-
tuple with M (not all of them have to come from a
crossing-free partition). Therefore

∑

m 3n−2mmam(P )
is a bound on the number of crossing-free partitions.
Ignoring the 3n-factor for the time being, we have to
determine an upper bound on 3−2mmam(P ), for which
we employ the bound from (4.2). We observe that
3−2mGλ,µ(m, n) = Gλ/9,µ(m, n), and therefore

3−2mmam(P ) ≤







G16/9,7/3(m, n), m ≤ 2n
5 ,

G4/3,3(m, n)
G16,7/3( 2n

5 ,n)

G12,3( 2n
5 ,n)

, otherwise.



Since 16
9 ≥ 7

3 − 1 (see

Spines, isolated ( ), top ( ),

and bottom ( ) points.

Figure 7: Encoding a crossing-
free partition.

(3.16)) the peak will
not occur in the “small
m”-range of G16/9,7/3.
In its “big m”-range,
the maximum occurs
at m roughly 14n

37 (see
(3.14)) which lies in the
interval [ 4

11 , 2
5 ]. Also,

G4/3,3 peaks for m ≤
2n
5 since 4

3 ≤ 3−1 (con-
sult (3.16)). Therefore,
the bound peaks at m
roughly 14n

37 with the
value
3n G16/9,7/3(b 14n

37 c, n) ≈n (24/7 3−1/2 1111/14 373/14)n.

Theorem 5.2. Let P be a set of n points in the
plane. Then the number of crossing-free partitions sat-
isfies cfp(P ) ≤

(
24/7 3−1/2 1111/14 373/14

)n
poly(n) =

O(12.2388n).
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