Numerical Simulation of Dynamic Systems XXV

Prof. Dr. François E. Cellier
Department of Computer Science
ETH Zurich

May 21, 2013
Introduction

All of the solvers that we studied until now have the following property in common:

Given the time instant t_{k+1}, the solvers perform a polynomial extrapolation to calculate the values of all state variables at that time instant.
All of the solvers that we studied until now have the following property in common:

Given the time instant t_{k+1}, the solvers perform a polynomial extrapolation to calculate the values of all state variables at that time instant.

Now we shall study what happens when we reformulate the problem in a reverse fashion. We shall determine when a state variable reaches a predetermined value, or more precisely:

Given that the state variable x_i currently assumes the value $x_i(t_k)$, we would like to determine the shortest time distance h, such that

$$x_i(t_k + h) = x_i(t_k) \pm \Delta Q_i.$$
All of the solvers that we studied until now have the following property in common:

Given the time instant t_{k+1}, the solvers perform a polynomial extrapolation to calculate the values of all state variables at that time instant.

Now we shall study what happens when we reformulate the problem in a reverse fashion. We shall determine when a state variable reaches a predetermined value, or more precisely:

Given that the state variable x_i currently assumes the value $x_i(t_k)$, we would like to determine the shortest time distance h, such that $x_i(t_k + h) = x_i(t_k) \pm \Delta Q_i$.

where ΔQ_i is a predetermined state quantum associated with the state variable x_i.
All of the solvers that we studied until now have the following property in common:

\textbf{Given the time instant }t_{k+1}, \textbf{ the solvers perform a polynomial extrapolation to calculate the values of all state variables at that time instant.}

Now we shall study what happens when we reformulate the problem in a reverse fashion. We shall determine \textit{when} a state variable reaches a predetermined value, or more precisely:

\textbf{Given that the state variable }x_i \textbf{ currently assumes the value }x_i(t_k), \textbf{ we would like to determine the shortest time distance }h, \textbf{ such that }x_i(t_k + h) = x_i(t_k) \pm \Delta Q_i.

where \(\Delta Q_i\) is a predetermined \textit{state quantum} associated with the state variable \(x_i\).

\textbf{As we are simulating a continuous system on a digital computer, we need to discretize something, as no digital computer can compute infinitely many state changes within a finite time interval.}
Introduction

All of the solvers that we studied until now have the following property in common:

Given the time instant t_{k+1}, the solvers perform a polynomial extrapolation to calculate the values of all state variables at that time instant.

Now we shall study what happens when we reformulate the problem in a reverse fashion. We shall determine when a state variable reaches a predetermined value, or more precisely:

Given that the state variable x_i currently assumes the value $x_i(t_k)$, we would like to determine the shortest time distance h, such that $x_i(t_k + h) = x_i(t_k) \pm \Delta Q_i$.

where ΔQ_i is a predetermined state quantum associated with the state variable x_i.

As we are simulating a continuous system on a digital computer, we need to discretize something, as no digital computer can compute infinitely many state changes within a finite time interval.

Until now, we always discretized the time axis, while keeping the state variables continuous. In the sequel, we shall discretize (quantize) the state variables, while keeping the time axis continuous.
If we can construct a solver based on this principle, it follows that:
If we can construct a solver based on this principle, it follows that:

- The integration method will use a *variable step size*, and the step size in use will depend on the gradient of that state variable.
If we can construct a solver based on this principle, it follows that:

- The integration method will use a *variable step size*, and the step size in use will depend on the gradient of that state variable.

- The step size h will be different for each state variable x.
If we can construct a solver based on this principle, it follows that:

- The integration method will use a *variable step size*, and the step size in use will depend on the gradient of that state variable.

- The step size h will be different for each state variable x.

- We shall no longer be able to represent the discretized system by a set of *difference equations*, and we shall *lose the linearity* of the discretized system when approximating a linear continuous system.

\[
\dot{x} = A \cdot x \quad \not\Rightarrow \quad x_{k+1} = F \cdot x_k
\]
Let us start by considering the following first-order system:

\[\dot{x}_a(t) = -x_a(t) + 10 \cdot \varepsilon(t - 1.76) \]

with initial condition \(x_a(t_0 = 0) = 10. \)
Let us start by considering the following first-order system:

\[\dot{x}_a(t) = -x_a(t) + 10 \cdot \varepsilon(t - 1.76) \]

with initial condition \(x_a(t_0 = 0) = 10 \).

Rather than simulating this model directly, we shall analyze the following related model:

\[\dot{x}(t) = \text{floor}[x(t)] + 10 \cdot \varepsilon(t - 1.76) \]
Let us start by considering the following first-order system:

\[\dot{x}_a(t) = -x_a(t) + 10 \cdot \varepsilon(t - 1.76) \]

with initial condition \(x_a(t_0 = 0) = 10 \).

Rather than simulating this model directly, we shall analyze the following related model:

\[\dot{x}(t) = -\text{floor}[x(t)] + 10 \cdot \varepsilon(t - 1.76) \]

or:

\[\dot{x}(t) = -q(t) + 10 \cdot \varepsilon(t - 1.76) \]

where \(q(t) \triangleq \text{floor}[x(t)] \) is the integer part of the variable \(x(t) > 0 \).
Space Discretization: A Simple Example

Let us start by considering the following first-order system:

\[
\dot{x}_a(t) = -x_a(t) + 10 \cdot \varepsilon(t - 1.76)
\]

with initial condition \(x_a(t_0 = 0) = 10 \).

Rather than simulating this model directly, we shall analyze the following related model:

\[
\dot{x}(t) = -\text{floor}[x(t)] + 10 \cdot \varepsilon(t - 1.76)
\]

or:

\[
\dot{x}(t) = -q(t) + 10 \cdot \varepsilon(t - 1.76)
\]

where \(q(t) \triangleq \text{floor}[x(t)] \) is the integer part of the variable \(x(t) > 0 \).

The latter model can be simulated very easily.
\[\dot{x}(t) = -q(t) + 10 \cdot \varepsilon(t - 1.76) \quad ; \quad q(t) = \text{floor}[x(t)] \quad ; \quad x(0) = 10 \]
\[\dot{x}(t) = -q(t) + 10 \cdot \varepsilon(t - 1.76) ; \quad q(t) = \text{floor}[x(t)] ; \quad x(0) = 10 \]
\(\dot{x}(t) = -q(t) + 10 \cdot \varepsilon(t - 1.76) \); \(q(t) = \text{floor}[x(t)] \); \(x(0) = 10 \)
\[\dot{x}(t) = -q(t) + 10 \cdot \varepsilon(t - 1.76) ; \quad q(t) = \text{floor}[x(t)] ; \quad x(0) = 10 \]
Simulation of Quantized System

$q(t), x(t)$

Time
We were able to complete the simulation in 17 very simple steps, thereby obtaining the exact solution of the quantized system.
We were able to complete the simulation in *17 very simple steps*, thereby obtaining the *exact solution* of the quantized system.

The solution of the quantized system is similar to that of the original continuous system.
Simulations of Quantized and Original Systems

$x(t)$

$x_a(t)$

Time

$x_a(t)$, $x(t)$
Clearly, the quantized system is a discrete system. However, it cannot be represented by a set of difference equations, i.e., it is not a discrete-time system.
Clearly, the quantized system is a *discrete system*. However, it cannot be represented by a *set of difference equations*, i.e., it is not a *discrete-time system*.

We recognize easily that it may be represented as a *discrete-event system*.
Clearly, the quantized system is a *discrete system*. However, it cannot be represented by a *set of difference equations*, i.e., it is not a *discrete-time system*.

We recognize easily that it may be represented as a *discrete-event system*.

The model can be encoded using the *DEVS formalism*.
Discrete Event Systems

- Clearly, the quantized system is a *discrete system*. However, it cannot be represented by a *set of difference equations*, i.e., it is not a *discrete-time system*.

- We recognize easily that it may be represented as a *discrete-event system*.

- The model can be encoded using the *DEVS formalism*.

- DEVS stands for *Discrete EVent System specification*. The formalism was first introduced in the 1970s by *Bernard Zeigler*.
Clearly, the quantized system is a *discrete system*. However, it cannot be represented by a *set of difference equations*, i.e., it is not a *discrete-time system*.

We recognize easily that it may be represented as a *discrete-event system*.

The model can be encoded using the *DEVS formalism*.

DEVS stands for *Discrete EVent System specification*. The formalism was first introduced in the 1970s by *Bernard Zeigler*.

All systems, the input/output behavior of which can be described by *sequences of discrete events*, can be represented using the DEVS formalism.
The Definition of DEVS

Atomic DEVS Models

A DEVS model processes a sequence of input events and, in reaction to those events and its own initial discrete state, generates a sequence of output events.
The Definition of DEVS

Atomic DEVS Models

A *DEVS model* processes a *sequence of input events* and, in reaction to those events and its own *initial discrete state*, generates a *sequence of output events*.

![Diagram of DEVS model](image)
The Definition of DEVS

Atomic DEVS Models

A **DEVS model** processes a *sequence of input events* and, in reaction to those events and its own *initial discrete state*, generates a *sequence of output events*.

![Diagram of DEVS model]

An **atomic DEVS model** is defined by the structure:

\[M = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta) \]
A **DEVS model** processes a *sequence of input events* and, in reaction to those events and its own *initial discrete state*, generates a *sequence of output events*.

An **atomic DEVS model** is defined by the structure:

\[
M = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta)
\]

▶ *X* is the set of input values.
The Definition of DEVS

Atomic DEVS Models

A **DEVS model** processes a *sequence of input events* and, in reaction to those events and its own *initial discrete state*, generates a *sequence of output events*.

![DEVS Diagram]

An **atomic DEVS model** is defined by the structure:

\[M = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta) \]

- \(X \) is the set of input values.
- \(Y \) is the set of output values.
The Definition of DEVS

Atomic DEVS Models

A **DEVS model** processes a *sequence of input events* and, in reaction to those events and its own *initial discrete state*, generates a *sequence of output events*.

An **atomic DEVS model** is defined by the structure:

\[
M = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta)
\]

- \(X\) is the set of input values.
- \(Y\) is the set of output values.
- \(S\) is the set of state values.
The Definition of DEVS

Atomic DEVS Models

A **DEVS model** processes a *sequence of input events* and, in reaction to those events and its own *initial discrete state*, generates a *sequence of output events*.

An **atomic DEVS model** is defined by the structure:

\[M = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta) \]

- **X** is the set of input values.
- **Y** is the set of output values.
- **S** is the set of state values.
- \(\delta_{int}(), \delta_{ext}(), \lambda(), \) and \(ta() \) are functions defining the dynamics of the system.
The Definition of DEVS II

The Behavior of an Atomic DEVS Model

\[
\begin{align*}
S & \quad s_2 &= \delta_{\text{int}}(s_1) \\
& \quad s_4 &= \delta_{\text{int}}(s_3) \\
& \quad s_3 &= \delta_{\text{ext}}(s_2, e, x_1) \\
Y & \quad y_1 &= \lambda(s_1) \\
& \quad y_2 &= \lambda(s_3)
\end{align*}
\]
The Definition of DEVS II

The Behavior of an Atomic DEVS Model

\[
\begin{align*}
\delta_{\text{int}}(s) & \text{ is the } \textit{internal transition function}. \\
\delta_{\text{ext}}(s, e, x_1) & \text{ is the } \textit{external transition function}. \\
\end{align*}
\]
The Definition of DEVS II
The Behavior of an Atomic DEVS Model

\[s_2 = \delta_{\text{int}}(s_1) \quad s_4 = \delta_{\text{int}}(s_3) \]

\[s_3 = \delta_{\text{ext}}(s_2, e, x_1) \]

\[y_1 = \lambda(s_1) \quad y_2 = \lambda(s_3) \]

\[\delta_{\text{int}}(s) \text{ is the } \textit{internal} \text{ transition function.} \]

\[\delta_{\text{ext}}(s, e, x) \text{ is the } \textit{external} \text{ transition function.} \]
The Definition of DEVS II
The Behavior of an Atomic DEVS Model

- $\delta_{\text{int}}(s)$ is the *internal transition function*.
- $\delta_{\text{ext}}(s, e, x)$ is the *external transition function*.
- $\lambda(s)$ is the *output function*.
The Definition of DEVS II

The Behavior of an Atomic DEVS Model

\[s_2 = \delta_{int}(s_1) \]
\[s_3 = \delta_{ext}(s_2, e, x_1) \]
\[s_4 = \delta_{int}(s_3) \]

\[y_1 = \lambda(s_1) \]
\[y_2 = \lambda(s_3) \]

\(\delta_{int}(s) \) is the internal transition function.

\(\delta_{ext}(s, e, x) \) is the external transition function.

\(\lambda(s) \) is the output function.

\(ta(s) \) is the time advance function.
The Definition of DEVS III
The Specification of an Atomic DEVS Model

Each possible state s ($s \in S$) has an associated *time advance* calculated by the *time advance function* $ta(s)$ ($ta(s) : S \to \mathbb{R}_0^+$). The time advance is a non-negative real number, determining how long the system remains in a given state in absence of input events.
The Definition of DEVS III
The Specification of an Atomic DEVS Model

▶ Each possible state \(s \) (\(s \in S \)) has an associated *time advance* calculated by the *time advance function* \(ta(s) \) (\(ta(s) : S \rightarrow \mathbb{R}_0^+ \)). The time advance is a non-negative real number, determining how long the system remains in a given state in absence of input events.

▶ If the state adopts the value \(s_1 \) at time \(t_1 \), after \(ta(s_1) \) units of time (i.e., at time \(t_1 + ta(s_1) \)), the system performs an *internal transition*, taking it to a new state \(s_2 \). The new state is calculated as \(s_2 = \delta_{int}(s_1) \). Function \(\delta_{int} \) (\(\delta_{int} : S \rightarrow S \)) is called the *internal transition function*.

●
The Definition of DEVS III
The Specification of an Atomic DEVS Model

- Each possible state s ($s \in S$) has an associated *time advance* calculated by the *time advance function* $ta(s)$ ($ta(s) : S \rightarrow \mathbb{R}_0^+$). The time advance is a non-negative real number, determining how long the system remains in a given state in absence of input events.

- If the state adopts the value s_1 at time t_1, after $ta(s_1)$ units of time (i.e., at time $t_1 + ta(s_1)$), the system performs an *internal transition*, taking it to a new state s_2. The new state is calculated as $s_2 = \delta_{\text{int}}(s_1)$. Function δ_{int} ($\delta_{\text{int}} : S \rightarrow S$) is called the *internal transition function*.

- When the state changes its value from s_1 to s_2, an *output event* is produced with the value $y_1 = \lambda(s_1)$. Function λ ($\lambda : S \rightarrow Y$) is called the *output function*. In this way, the functions ta, δ_{int} and λ define the *autonomous behavior of a DEVS model*.
When an input event arrives, the state changes instantaneously. The new state value depends not only on the value of the input event, but also on the previous state value and the elapsed time since the last transition. If the system assumes the state value s_2 at time t_2, and subsequently, an input event arrives at time $t_2 + e < ta(s_2)$ with value x_1, the new state is calculated as $s_3 = \delta_{ext}(s_2, e, x_1)$. In this case, we say that the system performs an external transition. Function δ_{ext} ($\delta_{ext} : S \times R_0^+ \times X \rightarrow S$) is called the external transition function. No output event is produced during an external transition.
Let us consider the following simple example: A system receives positive numbers in an asynchronous way. After it received a number x, it generates an output event with the number $x/2$ after $3 \cdot x$ time units.
Let us consider the following simple example: A system receives positive numbers in an asynchronous way. After it received a number x, it generates an output event with the number $x/2$ after $3 \cdot x$ time units.

A DEVS model that correctly represents this behavior is the following:

$$M_F = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \text{ where}$$

- $X = Y = S = \mathbb{R}^+$
- $\delta_{int}(s) = \infty$
- $\delta_{ext}(s, e, x) = x$
- $\lambda(s) = s/2$
- $ta(s) = 3 \cdot s$
Let us consider the following simple example: A system receives positive numbers in an asynchronous way. After it received a number x, it generates an output event with the number $x/2$ after $3 \cdot x$ time units.

A DEVS model that correctly represents this behavior is the following:

$$M_F = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \text{ where}$$

- $X = Y = S = \mathbb{R}^+$
- $\delta_{int}(s) = \infty$
- $\delta_{ext}(s, e, x) = x$
- $\lambda(s) = s/2$
- $ta(s) = 3 \cdot s$

Observe that the state can assume a time advance equal to ∞. When this occurs, we say that the system is in a passive state, since it will no longer change its state, unless and until it receives an input event.
Let us analyze what happens with the model M_1 when it receives an input event trajectory. Consider for instance that input events occur at times $t = 1$, $t = 3$, and $t = 10$ with the values 2, 1, and 5, respectively. Suppose that initially we have $t = 0$, $s = \infty$ and $e = 0$.
Let us analyze what happens with the model M_1 when it receives an input event trajectory. Consider for instance that input events occur at times $t = 1$, $t = 3$, and $t = 10$ with the values 2, 1, and 5, respectively. Suppose that initially we have $t = 0$, $s = \infty$ and $e = 0$.

Then, the following behavior would be observed:
Let us analyze what happens with the model M_1 when it receives an input event trajectory. Consider for instance that input events occur at times $t = 1$, $t = 3$, and $t = 10$ with the values 2, 1, and 5, respectively. Suppose that initially we have $t = 0$, $s = \infty$ and $e = 0$.

Then, the following behavior would be observed:

time $t = 0$:
- $s = \infty$
- $e = 0$
- $ta(s) = ta(\infty) = \infty$

time $t = 1^-$:
- $s = \infty$
- $e = 1$

time $t = 1$:
- $s = \delta_{ext}(s, e, x) = \delta_{ext}(\infty, 1, 2) = 2$

time $t = 1^+$:
- $s = 2$
- $e = 0$
- $ta(s) = ta(2) = 6$
Let us analyze what happens with the model M_1 when it receives an input event trajectory. Consider for instance that input events occur at times $t = 1$, $t = 3$, and $t = 10$ with the values 2, 1, and 5, respectively. Suppose that initially we have $t = 0$, $s = \infty$ and $e = 0$.

Then, the following behavior would be observed:

- **time $t = 0$**:

 $s = \infty$

 $e = 0$

 $ta(s) = ta(\infty) = \infty$

- **time $t = 1^-$**:

 $s = \infty$

 $e = 1$

- **time $t = 1$**:

 $s = \delta_{\text{ext}}(s, e, x) = \delta_{\text{ext}}(\infty, 1, 2) = 2$

- **time $t = 1^+$**:

 $s = 2$

 $e = 0$

 $ta(s) = ta(2) = 6$

- **time $t = 3^-$**:

 $s = 2$

 $e = 2$

- **time $t = 3$**:

 $s = \delta_{\text{ext}}(s, e, x) = \delta_{\text{ext}}(2, 2, 1) = 1$

- **time $t = 3^+$**:

 $s = 1$

 $e = 0$

 $ta(s) = ta(1) = 3$

- **time $t = 6$**:

 Output event with value $\lambda(s) = \lambda(1) = 0.5$

 $s = \delta_{\text{int}}(s) = \delta_{\text{int}}(1) = \infty$

...
Coupled DEVS Models

Atomic DEVS models can be coupled to form more complex models. The most simple manner for defining the coupling between DEVS models is through the use of *input and output ports*.
Atomic DEVS models can be coupled to form more complex models. The most simple manner for defining the coupling between DEVS models is through the use of *input and output ports*.

![Coupled DEVS Models Diagram](image-url)
Atomic DEVS models can be coupled to form more complex models. The most simple manner for defining the coupling between DEVS models is through the use of input and output ports.

We notice the following couplings:
Coupled DEVS Models

Atomic DEVS models can be coupled to form more complex models. The most simple manner for defining the coupling between DEVS models is through the use of *input* and *output ports*.

We notice the following couplings:

- from the input port in_0 of model N to the input port in_0 of model M_a,
Atomic DEVS models can be coupled to form more complex models. The most simple manner for defining the coupling between DEVS models is through the use of *input and output ports*.

We notice the following couplings:

- from the input port in_0 of model N to the input port in_0 of model M_a,
- from the output port out_1 of model M_a to the input port in_0 of model M_b.
Atomic DEVS models can be coupled to form more complex models. The most simple manner for defining the coupling between DEVS models is through the use of *input and output ports*.

We notice the following couplings:

- from the input port \(in_0 \) of model \(N \) to the input port \(in_0 \) of model \(M_a \),
- from the output port \(out_1 \) of model \(M_a \) to the input port \(in_0 \) of model \(M_b \),
- from the output port \(out_0 \) of model \(M_a \) to the output port \(out_0 \) of model \(N \),

etc.
Atomic DEVS models can be coupled to form more complex models. The most simple manner for defining the coupling between DEVS models is through the use of input and output ports.

We notice the following couplings:

- from the input port in_0 of model N to the input port in_0 of model M_a,
- from the output port out_1 of model M_a to the input port in_0 of model M_b,
- from the output port out_0 of model M_a to the output port out_0 of model N,
- etc.

The resulting coupled model N can be used as if it were a new atomic model.
Example: DEVS Model of a Static Function

Let us consider a system that calculates a *static function* \(f(u_0, u_1) \), where \(u_0 \) and \(u_1 \) are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by *sequences of events*, if we relate each event to a change in the trajectory value.
Example: DEVS Model of a Static Function

Let us consider a system that calculates a static function \(f(u_0, u_1) \), where \(u_0 \) and \(u_1 \) are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by sequences of events, if we relate each event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:
Example: DEVS Model of a Static Function

Let us consider a system that calculates a *static function* $f(u_0, u_1)$, where u_0 and u_1 are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by *sequences of events*, if we relate each event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:

$$MF = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta),$$

where

$$X = Y = \mathbb{R} \times \mathbb{N}_0$$

$$S = \mathbb{R}^2 \times \mathbb{R}_0^+$$

$$\delta_{int}(s) = \delta_{int}(u_0, u_1, \sigma) = (u_0, u_1, \infty)$$

$$\delta_{ext}(s, e, x) = \delta_{ext}(u_0, u_1, \sigma, e, x_v, p) = \tilde{s}$$

$$\lambda(s) = \lambda(u_0, u_1, \sigma) = (f(u_0, u_1), 0)$$

$$ta(s) = ta(u_0, u_1, \sigma) = \sigma$$
Example: DEVS Model of a Static Function

Let us consider a system that calculates a static function $f(u_0, u_1)$, where u_0 and u_1 are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by sequences of events, if we relate each event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:

$$M_F = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \text{ where}$$

$$X = Y = \mathbb{R} \times \mathbb{N}_0$$

$$S = \mathbb{R}^2 \times \mathbb{R}_0^+$$

$$\delta_{int}(s) = \delta_{int}(u_0, u_1, \sigma) = (u_0, u_1, \infty)$$

$$\delta_{ext}(s, e, x) = \delta_{ext}(u_0, u_1, \sigma, e, x_v, p) = \tilde{s}$$

$$\lambda(s) = \lambda(u_0, u_1, \sigma) = (f(u_0, u_1), 0)$$

$$ta(s) = ta(u_0, u_1, \sigma) = \sigma$$

where:

$$\tilde{s} = \begin{cases}
(x_v, u_1, 0) & \text{if } p = 0 \\
(u_0, x_v, 0) & \text{otherwise}
\end{cases}$$
Example: DEVS Model of a Static Function

Let us consider a system that calculates a static function \(f(u_0, u_1) \), where \(u_0 \) and \(u_1 \) are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by sequences of events, if we relate each event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:

\[
M_F = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \quad \text{where}
\]

\[
X = Y = \mathbb{R} \times \mathbb{N}_0
\]

\[
S = \mathbb{R}^2 \times \mathbb{R}_0^+
\]

\[
\delta_{int}(s) = \delta_{int}(u_0, u_1, \sigma) = (u_0, u_1, \infty)
\]

\[
\delta_{ext}(s, e, x) = \delta_{ext}(u_0, u_1, \sigma, e, x_v, p) = \tilde{s}
\]

\[
\lambda(s) = \lambda(u_0, u_1, \sigma) = (f(u_0, u_1), 0)
\]

\[
\tau a(s) = \tau a(u_0, u_1, \sigma) = \sigma
\]

where:

\[
\tilde{s} = \begin{cases}
(x_v, u_1, 0) & \text{if } p = 0 \\
(u_0, x_v, 0) & \text{otherwise}
\end{cases}
\]

Some considerations concerning this model:
Example: DEVS Model of a Static Function

Let us consider a system that calculates a \textit{static function} \(f(u_0, u_1) \), where \(u_0 \) and \(u_1 \) are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by \textit{sequences of events}, if we relate each event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:

\[
M_F = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \quad \text{where}
\]
\[
X = Y = \mathbb{R} \times \mathbb{N}_0
\]
\[
S = \mathbb{R}^2 \times \mathbb{R}^+_0
\]
\[
\delta_{int}(s) = \delta_{int}(u_0, u_1, \sigma) = (u_0, u_1, \infty)
\]
\[
\delta_{ext}(s, e, x) = \delta_{ext}(u_0, u_1, \sigma, e, x_v, p) = \bar{s}
\]
\[
\lambda(s) = \lambda(u_0, u_1, \sigma) = (f(u_0, u_1), 0)
\]
\[
ta(s) = ta(u_0, u_1, \sigma) = \sigma
\]

where:

\[
\bar{s} = \begin{cases}
(x_v, u_1, 0) & \text{if } p = 0 \\
(u_0, x_v, 0) & \text{otherwise}
\end{cases}
\]

Some considerations concerning this model:

- The input and output events carry, beside from the value of the signal itself, an integer number that indicates the corresponding port.
Example: DEVS Model of a Static Function

Let us consider a system that calculates a static function \(f(u_0, u_1) \), where \(u_0 \) and \(u_1 \) are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by sequences of events, if we relate each event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:

\[
M_F = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \quad \text{where}
\]
\[
X = Y = \mathbb{R} \times \mathbb{N}_0
\]
\[
S = \mathbb{R}^2 \times \mathbb{R}_0^+
\]
\[
\delta_{int}(s) = \delta_{int}(u_0, u_1, \sigma) = (u_0, u_1, \infty)
\]
\[
\delta_{ext}(s, e, x) = \delta_{ext}(u_0, u_1, \sigma, e, x_v, p) = \tilde{s}
\]
\[
\lambda(s) = \lambda(u_0, u_1, \sigma) = (f(u_0, u_1), 0)
\]
\[
ta(s) = ta(u_0, u_1, \sigma) = \sigma
\]

where:

\[
\tilde{s} = \begin{cases}
(x_v, u_1, 0) & \text{if } p = 0 \\
(u_0, x_v, 0) & \text{otherwise}
\end{cases}
\]

Some considerations concerning this model:

- The input and output events carry, beside from the value of the signal itself, an integer number that indicates the corresponding port.

- The discrete state contains three components: \(u_0, u_1, \) and \(\sigma \). The first two maintain the last value received for \(u_0(t) \) and \(u_1(t) \), whereas \(\sigma \) indicates the time interval until the next output event.
Example: DEVS Model of a Static Function

Let us consider a system that calculates a static function $f(u_0, u_1)$, where u_0 and u_1 are real-valued piecewise constant trajectories generated by other subsystems. We can represent piecewise constant trajectories by sequences of events, if we relate each event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:

$$M_F = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta),$$

where

$X = Y = \mathbb{R} \times \mathbb{N}_0$

$S = \mathbb{R}^2 \times \mathbb{R}_0^+$

$\delta_{int}(s) = \delta_{int}(u_0, u_1, \sigma) = (u_0, u_1, \infty)$

$\delta_{ext}(s, e, x) = \delta_{ext}(u_0, u_1, \sigma, e, x_v, p) = \tilde{s}$

$\lambda(s) = \lambda(u_0, u_1, \sigma) = (f(u_0, u_1), 0)$

$ta(s) = ta(u_0, u_1, \sigma) = \sigma$

where:

$$\tilde{s} = \begin{cases} (x_v, u_1, 0) & \text{if } p = 0 \\ (u_0, x_v, 0) & \text{otherwise} \end{cases}$$

Some considerations concerning this model:

- The input and output events carry, beside from the value of the signal itself, an integer number that indicates the corresponding port.

- The discrete state contains three components: u_0, u_1, and σ. The first two maintain the last value received for $u_0(t)$ and $u_1(t)$, whereas σ indicates the time interval until the next output event.

- When an input event arrives, it is assigned the value $\sigma = 0$. In this way, an immediate output event is being scheduled.
DEVS models can be simulated with a simple ad-hoc program written in any language. In fact, the simulation of a DEVS model is not much more complicated than that of a discrete-time model.
Simulation of DEVS Models

DEVS models can be simulated with a simple ad-hoc program written in any language. In fact, the simulation of a DEVS model is not much more complicated than that of a discrete-time model.

A basic algorithm that may be used for the simulation of a coupled DEVS model can be described by the following steps:
DEVS models can be simulated with a simple ad-hoc program written in any language. In fact, the simulation of a DEVS model is not much more complicated than that of a discrete-time model.

A basic algorithm that may be used for the simulation of a coupled DEVS model can be described by the following steps:

1. Identify the atomic model that, according to its time advance and elapsed time, is the next to perform an internal transition. Call the system d^*, and let t_n be the time of the aforementioned transition.
DEVS models can be simulated with a simple ad-hoc program written in any language. In fact, the simulation of a DEVS model is not much more complicated than that of a discrete-time model.

A basic algorithm that may be used for the simulation of a coupled DEVS model can be described by the following steps:

1. Identify the atomic model that, according to its time advance and elapsed time, is the next to perform an internal transition. Call the system d^*, and let t_n be the time of the aforementioned transition.

2. Advance the simulation clock t to $t = t_n$ and execute the internal transition function of model d^*.
DEVS models can be simulated with a simple ad-hoc program written in any language. In fact, the simulation of a DEVS model is not much more complicated than that of a discrete-time model.

A basic algorithm that may be used for the simulation of a coupled DEVS model can be described by the following steps:

1. Identify the atomic model that, according to its time advance and elapsed time, is the next to perform an internal transition. Call the system d^*, and let t_n be the time of the aforementioned transition.

2. Advance the simulation clock t to $t = t_n$ and execute the internal transition function of model d^*.

3. Propagate the output event produced by d^* to all atomic models connected to it through its output ports while executing the corresponding external transition functions. Then return to step 1 above.
One of the simplest ways for implementing these steps is by writing a program with a hierarchical structure equivalent to the hierarchical structure of the model to be simulated.
One of the simplest ways for implementing these steps is by writing a program with a hierarchical structure equivalent to the hierarchical structure of the model to be simulated.

A routine called *DEVS-simulator* is associated with each atomic DEVS model, and a different routine called *DEVS-coordinator* is related to each coupled DEVS model. At the top of the hierarchy, there is a routine called *DEVS-root-coordinator* that manages the global simulation time.
Simulation of DEVS Models II

One of the simplest ways for implementing these steps is by writing a program with a hierarchical structure equivalent to the hierarchical structure of the model to be simulated.

A routine called *DEVS-simulator* is associated with each *atomic DEVS model*, and a different routine called *DEVS-coordinator* is related to each *coupled DEVS model*. At the top of the hierarchy, there is a routine called *DEVS-root-coordinator* that manages the global simulation time.
One of the simplest ways for implementing these steps is by writing a program with a hierarchical structure equivalent to the hierarchical structure of the model to be simulated.

A routine called *DEVS-simulator* is associated with each *atomic DEVS model*, and a different routine called *DEVS-coordinator* is related to each *coupled DEVS model*. At the top of the hierarchy, there is a routine called *DEVS-root-coordinator* that manages the global simulation time.

There exist several software tools that support directly the simulation of DEVS models. The one that we shall be using is called *PowerDEVS*. It was developed by *Ernesto Kofman* at the Universidad Nacional de Rosario (Argentina). It is the DEVS modeling and simulation environment that is most suitable for our purposes.
DEVS and Continuous System Simulation

In the example of the DEVS model of the static function, we represented piecewise constant trajectories as sequences of events. The same idea can also be used to approximate continuous systems using DEVS.
DEVS and Continuous System Simulation

In the example of the DEVS model of the static function, we represented piecewise constant trajectories as sequences of events. The same idea can also be used to approximate continuous systems using DEVS.

We can divide the quantized continuous system into:

a *dynamic system*:

\[
\dot{x}(t) = d_x(t) \\
q(t) = \text{floor}[x(t)]
\]

and a *static function*:

\[
d_x(t) = -q(t) + u(t)
\]

where \(u(t) = 10 \cdot \varepsilon(t - 1.76) \).
In the example of the DEVS model of the static function, we represented piecewise constant trajectories as sequences of events. The same idea can also be used to approximate continuous systems using DEVS.

We can divide the quantized continuous system into:

a dynamic system:
\[
\dot{x}(t) = d_x(t) \\
q(t) = \text{floor}[x(t)]
\]

and a static function:
\[
d_x(t) = -q(t) + u(t)
\]

where \(u(t) = 10 \cdot \varepsilon(t - 1.76) \).

The system can be represented using the following block diagram:
In the example of the DEVS model of the static function, we represented piecewise constant trajectories as sequences of events. The same idea can also be used to approximate continuous systems using DEVS.

We can divide the quantized continuous system into:

- a dynamic system:
 \[
 \dot{x}(t) = d_x(t) \\
 q(t) = \text{floor}[x(t)]
 \]
 and a static function:
 \[
 d_x(t) = -q(t) + u(t)
 \]
 where \(u(t) = 10 \cdot \varepsilon(t - 1.76) \).

Each of the two subsystems has input and output trajectories that are piecewise constant.
In the example of the DEVS model of the static function, we represented piecewise constant trajectories as sequences of events. The same idea can also be used to approximate continuous systems using DEVS.

We can divide the quantized continuous system into:

a **dynamic system**:

\[
\dot{x}(t) = d_x(t) \\
q(t) = \text{floor}[x(t)]
\]

and a **static function**:

\[
d_x(t) = -q(t) + u(t)
\]

where \(u(t) = 10 \cdot \varepsilon(t - 1.76) \).

The system can be represented using the following block diagram:

Each of the two subsystems has *input and output trajectories that are piecewise constant*. It is thus possible to represent them through DEVS models.
DEVS Models of Quantized Systems

The static function can be represented using the DEVS model M_F introduced earlier.
DEVS Models of Quantized Systems

The *static function* can be represented using the DEVS model M_F introduced earlier.

The *dynamic system* can be represented by the following DEVS model:

\[
M_{QI} = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \quad \text{where}
\]
\[
X = Y = \mathbb{R} \times \mathbb{N}
\]
\[
S = \mathbb{R}^2 \times \mathbb{Z} \times \mathbb{R}_0^+
\]
\[
\delta_{int}(s) = \delta_{int}(x, d_x, q, \sigma) = (x + \sigma \cdot d_x, d_x, q + \text{sign}(d_x), \frac{1}{|d_x|})
\]
\[
\delta_{ext}(s, e, x) = \delta_{ext}(x, d_x, q, \sigma, e, x_v, p) = (x + e \cdot d_x, x_v, q, \tilde{\sigma})
\]
\[
\lambda(s) = \lambda(x, d_x, q, \sigma) = (q + \text{sign}(d_x), 0)
\]
\[
ta(s) = ta(x, d_x, q, \sigma) = \sigma
\]
DEVS Models of Quantized Systems

The *static function* can be represented using the DEVS model M_F introduced earlier.

The *dynamic system* can be represented by the following DEVS model:

$$M_{QI} = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \text{ where}$$

$$X = Y = \mathbb{R} \times \mathbb{N}$$

$$S = \mathbb{R}^2 \times \mathbb{Z} \times \mathbb{R}_0^+$$

$$\delta_{int}(s) = \delta_{int}(x, d_x, q, \sigma) = (x + \sigma \cdot d_x, d_x, q + \text{sign}(d_x), \frac{1}{|d_x|})$$

$$\delta_{ext}(s, e, x) = \delta_{ext}(x, d_x, q, \sigma, e, x_v, p) = (x + e \cdot d_x, x_v, q, \tilde{\sigma})$$

$$\lambda(s) = \lambda(x, d_x, q, \sigma) = (q + \text{sign}(d_x), 0)$$

$$ta(s) = ta(x, d_x, q, \sigma) = \sigma$$

where:

$$\tilde{\sigma} = \begin{cases} \frac{q+1-x}{x_v} & \text{if } x_v > 0 \\ \frac{q-x}{x_v} & \text{if } x_v < 0 \\ \infty & \text{otherwise} \end{cases}$$
PowerDEVS Model of a Quantized System

The DEVS models M_F (called *static function*) and M_{QI} (called *quantized integrator*) are graphically represented as *PowerDEVS blocks*.
The DEVS models M_F (called \textit{static function}) and M_{QI} (called \textit{quantized integrator}) are graphically represented as \textit{PowerDEVS blocks}.

The blocks can then be graphically coupled to each other:
The DEVS models M_F (called static function) and M_{QI} (called quantized integrator) are graphically represented as PowerDEVS blocks.

The blocks can then be graphically coupled to each other:
PowerDEVS Model of a Quantized System

The DEVS models M_F (called *static function*) and M_{QI} (called *quantized integrator*) are graphically represented as *PowerDEVS blocks*.

The blocks can then be graphically coupled to each other:

and the system can be simulated easily.
Quantized Systems: Generalization

We can generalize this idea:
We can generalize this idea:

Given the *time-invariant continuous system* (state-space model):

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, \cdots, x_n, u_1, \cdots, u_m) \\
\vdots \\
\dot{x}_n &= f_n(x_1, x_2, \cdots, x_n, u_1, \cdots, u_m)
\end{align*}
\]
Quantized Systems: Generalization

We can generalize this idea:

Given the *time-invariant continuous system* (state-space model):

\[
\begin{align*}
\dot{x}_{a_1} &= f_1(x_{a_1}, x_{a_2}, \ldots, x_{a_n}, u_1, \ldots, u_m) \\
\vdots \\
\dot{x}_{a_n} &= f_n(x_{a_1}, x_{a_2}, \ldots, x_{a_n}, u_1, \ldots, u_m)
\end{align*}
\]

The system can be approximated by the following *quantized system*:

\[
\begin{align*}
\dot{x}_1 &= f_1(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m) \\
\vdots \\
\dot{x}_n &= f_n(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m)
\end{align*}
\]
Quantized Systems: Generalization

We can generalize this idea:

Given the *time-invariant continuous system* (state-space model):

\[
\dot{x}_{a_1} = f_1(x_{a_1}, x_{a_2}, \cdots, x_{a_n}, u_1, \cdots, u_m) \\
\vdots \\
\dot{x}_{a_n} = f_n(x_{a_1}, x_{a_2}, \cdots, x_{a_n}, u_1, \cdots, u_m)
\]

The system can be approximated by the following *quantized system*:

\[
\dot{x}_1 = f_1(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m) \\
\vdots \\
\dot{x}_n = f_n(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m)
\]

which can be represented by the following *block diagram*:
We can generalize this idea:

Given the *time-invariant continuous system* (state-space model):

\[
\begin{align*}
\dot{x}_{a_1} &= f_1(x_{a_1}, x_{a_2}, \cdots, x_{a_n}, u_1, \cdots, u_m) \\
& \vdots \\
\dot{x}_{a_n} &= f_n(x_{a_1}, x_{a_2}, \cdots, x_{a_n}, u_1, \cdots, u_m)
\end{align*}
\]

The system can be approximated by the following *quantized system*:

\[
\begin{align*}
\dot{x}_1 &= f_1(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m) \\
& \vdots \\
\dot{x}_n &= f_n(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m)
\end{align*}
\]

which can be represented by the following *block diagram*:
Quantized Systems: Generalization

We can generalize this idea:

Given the \textit{time-invariant continuous system} (state-space model):

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, \ldots, x_n, u_1, \ldots, u_m) \\
& \quad \vdots \\
\dot{x}_n &= f_n(x_1, x_2, \ldots, x_n, u_1, \ldots, u_m)
\end{align*}
\]

The system can be approximated by the following \textit{quantized system}:

\[
\begin{align*}
\dot{q}_1 &= f_1(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m) \\
& \quad \vdots \\
\dot{q}_n &= f_n(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m)
\end{align*}
\]

which can be represented by the following \textit{block diagram}:

We can model a generic time-invariant quantized system using DEVS models of the static function and quantized integrator types.
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.

Let us consider the quantized system:

\[
\dot{x}(t) = -q(t) + 9.5 \quad ; \quad q(t) = \text{floor}[x(t)]
\]

with initial condition \(x(0) = 10\):
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.

Let us consider the quantized system:

\[
\dot{x}(t) = -q(t) + 9.5; \quad q(t) = \text{floor}[x(t)]
\]

with initial condition \(x(0) = 10\):

- At \(t = 0\), we have \(q = 10\) and thus \(\dot{x}(0) = -10 + 9.5 = -0.5\).
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.

Let us consider the quantized system:

\[
\dot{x}(t) = -q(t) + 9.5 \quad ; \quad q(t) = \text{floor}[x(t)]
\]

with initial condition \(x(0) = 10\):

- At \(t = 0\), we have \(q = 10\) and thus \(\dot{x}(0) = -10 + 9.5 = -0.5\).
- Consequently, at \(t = 0^+\), we have \(x(t) = 9.999\ldots\) and therefore \(q(t) = 9\).
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.

Let us consider the quantized system:

\[\dot{x}(t) = -q(t) + 9.5; \quad q(t) = \text{floor}[x(t)] \]

with initial condition \(x(0) = 10 \):

- At \(t = 0 \), we have \(q = 10 \) and thus \(\dot{x}(0) = -10 + 9.5 = -0.5 \).
- Consequently, at \(t = 0^+ \), we have \(x(t) = 9.999\ldots \) and therefore \(q(t) = 9 \).
- This means that \(\dot{x}(0) = -9 + 9.5 = +0.5 \).
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the legitimacy of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.

Let us consider the quantized system:

\[
\dot{x}(t) = -q(t) + 9.5; \quad q(t) = \text{floor}[x(t)]
\]

with initial condition \(x(0) = 10 \):

- At \(t = 0 \), we have \(q = 10 \) and thus \(\dot{x}(0) = -10 + 9.5 = -0.5 \).
- Consequently, at \(t = 0^+ \), we have \(x(t) = 9.999\ldots \) and therefore \(q(t) = 9 \).
- This means that \(\dot{x}(0) = -9 + 9.5 = +0.5 \).
- As a consequence, we get immediately \(x(t) = 10 \) and thus return to the initial situation.
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.

Let us consider the quantized system:

\[\dot{x}(t) = -q(t) + 9.5 ; \quad q(t) = \text{floor}[x(t)] \]

with initial condition \(x(0) = 10 \):

- At \(t = 0 \), we have \(q = 10 \) and thus \(\dot{x}(0) = -10 + 9.5 = -0.5 \).
- Consequently, at \(t = 0^+ \), we have \(x(t) = 9.999 \ldots \) and therefore \(q(t) = 9 \).
- This means that \(\dot{x}(0) = -9 + 9.5 = +0.5 \).
- As a consequence, we get immediately \(x(t) = 10 \) and thus return to the initial situation.

We notice that \(q(t) \) oscillates between 10 and 9 with *infinite frequency*. For this reason, the DEVS model enters an *infinite loop*, and the simulation cannot advance.
Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the *legitimacy* of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of transitions in a finite interval of time.

Let us consider the quantized system:

\[
\dot{x}(t) = -q(t) + 9.5 \ ; \ q(t) = \text{floor}[x(t)]
\]

with initial condition \(x(0) = 10\):

- At \(t = 0\), we have \(q = 10\) and thus \(\dot{x}(0) = -10 + 9.5 = -0.5\).
- Consequently, at \(t = 0^+\), we have \(x(t) = 9.999\ldots\) and therefore \(q(t) = 9\).
- This means that \(\dot{x}(0) = -9 + 9.5 = +0.5\).
- As a consequence, we get immediately \(x(t) = 10\) and thus return to the initial situation.

We notice that \(q(t)\) oscillates between 10 and 9 with *infinite frequency*. For this reason, the DEVS model enters an *infinite loop*, and the simulation cannot advance.

Luckily, this problem can be solved easily by adding *hysteresis*.
If we add *hysteresis* to the relationship between $x(t)$ and $q(t)$, the oscillations in $q(t)$ can only be produced by *large oscillations* in $x(t)$ that cannot occur instantaneously, as long as the magnitude of the state derivatives remains bounded.
If we add *hysteresis* to the relationship between $x(t)$ and $q(t)$, the oscillations in $q(t)$ can only be produced by *large oscillations* in $x(t)$ that cannot occur instantaneously, as long as the magnitude of the state derivatives remains bounded.

Definition (Function of Quantization with Hysteresis)

Given an ordered sequence of increasing real-valued numbers $(\ldots, Q_{-1}, Q_0, Q_1, \ldots)$, we say that $q(t)$ is related to $x(t)$ through a quantization function with hysteresis, if:

$$ q(t) = \begin{cases}
Q_m & \text{if } t = t_0 \land Q_m \leq x(t_0) < Q_m + 1 \\
Q_{k+1} & \text{if } x(t) = Q_{k+1} \\
Q_k - 1 & \text{if } x(t) = Q_k - \varepsilon_k \\
q(t^-) & \text{otherwise}
\end{cases} $$

\land \begin{align*}
Q_m & \leq x(t_0) < Q_{m+1} \\
q(t^-) & = Q_k \\
q(t^-) & = Q_k
\end{align*}
Quantization Functions with Hysteresis

If we add *hysteresis* to the relationship between $x(t)$ and $q(t)$, the oscillations in $q(t)$ can only be produced by *large oscillations* in $x(t)$ that cannot occur instantaneously, as long as the magnitude of the state derivatives remains bounded.

Definition (Function of Quantization with Hysteresis)

Given an ordered sequence of increasing real-valued numbers $(\ldots, Q_{-1}, Q_0, Q_1, \ldots)$, we say that $q(t)$ is related to $x(t)$ through a quantization function with hysteresis, if:

$$q(t) = \begin{cases}
Q_m & \text{if } t = t_0 \land Q_m \leq x(t_0) < Q_m + 1 \\
Q_{k+1} & \text{if } x(t) = Q_{k+1} \land q(t^-) = Q_k \\
Q_{k-1} & \text{if } x(t) = Q_k - \varepsilon_k \land q(t^-) = Q_k \\
q(t^-) & \text{otherwise}
\end{cases}$$

The discrete values Q_k are called *quantization levels*, and the distance $Q_{k+1} - Q_k$ is called *quantum*. The quantum is often chosen constant. ε_k is the *hysteresis width*.
The graph depicted below shows a quantization function with hysteresis with a uniform quantum.

\[q(t) \]

\[Q_k \quad Q_{k+1} \]

\[\varepsilon_k \]

\[x(t) \]
QSS Method: Definition

Given the *time-invariant continuous system*:

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, \ldots, x_n, u_1, \ldots, u_m) \\
\vdots \\
\dot{x}_n &= f_n(x_1, x_2, \ldots, x_n, u_1, \ldots, u_m)
\end{align*}
\]
QSS Method: Definition

Given the \textit{time-invariant continuous system}:

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, \cdots, x_n, u_1, \cdots, u_m) \\
& \quad \cdots \\
\dot{x}_n &= f_n(x_1, x_2, \cdots, x_n, u_1, \cdots, u_m)
\end{align*}
\]

approximated by the \textit{quantized state system (QSS)}:

\[
\begin{align*}
\dot{x}_1 &= f_1(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m) \\
& \quad \cdots \\
\dot{x}_n &= f_n(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m)
\end{align*}
\]
QSS Method: Definition

Given the *time-invariant continuous system*:

\[
\begin{align*}
\dot{x}_a &= f_1(x_{a1}, x_{a2}, \cdots, x_{an}, u_1, \cdots, u_m) \\
&\vdots \\
\dot{x}_n &= f_n(x_{a1}, x_{a2}, \cdots, x_{an}, u_1, \cdots, u_m)
\end{align*}
\]

approximated by the *quantized state system (QSS)*:

\[
\begin{align*}
\dot{x}_1 &= f_1(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m) \\
&\vdots \\
\dot{x}_n &= f_n(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m)
\end{align*}
\]

where each \(q_i \) is related to \(x_i \) by a *hysteretic quantization function*.
QSS Method: Definition

Given the *time-invariant continuous system*:

\[
\begin{align*}
\dot{x}_a_1 &= f_1(x_a_1, x_a_2, \ldots, x_a_n, u_1, \ldots, u_m) \\
\vdots \\
\dot{x}_a_n &= f_n(x_a_1, x_a_2, \ldots, x_a_n, u_1, \ldots, u_m)
\end{align*}
\]

approximated by the *quantized state system (QSS)*:

\[
\begin{align*}
\dot{x}_1 &= f_1(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m) \\
\vdots \\
\dot{x}_n &= f_n(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m)
\end{align*}
\]

where each \(q_i \) is related to \(x_i \) by a *hysteretic quantization function*.

The QSS can be represented by the following *block diagram*:
Given the time-invariant continuous system:

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2, \ldots, x_n, u_1, \ldots, u_m) \\
\vdots \\
\dot{x}_n &= f_n(x_1, x_2, \ldots, x_n, u_1, \ldots, u_m)
\end{align*}
\]

approximated by the quantized state system (QSS):

\[
\begin{align*}
\dot{q}_1 &= f_1(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m) \\
\vdots \\
\dot{q}_n &= f_n(q_1, q_2, \ldots, q_n, u_1, \ldots, u_m)
\end{align*}
\]

where each \(q_i \) is related to \(x_i \) by a hysteretic quantization function.

The QSS can be represented by the following block diagram:
QSS Method: Definition

Given the time-invariant continuous system:

\[\dot{x}_{a_1} = f_1(x_{a_1}, x_{a_2}, \cdots, x_{a_n}, u_1, \cdots, u_m) \]
\[\vdots \]
\[\dot{x}_{a_n} = f_n(x_{a_1}, x_{a_2}, \cdots, x_{a_n}, u_1, \cdots, u_m) \]

approximated by the quantized state system (QSS):

\[\dot{x}_1 = f_1(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m) \]
\[\vdots \]
\[\dot{x}_n = f_n(q_1, q_2, \cdots, q_n, u_1, \cdots, u_m) \]

where each \(q_i \) is related to \(x_i \) by a hysteretic quantization function.

The QSS can be represented by the following block diagram:

As before, the QSS can be subdivided into static functions and quantized integrators.
DEVS Representation of a QSS

The DEVS models of the *static functions* are the same as before (M_F).
DEVS Representation of a QSS

The DEVS models of the *static functions* are the same as before (M_F).

The DEVS model of the *quantized integrators* changes a bit due to the presence of *hysteresis*:
DEVS Representation of a QSS

The DEVS models of the *static functions* are the same as before \((M_F)\).

The DEVS model of the *quantized integrators* changes a bit due to the presence of *hysteresis*:

\[
M_{HQI} = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \text{ where}
\]

\[
X = Y = \mathbb{R} \times \mathbb{N}; \quad S = \mathbb{R}^2 \times \mathbb{Z} \times \mathbb{R}^+_0
\]

\[
\delta_{int}(s) = \delta_{int}(x, d_x, k, \sigma) = (x + \sigma \cdot d_x, d_x, k + \text{sign}(d_x), \sigma_1)
\]

\[
\delta_{ext}(s, e, x_u) = \delta_{ext}(x, d_x, k, \sigma, e, x_v, p) = (x + e \cdot d_x, x_v, k, \sigma_2)
\]

\[
\lambda(s) = \lambda(x, d_x, k, \sigma) = (Q_{k+\text{sign}(d_x)}, 0)
\]

\[
ta(s) = ta(x, d_x, k, \sigma) = \sigma
\]
DEVS Representation of a QSS

The DEVS models of the *static functions* are the same as before \((M_F)\).

The DEVS model of the *quantized integrators* changes a bit due to the presence of *hysteresis*:

\[M_{HQI} = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta), \text{ where} \]
\[X = Y = \mathbb{R} \times \mathbb{N}; \quad S = \mathbb{R}^2 \times \mathbb{Z} \times \mathbb{R}_0^+ \]
\[\delta_{int}(s) = \delta_{int}(x, d_x, k, \sigma) = (x + \sigma \cdot d_x, d_x, k + \text{sign}(d_x), \sigma_1) \]
\[\delta_{ext}(s, e, x_u) = \delta_{ext}(x, d_x, k, \sigma, e, x_v, p) = (x + e \cdot d_x, x_v, k, \sigma_2) \]
\[\lambda(s) = \lambda(x, d_x, k, \sigma) = (Q_{k+\text{sign}(d_x)}, 0) \]
\[ta(s) = ta(x, d_x, k, \sigma) = \sigma \]

with:

\[\sigma_1 = \begin{cases}
Q_{k+2} - \frac{u + \sigma \cdot d_x}{(x + \sigma \cdot d_x) - (Q_k - 1 - \varepsilon)}
& \text{if } d_x > 0 \\
\infty
& \text{if } d_x < 0 \\
\infty
& \text{if } d_x = 0
\end{cases} \]

\[\sigma_2 = \begin{cases}
Q_{k+1} - \frac{x + e \cdot d_x}{(x + e \cdot d_x) - (Q_k - \varepsilon)}
& \text{if } x_v > 0 \\
\infty
& \text{if } x_v < 0 \\
\infty
& \text{if } x_v = 0
\end{cases} \]
Simulation with QSS

In order to simulate a model using the QSS algorithm, we begin by choosing the quantum to be used by each state variable, i.e., by each hysteretic quantized integrator.
In order to simulate a model using the QSS algorithm, we begin by choosing the quantum to be used by each state variable, i.e., by each hysteretic quantized integrator.

We then would need to program the static functions and the hysteretic quantized integrators.
In order to simulate a model using the QSS algorithm, we begin by choosing the quantum to be used by each state variable, i.e., by each hysteretic quantized integrator.

We then would need to program the static functions and the hysteretic quantized integrators.

However, PowerDEVS already comes with a library of pre-coded models of hysteretic quantized integrators (the user only needs to choose the quantum) and many different frequently used static functions (summers, limiters, etc.).
In order to simulate a model using the QSS algorithm, we begin by choosing the quantum to be used by each state variable, i.e., by each hysteretic quantized integrator.

We then would need to program the static functions and the hysteretic quantized integrators.

However, PowerDEVS already comes with a library of pre-coded models of hysteretic quantized integrators (the user only needs to choose the quantum) and many different frequently used static functions (summers, limiters, etc.).

It usually suffices to graphically construct the block diagram describing the system, choosing the quantum used by each of the state variables, and dragging the appropriate static functions from the graphical library and dropping them into the diagram window.
In order to simulate a model using the QSS algorithm, we begin by choosing the quantum to be used by each state variable, i.e., by each hysteretic quantized integrator.

We then would need to program the static functions and the hysteretic quantized integrators.

However, PowerDEVS already comes with a library of pre-coded models of hysteretic quantized integrators (the user only needs to choose the quantum) and many different frequently used static functions (summers, limiters, etc.).

It usually suffices to graphically construct the block diagram describing the system, choosing the quantum used by each of the state variables, and dragging the appropriate static functions from the graphical library and dropping them into the diagram window.

It should be mentioned, however, that the QSS algorithm is independent of DEVS. We chose DEVS for the implementation of the QSS method, because DEVS simplified our work. However, we could have programmed the QSS method also independently of DEVS using any other event description formalism.
Simulation with QSS: An Illustrative Example

Let us consider the following second-order system and its QSS approximation:

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t) & \dot{x}_1(t) &= q_2(t) \\
\dot{x}_2(t) &= 1 - x_1(t) - x_2(t) & \dot{x}_2(t) &= 1 - q_1(t) - q_2(t)
\end{align*}
\]
Let us consider the following second-order system and its QSS approximation:

\[
\begin{align*}
\dot{x}_a(t) &= x_a(t) \\
\dot{x}_a(t) &= 1 - x_a(t) - x_a(t)
\end{align*}
\]

\[
\dot{x_1}(t) = q_2(t) \\
\dot{x_2}(t) = 1 - q_1(t) - q_2(t)
\]

To simulate this system, we simply construct the block diagram using the hysteretic quantized integrator and the appropriate static functions of PowerDEVS:
Let us consider the following second-order system and its QSS approximation:

\[
\begin{align*}
\dot{x}_a_1(t) &= x_a_2(t) \\
\dot{x}_a_2(t) &= 1 - x_a_1(t) - x_a_2(t) \\
\dot{x}_1(t) &= q_2(t) \\
\dot{x}_2(t) &= 1 - q_1(t) - q_2(t)
\end{align*}
\]

To simulate this system, we simply construct the block diagram using the hysteretic quantized integrator and the appropriate static functions of PowerDEVS:
Simulation with QSS: An Illustrative Example

Let us consider the following second-order system and its QSS approximation:

\[
\begin{align*}
\dot{x}_a_1(t) &= x_a_2(t) \\
\dot{x}_a_2(t) &= 1 - x_a_1(t) - x_a_2(t)
\end{align*}
\]

\[
\begin{align*}
\dot{x}_1(t) &= q_2(t) \\
\dot{x}_2(t) &= 1 - q_1(t) - q_2(t)
\end{align*}
\]

To simulate this system, we simply construct the block diagram using the hysteretic quantized integrator and the appropriate static functions of PowerDEVS:

- The initial conditions are parameters of the integrators (in our case: \(x_1(0) = x_2(0) = 0\)).
Simulation with QSS: An Illustrative Example

Let us consider the following second-order system and its QSS approximation:

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t) \\
\dot{x}_2(t) &= 1 - x_1(t) - x_2(t) \\
\dot{x}_1(t) &= q_2(t) \\
\dot{x}_2(t) &= 1 - q_1(t) - q_2(t)
\end{align*}
\]

To simulate this system, we simply construct the block diagram using the hysteretic quantized integrator and the appropriate static functions of PowerDEVS:

- The initial conditions are parameters of the integrators (in our case: \(x_1(0) = x_2(0) = 0\)).
- The quantum and the hysteresis are parameters of each integrator (here: \(Q_{k+1} - Q_k = \Delta Q = \epsilon_k = 0.05\)).
Let us consider the following second-order system and its QSS approximation:

\[
\begin{align*}
\dot{x}_a_1(t) &= x_a_2(t) \\
\dot{x}_a_2(t) &= 1 - x_a_1(t) - x_a_2(t) \\
\dot{x}_1(t) &= q_2(t) \\
\dot{x}_2(t) &= 1 - q_1(t) - q_2(t)
\end{align*}
\]

To simulate this system, we simply construct the block diagram using the hysteretic quantized integrator and the appropriate static functions of PowerDEVS:

- The initial conditions are parameters of the integrators (in our case: \(x_1(0) = x_2(0) = 0\)).
- The quantum and the hysteresis are parameters of each integrator (here: \(Q_{k+1} - Q_k = \Delta Q = \epsilon_k = 0.05\)).
- The QSS method intrinsically exploits sparsity (events are only propagated between directly connected blocks).
Simulation with QSS: An Illustrative Example II

The *simulation results* are shown below:
The *simulation results* are shown below:

![Results of the QSS Simulation](image)

- $x_1(t), q_1(t)$
- $x_2(t), q_2(t)$
The simulation results are shown below:

The trajectories of the state variables $x_i(t)$ are piecewise linear.
The simulation results are shown below:

- The trajectories of the state variables $x_i(t)$ are piecewise linear.
- The trajectories of the quantized states $q_i(t)$ are piecewise constant.
The simulation results are shown below:

- The trajectories of the state variables $x_i(t)$ are piecewise linear.
- The trajectories of the quantized states $q_i(t)$ are piecewise constant.
- The presence of the hysteresis is easy to observe where the signs of the state derivatives $\dot{x}_i(t)$ change.
The simulation results are shown below:

The trajectories of the state variables $x_i(t)$ are piecewise linear.

The trajectories of the quantized states $q_i(t)$ are piecewise constant.

The presence of the hysteresis is easy to observe where the signs of the state derivatives $\dot{x}_i(t)$ change.

The obtained solution is quite close to the analytical solution.
In this presentation, we introduced a new type of discretization. Instead of *discretizing the time*, we proposed a *quantization of the state variables*.
Conclusions

▶ In this presentation, we introduced a new type of discretization. Instead of *discretizing the time*, we proposed a *quantization of the state variables*.

▶ We then outlined a new *numerical integration algorithm* based on this idea, the *QSS algorithm*, that operates on *quantized states with hysteresis*.
In this presentation, we introduced a new type of discretization. Instead of discretizing the time, we proposed a quantization of the state variables.

We then outlined a new numerical integration algorithm based on this idea, the QSS algorithm, that operates on quantized states with hysteresis.

QSS simulations are intrinsically asynchronous. Each state variable changes its value independently of the other state variables.
Conclusions

- In this presentation, we introduced a new type of discretization. Instead of \textit{discretizing the time}, we proposed a \textit{quantization of the state variables}.

- We then outlined a new \textit{numerical integration algorithm} based on this idea, the \textit{QSS algorithm}, that operates on \textit{quantized states with hysteresis}.

- QSS simulations are \textit{intrinsically asynchronous}. Each state variable changes its value independently of the other state variables.

- The QSS algorithm exploits the \textit{sparsity of the model topology}. Events are propagated only between blocks that are directly connected.
Conclusions

- In this presentation, we introduced a new type of discretization. Instead of \textit{discretizing the time}, we proposed a \textit{quantization of the state variables}.

- We then outlined a new \textit{numerical integration algorithm} based on this idea, the \textit{QSS algorithm}, that operates on \textit{quantized states with hysteresis}.

- QSS simulations are \textit{intrinsically asynchronous}. Each state variable changes its value independently of the other state variables.

- The QSS algorithm exploits the \textit{sparsity of the model topology}. Events are propagated only between blocks that are directly connected.

- Unfortunately, the QSS algorithm cannot be easily programmed as a \texttt{Matlab} function. Instead, we also introduced a new tool, \texttt{PowerDEVS}, that has been specifically designed for the numerical simulation of continuous systems using QSS algorithms.
